JPS6331523A - Apparatus for treating waste gas - Google Patents

Apparatus for treating waste gas

Info

Publication number
JPS6331523A
JPS6331523A JP61173783A JP17378386A JPS6331523A JP S6331523 A JPS6331523 A JP S6331523A JP 61173783 A JP61173783 A JP 61173783A JP 17378386 A JP17378386 A JP 17378386A JP S6331523 A JPS6331523 A JP S6331523A
Authority
JP
Japan
Prior art keywords
gas
magnetic field
discharge
waste gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61173783A
Other languages
Japanese (ja)
Other versions
JPH0480723B2 (en
Inventor
Ryohei Itaya
良平 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KAGAKU KENKYUSHO
Original Assignee
OYO KAGAKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KAGAKU KENKYUSHO filed Critical OYO KAGAKU KENKYUSHO
Priority to JP61173783A priority Critical patent/JPS6331523A/en
Publication of JPS6331523A publication Critical patent/JPS6331523A/en
Publication of JPH0480723B2 publication Critical patent/JPH0480723B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To efficiently treat waste gas, by a method wherein a magnetic field applying device is provided to form an electric field and a magnetic field crossing at a specific angle to each other in a discharge tube and the waste gas is allowed to flow through the crossing space to efficiently advance plasma reaction even in the waste gas of minute concn. CONSTITUTION:Waste gas containing a noxious substance such as silane discharged when a semiconductive device is prepared by plasma etching is introduced into a gas flowing space 10 in a discharge pipe from a gas introducing port 4. When an AC or DC magnetic flux 6 crossing the direction of the electric field formed by a pair of electrodes 1, 2-connected to a DC or AC power source at an angle of about 45-135 deg.C is applied to the space 10 by an electromagnetic or a permanent magnet, discharge is generated and a gas or vapor of silane is formed into plasma to be changed to silicon and hydrogen. Hydrogen generated is discharged from a gas lead-out port 5. The solid product such as silicon diposited in the discharge pipe is taken out of the tube by preliminarily covering the surfaces of the electrodes with a metal foil and covering the other part with an insulating film and replacing the covered ones.

Description

【発明の詳細な説明】 〔3−1産業上の利用分野〕 本発明は廃ガス処理装置に関する。更に詳しくは、本発
明は半導体産業などで用いられるプラズマプロセシング
例えばプラズマエツチング若しくは化学気相成長法−C
VD(Chemical Vapor Deposi−
tion)法−において未処理のまま大気中に放出すれ
ば何等かの公害を生ずる可能性を持つ気体または蒸気を
無害化処理するため該気体又は蒸気にプラズマ放電を行
なう放電管を含む廃ガス処理装置に関する。本発明に用
いる放電管は約10””mmHgから約10mmHgま
での広い圧力範囲で作動し上記無害化処理を高率良く達
成することができる。
DETAILED DESCRIPTION OF THE INVENTION [3-1 Industrial Application Field] The present invention relates to a waste gas treatment device. More specifically, the present invention applies to plasma processing methods such as plasma etching or chemical vapor deposition methods used in the semiconductor industry and the like.
VD (Chemical Vapor Deposit)
waste gas treatment including discharge tubes that perform plasma discharge on gases or vapors in order to detoxify gases or vapors that may cause some kind of pollution if released into the atmosphere untreated. Regarding equipment. The discharge tube used in the present invention operates in a wide pressure range from about 10'' mmHg to about 10 mmHg, and can accomplish the above detoxification treatment with high efficiency.

〔3−2従来の技術〕 たとえば、アモルファスシリコン太陽電池の製造の場合
、原料であるシラン又はジシランはそのまま又は適当な
ガスで希釈され反応槽の中でプラズマCVD法により分
解されてアモルファスシリコンの薄膜となる。この際、
未反応の原料ガスは分解生成物の水素と共にポンプによ
り大気中に排出される。プラズマCVDを開始する直前
や終了の直後では反応の調整や製品の一様性を確保する
ため、原料ガスが其のまま反応を行なうことなく排出さ
れる事がある。またpn接合を作る為にフォスフイン又
はジボランを前記原料ガスに混合することがある。これ
らのガスはいずれも毒性を有するため、ポンプからの排
出ガスは従来化学的方法で処理されていた。
[3-2 Prior Art] For example, in the production of amorphous silicon solar cells, the raw material silane or disilane is used as it is or diluted with an appropriate gas and decomposed in a reaction tank by plasma CVD to form a thin film of amorphous silicon. becomes. On this occasion,
The unreacted raw material gas is discharged into the atmosphere by a pump together with the decomposition product hydrogen. Immediately before starting or ending plasma CVD, the raw material gas may be discharged without undergoing any reaction in order to adjust the reaction and ensure product uniformity. In addition, phosphine or diborane may be mixed with the raw material gas to form a pn junction. Since all of these gases are toxic, the exhaust gases from pumps have traditionally been treated using chemical methods.

化学的処理の他に電気的処理方法及び処理装置も提案さ
れている。たとえば、特開昭第51−129868号に
は有毒物質を含有する廃ガス及び酸化剤をプラズマが発
生している空間で相互に接触せしめることにより前記有
毒物質を安定な化合物に変え。
In addition to chemical treatments, electrical treatment methods and treatment devices have also been proposed. For example, Japanese Patent Application Laid-Open No. 129868/1983 discloses a method in which waste gas containing toxic substances and an oxidizing agent are brought into contact with each other in a space where plasma is generated, thereby converting the toxic substances into stable compounds.

この化合物を前記廃ガスから除去することを特徴とする
廃ガスの処理方法が開示されている。また。
A method for treating waste gas is disclosed, which is characterized in that this compound is removed from the waste gas. Also.

特開昭第58−6231号には反応性の廃ガスを排出す
る反応槽と排出装置との間に配置され、前記反応性の廃
ガスをプラズマ放電により分解して前記排出装置により
排出するようにしたことを特徴とする廃ガス処理装置が
提案されている。
JP-A No. 58-6231 discloses a device disposed between a reaction tank for discharging reactive waste gas and a discharge device, the reactive waste gas being decomposed by plasma discharge and discharged by the discharge device. A waste gas treatment device has been proposed which is characterized by:

〔3−3発明が解決しようとする問題点〕化学的処理方
法では、処理設備の方が製造設備より大規模になる場合
があり、更にプラズマCvDゃプラズマエツチングなど
の装置毎に処理設備が必要になる場合もあり、小型簡便
でしかも有効な処理法が望まれている。一方、従来の電
気的処理方法についても、プラズマの反応槽に用いたの
と同じ電源を使用したのでは極めて高価なものとなって
しまう。一方、安価な直流や交流を用いたのでは、10
′″”mmHg以下の気圧では全く放電せず、電気的に
廃ガス処理装置を行なう事は出来ない。
[3-3 Problems to be solved by the invention] In chemical processing methods, the processing equipment may be larger than the manufacturing equipment, and in the case of plasma CVD, processing equipment is required for each device such as plasma etching. Therefore, a small, simple and effective treatment method is desired. On the other hand, the conventional electrical processing method also becomes extremely expensive if the same power source used for the plasma reaction tank is used. On the other hand, if cheap direct current or alternating current is used, 10
If the pressure is less than '''''mmHg, there will be no discharge at all, making it impossible to operate the waste gas treatment device electrically.

〔3−4問題点を解決する手段及び作用〕本発明者は電
気的廃ガス処理方法の欠点を克服するため鋭意研究した
結果、放電管中電界と磁界が約45°乃至約135°の
角度で交わるように磁界印加装置を設は電界と磁界の交
わる空間に廃ガスを流通させると微量濃度の廃ガスでも
プラズマ反応が効率良く進行し極めて効率良い廃ガス処
理が可能であることを知見した。この新規な知見に基づ
き本発明は成されたものである。
[3-4 Means and operation for solving the problems] As a result of intensive research to overcome the drawbacks of electrical waste gas treatment methods, the present inventor found that the electric field and magnetic field in the discharge tube are at an angle of about 45° to about 135°. By setting up a magnetic field application device so that the electric and magnetic fields intersect, we discovered that if the waste gas is passed through a space where the electric and magnetic fields intersect, the plasma reaction will proceed efficiently even at a trace concentration of waste gas, making it possible to treat waste gas extremely efficiently. . The present invention has been made based on this new knowledge.

即ち、本発明によれば、ガス導入口とガス導出口を有す
る管状容器内に少なくとも一対の電極を設け、該ガス導
入口と該ガス導出口はガス流通空間により連結されてい
る放電管及び該電極と接続される直流又は交流電源を含
む廃ガス処理装置において、該ガス導入口より流入した
ガスをプラズマ化させるため該ガス流通空間で該電極に
より形成される電界の向きと約45°乃至約135°の
角度で交わる直流又は交流の磁界を印加する磁界印加装
置を該放電管に装着させ且つ該放電管容器の磁力線と交
わる器壁の少なくとも表面が絶縁物で構成されているこ
とを特徴とする廃ガス処理装置が提供される。
That is, according to the present invention, at least one pair of electrodes is provided in a tubular container having a gas inlet and a gas outlet, and the gas inlet and the gas outlet are connected to the discharge tube and the gas outlet through a gas circulation space. In a waste gas treatment device including a DC or AC power source connected to an electrode, the direction of the electric field formed by the electrode in the gas flow space is approximately 45° to approximately A magnetic field applying device for applying direct current or alternating current magnetic fields that intersect at an angle of 135° is attached to the discharge tube, and at least the surface of the vessel wall that intersects with the magnetic field lines of the discharge tube container is made of an insulator. A waste gas treatment device is provided.

本廃ガス処理装置の主要部を構成する放電管の基本的構
造の一例を第1図に示す。プラズマプロセシングたとえ
ばプラズマエツチング若しくはCVD法において未処理
のまま大気中に放出すれば何等かの公害を生ずる可能性
を持つ気体または蒸気、たとえばシラン系ガス(シラン
、ジシラン、トリシランなど)、ボラン系ガス(ジボラ
ンなど)、ホスフィン系ガス、弗化シリコーン及びその
誘導体または有機金属など半導体デバイス製造の際排出
される気体又は蒸気はガス導入口4を通じて放電管内に
導入される。導入された気体又は蒸気はガス流通空間I
Oに至る。ガス流通空間10では直流又は交流電源に接
続された少なくとも一対の電極1.2により形成される
電界の向きと約45°乃至約135°の角度で交わる直
流又は交流の磁界6を印加する。この電界と磁界の交叉
する空間内に上記気体又は蒸気が導入されると放電が生
ずる。この放電は約10−10−7aから約10mmH
gまでの広い圧力範囲で生じる。この放電により上記の
気体又は蒸気はプラズマ化され次の反応が行なわれる。
FIG. 1 shows an example of the basic structure of a discharge tube that constitutes the main part of this waste gas treatment device. In plasma processing, such as plasma etching or CVD, gases or vapors that may cause some kind of pollution if released into the atmosphere untreated, such as silane gases (silane, disilane, trisilane, etc.), borane gases ( Gases or vapors discharged during the manufacturing of semiconductor devices, such as diborane, phosphine-based gas, silicon fluoride and its derivatives, or organic metals, are introduced into the discharge tube through the gas inlet 4. The introduced gas or vapor flows through the gas circulation space I.
Leads to O. In the gas flow space 10, a direct current or alternating current magnetic field 6 is applied which intersects the direction of the electric field formed by at least one pair of electrodes 1.2 connected to a direct current or alternating current power supply at an angle of about 45° to about 135°. When the gas or vapor is introduced into the space where the electric and magnetic fields intersect, a discharge occurs. This discharge is about 10mmH from about 10-10-7a
occurs over a wide pressure range up to g. Due to this discharge, the above gas or vapor is turned into plasma, and the next reaction takes place.

シランはシリコーンと水素に、ジボランはホウ素と水素
に、酸素共存下では、酸化ボロンと水素に、ホスフィン
は酸素共存下で酸化燐と水に、弗化シリコーンはカルシ
ューム粉末共存下でシリコーンと弗化カルシュームに、
有機金属は酸素共存下で水と炭酸ガスと金属酸化物に変
化する。発生した水素、水蒸気、炭酸ガスなどは安全な
気体又は蒸気としてガス導出口5より排出される。シリ
コーン、ホウ素、酸化ボロン、チッ化ボロン、酸化燐な
どの固体生成物は放電管内、特に電極近辺若しくは内壁
に堆積する。気圧が低いときには陰極の両脇の器壁3の
内部上に堆積するが、気圧が高くて陽極の外側にグロー
が出来るときには、そのグローの近くの器壁にも堆積す
るようになる。又、ガスの流量を増やすと、プラズマ領
域より見てガス流の上流側よりも下流側の方に遥かに多
くの堆積が認められる。即ちプラズマ内で生じたラジカ
ルが気流の影響を受けて下流に運ばれて堆積している事
を示している。堆積した固体生成物は通常、公知の手段
を用いて管外に取り出すことができる。例えば、電極表
面はアルミニューム箔などの金属箔で被覆しその他の部
分を絶縁性フィルムで被覆しておき、これらを適宜交換
するのが最も容易な方法である。また、放電管を容易に
分解可能な構造としておき適当な時間毎に分解清掃する
ことも可能である。さらに放電管外壁及び電極に機械的
振動を付与し、固体生成物を下方に落下させ放電近辺空
間外に集積除去することもできる。管内の清掃を容易に
するため内壁表面をビニル系フィルムで被覆しそのフィ
ルムを適宜交換することもできる。
Silane turns into silicone and hydrogen, diborane turns into boron and hydrogen, boron oxide and hydrogen in the coexistence of oxygen, phosphine turns into phosphorus oxide and water in the coexistence of oxygen, silicone fluoride turns into silicone and fluoride in the coexistence of calcium powder. Calcium,
Organometallics change into water, carbon dioxide, and metal oxides in the presence of oxygen. Generated hydrogen, water vapor, carbon dioxide gas, etc. are discharged from the gas outlet 5 as safe gas or steam. Solid products such as silicone, boron, boron oxide, boron nitride, and phosphorous oxide are deposited within the discharge tube, especially near the electrodes or on the inner walls. When the atmospheric pressure is low, it is deposited on the inside of the vessel wall 3 on both sides of the cathode, but when the atmospheric pressure is high and a glow is formed on the outside of the anode, it is also deposited on the vessel wall near the glow. Also, when the gas flow rate is increased, much more deposition is observed on the downstream side of the gas flow than on the upstream side of the plasma region. This indicates that radicals generated within the plasma are carried downstream and deposited under the influence of air currents. The deposited solid product can usually be removed from the tube using known means. For example, the easiest method is to cover the electrode surface with a metal foil such as aluminum foil and cover the other parts with an insulating film, and replace these as appropriate. It is also possible to construct the discharge tube so that it can be easily disassembled and to disassemble and clean it at appropriate intervals. Furthermore, it is also possible to apply mechanical vibration to the outer wall of the discharge tube and the electrodes to cause the solid products to fall downward and collect and remove them outside the space near the discharge. In order to facilitate cleaning inside the pipe, the inner wall surface can be coated with a vinyl film and the film can be replaced as appropriate.

上述の方法により未だ処理のまま大気中に放出すれば何
等かの公害を生ずる可能性を持つ気体又は蒸気の無害化
が達成される。
By the above-described method, gases or vapors which may cause some pollution if released into the atmosphere while still being treated are rendered harmless.

本発明で用いる管状容器は通常の放電管にみられる円筒
状である必要は無く、任意形状の断面。
The tubular container used in the present invention does not need to be cylindrical as seen in ordinary discharge tubes, but can have an arbitrary cross section.

例えば三角形若しくは矩形断面の容器も用いることがで
きる。電界の大きさは放電開始するものであればよい。
For example, containers of triangular or rectangular cross section can also be used. The electric field may be of any magnitude as long as it starts a discharge.

この値は処理されるべきガスの種類。This value is the type of gas to be processed.

ガスの圧力、電極間隔などで広範囲に変わる。プラズマ
を発生するに必要な大きさでありさえすればよい、好ま
しい電界の大きさを得るための電極間電位は通常□、約
10V以上である。直流電源、単相交流電源、多相交流
電源のいずれも用いることができるがプラズマ反応を連
続的に行なう見地から、即ち未処理のままでガスが排出
される可能性を回避する見地から直流電源若しくは多相
交流電源を用いることが好ましい。電極の間隔は臨界的
でないが、磁束密度(B)で次式より決まる電子の旋回
半径(r)よりも大きい値であることが一般的に好まし
い。
It varies widely depending on gas pressure, electrode spacing, etc. The potential between the electrodes to obtain a preferred electric field strength, which only needs to be of a magnitude necessary to generate plasma, is usually □, about 10 V or more. Either a DC power source, a single-phase AC power source, or a multi-phase AC power source can be used, but a DC power source is recommended from the standpoint of performing the plasma reaction continuously, that is, from the standpoint of avoiding the possibility of gas being discharged untreated. Alternatively, it is preferable to use a polyphase AC power source. Although the spacing between the electrodes is not critical, it is generally preferred that it be larger than the radius of gyration (r) of electrons determined by the following equation based on the magnetic flux density (B).

但しV:電子の磁界に垂直な運動エネルギー(電子ボル
ト) ■:電子の重量 e:電子の荷電 必要な磁界の大きさは電極間隔、印加電圧で変わる。磁
束密度(B)は次式を満足するものであれば良い。
However, V: Kinetic energy of electrons perpendicular to the magnetic field (electron volts) ■: Weight of electrons e: Charge of electrons The magnitude of the required magnetic field varies depending on the electrode spacing and applied voltage. The magnetic flux density (B) may be one that satisfies the following formula.

但しd:電極間隔 V p m p e :上述の通りとする。However, d: electrode spacing V p m p e : As described above.

磁界の大きさは一般的には数ガウス以上であることが好
ましく、実用上約100乃至約500ガウスの範囲に有
ることが更に好ましい。磁界印加装置は電磁石でも永久
磁石でも良い、直流磁界印加装置、単相交流磁界印加装
置、多相交流磁界印加装置のいずれも用いることができ
るが、プラズマ反応を連続的に行なう見地から、即ち、
未処理のままでガスが排出される可能性を回避する見地
から直流磁界印加装置若しくは多相交流磁界印加装置を
用いることが好ましい。本発明においては、放電管の器
壁の磁力線と交わる部分の少なくとも表面は絶縁物で構
成されている。器壁の磁力線と交わる部分が導電性であ
れば電子の損失が増加するため廃ガス処理の能率が低下
する6本発明においては。
The magnitude of the magnetic field is generally preferably several Gauss or more, and in practice it is more preferably in the range of about 100 to about 500 Gauss. The magnetic field application device may be an electromagnet or a permanent magnet, and any of a DC magnetic field application device, a single-phase AC magnetic field application device, and a multiphase AC magnetic field application device can be used, but from the standpoint of performing a plasma reaction continuously, that is,
It is preferable to use a DC magnetic field application device or a multiphase AC magnetic field application device from the viewpoint of avoiding the possibility that gas is discharged without being treated. In the present invention, at least the surface of the portion of the wall of the discharge tube that intersects with the lines of magnetic force is made of an insulator. If the part of the vessel wall that intersects with the magnetic field lines is conductive, the loss of electrons will increase and the efficiency of waste gas treatment will decrease.6 In the present invention.

放電管の器壁を導電性物質で構成し電極を兼ねさせ磁力
線と交わる部分は絶縁性フィルムで被覆することも好ま
しい実施態様の一つである。また、放電を安定化させ及
び/又はガスのプラズマ化に伴い生成する固体物質の分
離を容易にするガス。
One of the preferred embodiments is that the wall of the discharge tube is made of a conductive material and also serves as an electrode, and the portion that intersects with the lines of magnetic force is covered with an insulating film. Also, a gas that stabilizes the discharge and/or facilitates the separation of solid substances generated as the gas becomes plasma.

例えば酸素若しくはチッ素、を処理すべきガスに共存さ
せることができる。このためには、放電管に付加的なガ
ス導入口を設けることが好ましい。
For example, oxygen or nitrogen can be present in the gas to be treated. For this purpose, it is preferable to provide the discharge vessel with an additional gas inlet.

プラズマは放電によってi14した状態を云うが、プラ
ズマの温度はガス圧、ガスの種類などによって変わる。
Plasma refers to the i14 state caused by discharge, and the temperature of the plasma varies depending on the gas pressure, type of gas, etc.

プラズマエネルギーは1eVから10eV <らいの範
囲にある。ガス導入口より導入された気体又は蒸気が交
叉する電界と磁界の作用を受けてプラズマ反応を行なう
時間はガスの流量及び放電電力で変わる。即ち、放電電
力を多くすればこの時間は少なくてすみ、放電電力を一
定にして流量を増すとこの時間を長くする必要がある。
The plasma energy is in the range of 1 eV to 10 eV. The time during which the gas or vapor introduced through the gas inlet undergoes a plasma reaction under the action of the intersecting electric and magnetic fields varies depending on the gas flow rate and discharge power. That is, if the discharge power is increased, this time can be shortened, and if the discharge power is kept constant and the flow rate is increased, this time needs to be lengthened.

流量と放電電流の関係は第5図に示す。上記時間は一般
的には約0.01秒から約5分の範囲にある。プラズマ
の気体密度は第5図に実例が示されている。これは装置
の寸法によって異なる。一般に放電では比例則なるもの
があり、気体圧Pと電極量比Mdとの積pdが一定なれ
ば放電の状態は似てくる。従ってPを小さくするとdを
大きくすればよい。
The relationship between flow rate and discharge current is shown in FIG. The time period typically ranges from about 0.01 seconds to about 5 minutes. An example of the gas density of plasma is shown in FIG. This depends on the size of the device. Generally, there is a proportionality law in discharge, and if the product pd of the gas pressure P and the electrode amount ratio Md is constant, the discharge state becomes similar. Therefore, if P is decreased, d may be increased.

水産ガス処理装置の使用法は多様である。その具体例の
−を第3図に示す。水産ガス処理装置12.13はプラ
ズマプロセシング(プラズマCVD若しくはプラズマエ
ツチング)の反応槽11と排気ポンプ14の間に設置さ
れる。処理装置の清掃を容易にするため切り替えバルブ
16.17.また放電を安定化させ及び/又はガスのプ
ラズマ化により生成する固体物質の分割を容易にするガ
スを供給するボンベ]5を配置することができる。
The uses of fish gas treatment equipment are diverse. A specific example of this is shown in FIG. The marine gas processing equipment 12, 13 is installed between the reaction tank 11 for plasma processing (plasma CVD or plasma etching) and the exhaust pump 14. Switching valves 16.17. to facilitate cleaning of the processing equipment. Further, a cylinder] 5 for supplying a gas that stabilizes the discharge and/or facilitates the division of the solid material generated by turning the gas into plasma may be provided.

プラズマ反応が確実に行なわれるようにするため、本発
明に用いる放電管は対向する電極の間にガスの導入口を
もってくるか、ガス輸送又は排出管の外壁を一つの電極
とし、その中にもう一極を設けることでガスの流路が必
ず対向する電極間を通過する構造とするか、電極でない
外壁と電極の最外側との距離が1平均自由行程以下とな
るような構造をもつように設計することが好ましい0水
戻ガス処理装置において必要な磁界を発生する方法と電
極の形状の具体例を第6図〜第10図に示す。
In order to ensure that the plasma reaction takes place, the discharge tube used in the present invention either has a gas inlet between opposing electrodes, or the outer wall of the gas transport or discharge tube is one electrode, and there is another Either create a structure in which the gas flow path always passes between opposing electrodes by providing one pole, or create a structure in which the distance between the outer wall that is not an electrode and the outermost part of the electrode is one mean free path or less. Specific examples of the method of generating the necessary magnetic field and the shape of the electrodes in the desirably designed 0 water return gas treatment apparatus are shown in FIGS. 6 to 10.

図中7は永久磁石、8は電磁石、9は絶縁性フィルムを
示す。絶縁性フィルムに固体生成物を付着させこれを交
換することにより放電管の清掃を迅速に行なうことがで
きる。放電に交流を用いる場合には、第10図に例示す
るように、3相交流を使用して、処理装置内で電流が零
の時刻が全く出来ないようにすることによって処理が不
十分のガスを放出することが防止される。
In the figure, 7 is a permanent magnet, 8 is an electromagnet, and 9 is an insulating film. The discharge tube can be quickly cleaned by depositing solid products on the insulating film and replacing it. When using alternating current for discharge, as shown in Fig. 10, three-phase alternating current is used to prevent insufficiently processed gas from occurring in the processing equipment at any time when the current is zero. is prevented from being released.

〔3−5発明の効果〕 本発明によれば小型簡便でしかも効率の良い経済的な廃
ガス処理装置が提供される0本発明で用いる放電管は1
0−2mmHg以下の低気圧でも放電し廃ガスのプラズ
マ化反応を励起することができる。
[3-5 Effects of the Invention] According to the present invention, a compact, simple, efficient, and economical waste gas treatment device is provided. The discharge tube used in the present invention is 1.
Even at a low pressure of 0-2 mmHg or less, it is possible to discharge and stimulate the plasma reaction of waste gas.

従って、本発明の廃ガス処理装置は微量濃度の廃ガスも
極めて効率良く無害化させることができる。
Therefore, the waste gas treatment apparatus of the present invention can render even trace amounts of waste gas harmless extremely efficiently.

〔3−6実施例〕 第2図の放電管を用いて480ガウスの磁界を印加して
放電させた゛ときの電圧・電流特性を第4図に示す。シ
ランガスの流量が十分に少ないときでも放電することが
確認された。この時、磁界を取り去れば放電を維持する
ことは出来ない。処理すべきガスの流量と所要電流との
関係は第5図の様になる。シランガスのプラズマ処理に
より電極近辺及び器壁内壁にアモルファスシリコンが堆
積するのが[6された。尚、本処理が完全に行なわれる
ことの確認は、分光器にコンG−500)によるシラン
スペクトルの観測、ならびに放電特性の変化点の測定お
よび空気中に放出したガスから酸化シリコンの白粉がも
はや生じないかどうかにより行なった。
[Embodiment 3-6] FIG. 4 shows the voltage/current characteristics when a magnetic field of 480 Gauss was applied to cause discharge using the discharge tube shown in FIG. 2. It was confirmed that discharge occurred even when the flow rate of silane gas was sufficiently low. At this time, if the magnetic field is removed, the discharge cannot be maintained. The relationship between the flow rate of the gas to be treated and the required current is as shown in FIG. Amorphous silicon was deposited near the electrodes and on the inner wall of the vessel due to the silane gas plasma treatment [6]. In addition, confirmation that this treatment is complete can be made by observing the silane spectrum using a spectrometer (Con G-500), measuring the change point of the discharge characteristics, and confirming that white powder of silicon oxide is no longer present in the gas released into the air. This was done based on whether or not it would occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本焼ガス処理装置に用いる放電管の基本構造を
示す斜視図、第2図は本発明の有効性を試験したときの
放電管の構造と寸法とを示す。第3図は本発明の廃ガス
処理装置の使用方法を示す。 第4図はチッ素とシランとの放電特性を示す。第5図は
処理量と所要電流との関係を示す。第6図〜第10図は
本焼ガス処理装置の具体例を示す。第1O図は放電に3
相交流を用いる場合の結線の方法を示す。 各回において参照番号は次のものを表わしている。 ■、2:電極       8:電磁石3:放電管器壁
    9:絶縁性フィルム4:ガス導入口    1
0:ガス流通空間5:ガス導出口    11:プラズ
マプロセシング反応槽 6:磁力線    12.13:水産ガス処理装置7:
永久磁石     14:排気ポンプ15:ガス供給ボ
ンベ 16.17:切り替えバルブ 特許出願人 財団法人応用科学研究所 板谷良平 第3図 第4図 第5図 SiH4;7L t  mt(J!’?訊3)/min
第6図 (a) (b) 第7図 (a) (b)
FIG. 1 is a perspective view showing the basic structure of a discharge tube used in a firing gas treatment apparatus, and FIG. 2 shows the structure and dimensions of the discharge tube used when testing the effectiveness of the present invention. FIG. 3 shows a method of using the waste gas treatment apparatus of the present invention. FIG. 4 shows the discharge characteristics of nitrogen and silane. FIG. 5 shows the relationship between throughput and required current. FIGS. 6 to 10 show specific examples of the firing gas treatment apparatus. Figure 1O shows 3 for discharge.
This shows the wiring method when using phase current. In each edition, the reference numbers represent the following: ■, 2: Electrode 8: Electromagnet 3: Discharge vessel wall 9: Insulating film 4: Gas inlet 1
0: Gas distribution space 5: Gas outlet 11: Plasma processing reaction tank 6: Magnetic field lines 12.13: Fishery gas processing equipment 7:
Permanent magnet 14: Exhaust pump 15: Gas supply cylinder 16. 17: Switching valve Patent applicant: Ryohei Itaya, Institute of Applied Science Figure 3 Figure 4 Figure 5 SiH4;7L t mt (J!'?Question 3) /min
Figure 6 (a) (b) Figure 7 (a) (b)

Claims (6)

【特許請求の範囲】[Claims] (1)ガス導入口とガス導出口を有する管状容器内に少
なくとも一対の電極を設け、該ガス導入口と該ガス導出
口はガス流通空間により連結されている放電管及び該電
極と接続される直流又は交流電源を含む廃ガス処理装置
において、該ガス導入口より流入したガスをプラズマ化
させるため該ガス流通空間で該電極により形成される電
界の向きと約45°乃至約135°の角度で交わる直流
又は交流の磁界を印加する磁界印加装置を該放電管に装
着させ且つ該放電管容器の磁力線と交わる器壁の少なく
とも表面が絶縁物で構成されていることを特徴とする廃
ガス処理装置。
(1) At least one pair of electrodes is provided in a tubular container having a gas inlet and a gas outlet, and the gas inlet and the gas outlet are connected to a discharge tube and the electrode connected by a gas circulation space. In a waste gas treatment device including a DC or AC power source, the gas flowing in from the gas inlet is turned into plasma at an angle of about 45° to about 135° with the direction of the electric field formed by the electrode in the gas circulation space. A waste gas treatment device characterized in that a magnetic field application device that applies intersecting direct current or alternating magnetic fields is attached to the discharge tube, and at least the surface of the vessel wall that intersects with the lines of magnetic force of the discharge tube container is made of an insulator. .
(2)該電極が該印加磁界の磁束密度(B)で決まる電
子の旋回半径(r)よりも大きい間隔をもって配置され
ていることを特徴とする特許請求の範囲第(1)項記載
の処理装置。
(2) The process according to claim (1), wherein the electrodes are arranged at intervals larger than a radius of gyration (r) of electrons determined by the magnetic flux density (B) of the applied magnetic field. Device.
(3)該電源が直流電源であり、該磁界印加装置が直流
磁界印加装置であることを特徴とする特許請求の範囲第
(1)項又は第(2)項記載の処理装置。
(3) The processing device according to claim (1) or (2), wherein the power source is a DC power source, and the magnetic field application device is a DC magnetic field application device.
(4)該電源が多相交流電源であり、該磁界印加装置が
直流又は多相交流磁界印加装置であることを特徴とする
特許請求の範囲第(1)項又は第(2)項記載の処理装
置。
(4) Claims (1) or (2), characterized in that the power source is a multiphase AC power source, and the magnetic field application device is a DC or multiphase AC magnetic field application device. Processing equipment.
(5)該放電管の器壁が電極を兼ねるため導電性物質で
構成され、該器壁内表面が絶縁性フィルムで被覆されて
いることを特徴とする特許請求の範囲第(1)項〜第(
4)項のいずれかに記載の処理装置。
(5) The wall of the discharge tube also serves as an electrode and is therefore made of a conductive material, and the inner surface of the wall is coated with an insulating film. No. (
4) The processing device according to any one of the above.
(6)該放電間の容器が付加的なガス導入口を有してい
て、該導入口を通して放電を安定化させ及び/又はガス
のプラズマ化により生成する固体物質の分離を容易にす
るガスを導入するように構成されていることを特徴とす
る特許請求の範囲第(1)項〜第(5)項のいずれかに
記載の処理装置。
(6) the vessel between the discharges has an additional gas inlet through which a gas can be introduced to stabilize the discharge and/or to facilitate the separation of solid substances produced by plasmaization of the gas; The processing device according to any one of claims (1) to (5), characterized in that the processing device is configured to be introduced.
JP61173783A 1986-07-25 1986-07-25 Apparatus for treating waste gas Granted JPS6331523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61173783A JPS6331523A (en) 1986-07-25 1986-07-25 Apparatus for treating waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173783A JPS6331523A (en) 1986-07-25 1986-07-25 Apparatus for treating waste gas

Publications (2)

Publication Number Publication Date
JPS6331523A true JPS6331523A (en) 1988-02-10
JPH0480723B2 JPH0480723B2 (en) 1992-12-21

Family

ID=15967069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173783A Granted JPS6331523A (en) 1986-07-25 1986-07-25 Apparatus for treating waste gas

Country Status (1)

Country Link
JP (1) JPS6331523A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258660A (en) * 1987-04-16 1988-10-26 Mitsui Toatsu Chem Inc Gas treatment method
JPH01307429A (en) * 1987-06-23 1989-12-12 Rei Chu Kin-Chun Method and apparatus for extracting contaminant steam from gas
US6576202B1 (en) 2000-04-21 2003-06-10 Kin-Chung Ray Chiu Highly efficient compact capacitance coupled plasma reactor/generator and method
KR100596511B1 (en) 2004-06-30 2006-07-03 플라즈마에너지자원 주식회사 Air cleaner
KR20100110267A (en) * 2009-04-02 2010-10-12 클린 테크놀로지 가부시키가이샤 Control method of plasma for exhaust gas treating apparatus using magnetic field and exhaust gas treating apparatus using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258660A (en) * 1987-04-16 1988-10-26 Mitsui Toatsu Chem Inc Gas treatment method
JPH01307429A (en) * 1987-06-23 1989-12-12 Rei Chu Kin-Chun Method and apparatus for extracting contaminant steam from gas
US6576202B1 (en) 2000-04-21 2003-06-10 Kin-Chung Ray Chiu Highly efficient compact capacitance coupled plasma reactor/generator and method
US6998027B2 (en) 2000-04-21 2006-02-14 Dryscrub, Etc Highly efficient compact capacitance coupled plasma reactor/generator and method
US7241428B2 (en) 2000-04-21 2007-07-10 Dryscrub, Etc Highly efficient compact capacitance coupled plasma reactor/generator and method
KR100596511B1 (en) 2004-06-30 2006-07-03 플라즈마에너지자원 주식회사 Air cleaner
KR20100110267A (en) * 2009-04-02 2010-10-12 클린 테크놀로지 가부시키가이샤 Control method of plasma for exhaust gas treating apparatus using magnetic field and exhaust gas treating apparatus using the same
JP2010240534A (en) * 2009-04-02 2010-10-28 Clean Technology Co Ltd Control method of plasma by magnetic field in exhaust gas treating apparatus and exhaust gas treating apparatus using the same

Also Published As

Publication number Publication date
JPH0480723B2 (en) 1992-12-21

Similar Documents

Publication Publication Date Title
KR102435471B1 (en) Hall effect enhanced capacitively coupled plasma source, an abatement system, and vacuum processing system
JP4447469B2 (en) Plasma generator, ozone generator, substrate processing apparatus, and semiconductor device manufacturing method
JPH01307429A (en) Method and apparatus for extracting contaminant steam from gas
US20160355400A1 (en) Method for synthesizing organic matter and submerged plasma device
WO2015134197A1 (en) Plasma abatement of compounds containing heavy atoms
KR910003110B1 (en) Exit gas treating apparatus
JPS6331523A (en) Apparatus for treating waste gas
KR950000310B1 (en) Plasma cvd apparatus
JPH04236781A (en) Plasma cvd device
JP2598435B2 (en) Exhaust gas discharge treatment equipment
JPH03151022A (en) Exhaust gas treatment device
KR101147349B1 (en) Plasma processing equipment with a leakage current transformer
JP2006278459A (en) Thin film formation method and film deposition apparatus for field assisted catalytic chemical vapor growth
JP2598432B2 (en) Exhaust gas treatment equipment
JP2863854B2 (en) Exhaust gas treatment equipment
WO1990015018A1 (en) Coated dielectric material for an ozone generator
JPH02253823A (en) Exhaust gas treatment device
JP4707262B2 (en) Thin film forming residue processing equipment
JP2598433B2 (en) Exhaust gas discharge treatment equipment
JP2927804B2 (en) Treatment method for exhaust gas containing nitrogen trifluoride
JPH10309431A (en) Apparatus for decomposing hazardous compound in polluted gas in gas system
JP4365595B2 (en) Ozone generation method and ozone generator
JPH0919620A (en) Removal method of harmful gas
KR19980036872A (en) Harmful Compound Removal Device in Gas Flow
JP2004072085A (en) Oxide film forming apparatus and oxide film forming method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term