JPS63314486A - Distributed constant type pressure wave transducer assembly - Google Patents

Distributed constant type pressure wave transducer assembly

Info

Publication number
JPS63314486A
JPS63314486A JP62152303A JP15230387A JPS63314486A JP S63314486 A JPS63314486 A JP S63314486A JP 62152303 A JP62152303 A JP 62152303A JP 15230387 A JP15230387 A JP 15230387A JP S63314486 A JPS63314486 A JP S63314486A
Authority
JP
Japan
Prior art keywords
transducers
pressure wave
wave
space
transducer assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62152303A
Other languages
Japanese (ja)
Other versions
JPH052952B2 (en
Inventor
Yasuo Nagazumi
永積 靖夫
Shozo Iguchi
井口 昌三
Susumu Yamazaki
将 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENERAL RES OBU EREKUTORONITSUKUSU KK
Original Assignee
GENERAL RES OBU EREKUTORONITSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENERAL RES OBU EREKUTORONITSUKUSU KK filed Critical GENERAL RES OBU EREKUTORONITSUKUSU KK
Priority to JP62152303A priority Critical patent/JPS63314486A/en
Publication of JPS63314486A publication Critical patent/JPS63314486A/en
Publication of JPH052952B2 publication Critical patent/JPH052952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform a simple and high degree of spatial modulation by providing a transmission wave space filled with a pressure wave medium and having distributive leak passages and piezoelectric energy transducers arranged in at least two spaced positions in the transmission wave space. CONSTITUTION:Piezoelectric energy transducers 10 and 12 are mounted on both ends of a metallic pipe 14 constituting a transmission space. When the same AC energizing signals are applied to the two transducers 10 and 12, a standing wave which is an acoustic pressure wave is formed in a medium in the metallic pipe 14. Since, when the frequency of one of the transducers 10 and 12 is made slightly different from the other, the standing wave moves in accordance with a frequency deviation thus produced, an acoustic signal temporally and spatially modulated with respect to an ambient sound field can be emitted when a frequency difference between the transducers 10 and 12 is modulated. Therefore, a reflected wave from a given position or direction can be selectively measured by producing a local signal whose modulation mode is assumed in advance and measuring a correlation with a received signal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気音響変換装置に関する。より詳細には、本
発明は分布定数型圧力波トランスジューサに関し、超音
波撮像装置等に好ましく使用可能である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroacoustic transducer. More specifically, the present invention relates to a distributed constant pressure wave transducer, which can be preferably used in ultrasonic imaging devices and the like.

[発明の概要] 本発明は、圧力波媒質を満たし分布的なエネルギー漏洩
通路を持った伝送路空間と、該伝送路空間の少なくとも
2つの隔たった位置に配置された圧電エネルギー変換ト
ランスジューサとで構成され、上記伝送路空間の形状に
よって決定される定在波を上記少なくとも2個のトラン
スジューサを用いて発生せしめ、これらのトランスジュ
ーサに加える入力信号を制御して上記定在波を空間的に
移動させるようにしたことを特徴とする分布定数型圧力
波トランスジューサ組立体に関する。
[Summary of the Invention] The present invention comprises a transmission line space filled with a pressure wave medium and having distributed energy leakage paths, and piezoelectric energy conversion transducers disposed at at least two separated positions in the transmission line space. and generating a standing wave determined by the shape of the transmission path space using the at least two transducers, and controlling input signals applied to these transducers to spatially move the standing wave. The present invention relates to a distributed constant pressure wave transducer assembly.

[従来の技術] ソナー、超音波透視器等、圧力波の反射を利用して空間
的な反射率分布を計測する機器、とりわけ波動の干渉性
を計測の原理として用いる形態の装置においては、従来
からトランスジューサアレイを用いたり1機械的にトラ
ンスジューサを移動しながら計測を行なう場合が多い。
[Prior Art] Devices such as sonar and ultrasonic fluoroscopes that measure spatial reflectance distribution using the reflection of pressure waves, especially devices that use wave coherence as the measurement principle, have conventional techniques. In many cases, measurements are performed using a transducer array or by mechanically moving the transducers.

[発明が解決しようとする問題点] 従って、これら従来技術においては、機器の複雑化は不
可避的で′あり、機器の小形化やコスト低減の上で障害
となってきた。
[Problems to be Solved by the Invention] Accordingly, in these conventional techniques, it is inevitable that the equipment becomes complicated, which has become an obstacle in reducing the size and cost of the equipment.

本発明は、このような従来のトランスジューサを簡素化
しかつ安価にし、加えてより高度な空間変調を実現せし
めることを目的とする。
It is an object of the present invention to simplify and reduce the cost of such conventional transducers, as well as to enable more sophisticated spatial modulation.

[問題点を解決するための手段] この目的を達成するために、本発明は圧力波媒質を満た
し分布的な漏洩通路を持つ伝送波空間と、この伝送波空
間の少なくとも2つの隔たった位置に配置した圧電エネ
ルギー変換トランスジューサとを含んで構成される分布
定数型圧力波トランスジューサ組立体を提供する。
[Means for Solving the Problems] To achieve this object, the present invention provides a transmission wave space filled with a pressure wave medium and having distributed leakage paths, and a transmission wave space at at least two separate locations in the transmission wave space. A distributed constant pressure wave transducer assembly is provided comprising: a piezoelectric energy conversion transducer disposed in the piezoelectric energy conversion transducer assembly;

[作用] 伝送波空間に定在波が励起するように上記トランスジュ
ーサが付勢せしめられ、これらトランスジューサの付勢
信号間の周波数差を用いることにより、上記漏洩通路を
介して音響信号を放出し、反射物により決定される特定
の変調を受けて戻ってくると、予めその変調形態を想定
したローカル信号を想定して、上記受信信号との相関を
計測することによって特定の位置又は方向からの反射波
を選択的に計測することができる。
[Function] The transducers are energized to excite a standing wave in the transmitted wave space, and the frequency difference between the energizing signals of these transducers is used to emit an acoustic signal through the leakage path, When the signal returns after receiving a specific modulation determined by a reflecting object, a local signal with that modulation form is assumed in advance, and the reflection from a specific position or direction is determined by measuring the correlation with the received signal. Waves can be measured selectively.

[実施例] 第1図は分布定数型圧力波トランスジューサ組立体の一
実施例を用いる送信装置の概略図であり、10.12は
伝送空間を成す金属管14の両端にそれぞれ設置された
超音波トランスジューサのような圧電エネルギー変換ト
ランスジューサを示す。
[Example] Fig. 1 is a schematic diagram of a transmitting device using an example of a distributed constant pressure wave transducer assembly, and 10.12 is an ultrasonic wave transmitter installed at both ends of a metal tube 14 forming a transmission space. 1 illustrates a piezoelectric energy conversion transducer, such as a transducer.

これらトランスジューサ10,12には付勢交流信号が
周知の態様で加えられる。
An energizing alternating current signal is applied to the transducers 10, 12 in a known manner.

金属管14の断面は第2図に示されており、これは遮蔽
管16とスリット状のエネルギー漏洩通路18とを具備
している。第2C図は金属管14の内部がスリット18
を介して周囲の媒質により自由に充填される構成、第2
A図はスリット18に設けた適当なシール手段により管
14の内部に媒質22が充填され収容される構成、第2
B図はスリット18の位置に設けた弾性支持部材24に
より媒質26が遮蔽管16から隔離されて管14内で支
持され、空隙部28を真空状態に又は適当な気体を充填
してなる構成としたものである。
A cross section of the metal tube 14 is shown in FIG. 2, and it comprises a shielding tube 16 and a slit-like energy leakage channel 18. In FIG. 2C, the inside of the metal tube 14 has a slit 18.
a configuration in which the surrounding medium is freely filled via the second
Figure A shows a configuration in which the medium 22 is filled and accommodated inside the tube 14 by means of a suitable sealing means provided in the slit 18;
Figure B shows a configuration in which the medium 26 is isolated from the shielding tube 16 and supported within the tube 14 by an elastic support member 24 provided at the position of the slit 18, and the cavity 28 is evacuated or filled with an appropriate gas. This is what I did.

実施例で、2つのトランスジューサ10.12に同一の
交流付勢信号を加えると、金属管14内の媒質には音響
圧力波信号である定在波が形成される。この定在波は一
方のトランスジューサの周波数を他方のトランスジュー
サの周波数に関してわずかに相違させると、その周波数
偏差に応じた移動を起こす。従って、トランスジューサ
間の周波数差に変調を加えれば、周囲の音場に対して時
間的、空間的に変調を与えた音響信号を上記スリット1
8を介して放出させることができる。従って、スリット
18は金属管14の側面に音響圧力波を分布的に漏洩さ
せる手段を与える。また、金属管14の両端のトランス
ジューサはその金属管内の媒質を介して互いの方向に励
起超音波を放射して上述した圧力波の形の音響信号を生
じさせる手段を与える。
In the example, applying the same AC energizing signal to the two transducers 10.12 creates a standing wave in the medium within the metal tube 14, which is an acoustic pressure wave signal. When the frequency of one transducer differs slightly with respect to the frequency of the other transducer, this standing wave causes movement in response to the frequency deviation. Therefore, if modulation is applied to the frequency difference between the transducers, an acoustic signal temporally and spatially modulated to the surrounding sound field will be transmitted to the slit 1.
8. The slits 18 thus provide a means for leaking acoustic pressure waves in a distributed manner onto the sides of the metal tube 14. The transducers at each end of the metal tube 14 also provide a means for emitting excited ultrasonic waves in the direction of each other through the medium within the tube to produce the acoustic signals in the form of pressure waves described above.

このようにして放射された1時間的、空間的に変調され
た圧力波は、もし外部空間で反射されると、反射物の空
間的配置に従って定まる特定の変調を再度受けて戻って
来るため、予めその変調形態を想定したローカル信号を
生成しておき、受信信号との相関を計測することによっ
て特定の位置又は方向からの反射波を選択的に測定する
ことが可能となる。
If the temporally and spatially modulated pressure waves emitted in this way are reflected in the external space, they will return again with a specific modulation determined according to the spatial arrangement of the reflecting object. By generating a local signal assuming the modulation form in advance and measuring the correlation with the received signal, it becomes possible to selectively measure reflected waves from a specific position or direction.

第3図は、第1図の伝送路空間を管状に構成する代わり
に、環状の伝送路空間を用いた実施例である。この実施
例において、リング音源構成として、リング30の仮想
中心線32の平面とほぼ同一平面に超音波トランスジュ
ーサの対34(Tl)。
FIG. 3 shows an embodiment in which an annular transmission path space is used instead of the tubular transmission path space shown in FIG. In this embodiment, the ring source configuration includes a pair of ultrasound transducers 34 (Tl) substantially coplanar with the plane of the virtual centerline 32 of the ring 30.

36 (T2)と38 (T3)、40 (T4)とが
設けられる。付勢周波数信号源f1. f2が第1の対
のトランスジューサ34.36には+90’の位相シフ
ト42.44を介して与えられ、第2の対のトランスジ
ューサには直接与えられ、これにより90’位相の異な
ったビート状の超音波が生じて、リングを(fl−f)
2/Nの回転数で回転する定在波を発生する(ここで、
Nはリング内の定在波モード次数である)。
36 (T2), 38 (T3), and 40 (T4) are provided. energizing frequency signal source f1. f2 is applied to the first pair of transducers 34.36 via a +90' phase shift 42.44 and directly to the second pair of transducers, thereby producing different beat-like signals of 90' phase. Ultrasonic waves are generated and the ring (fl-f)
Generates a standing wave that rotates at a rotation speed of 2/N (here,
N is the standing wave mode order within the ring).

即ち、環状の空間に生じる共振現象には、1種の縮退現
象が存在し、共振に伴って発生する定在波には空間の接
線方向に自由度が残されているので、任意の位置に定在
波を発生させることができ、その電気的な位置制御も比
較的容易である。この例では音源の配置が平面状となる
ため、第1図の例が示す空間に関する変調の軸対称性を
排除することができ、基準平面の片側の半無限空間に対
し対称性のない変調を与えることができる。
In other words, there is a type of degeneracy phenomenon in the resonance phenomenon that occurs in an annular space, and the standing wave that occurs due to resonance has a degree of freedom in the tangential direction of the space, so it can be moved to any position. A standing wave can be generated, and its electrical position control is relatively easy. In this example, the arrangement of the sound sources is planar, so it is possible to eliminate the axial symmetry of the modulation with respect to the space shown in the example of Fig. can give.

なお、これらの管路を更に、立体的に配置することによ
って、空間全体にわたって対称性のない変調を加えるこ
とができるのは当然のことである。
It goes without saying that by further arranging these conduits three-dimensionally, asymmetrical modulation can be applied over the entire space.

[発明の効果] 以上述べたように、本発明の構成をもってすれば、従来
装置で必要としているトランスジューサアレイの使用を
回避でき、更にトランスジューサの移動の必要性を回避
できる状態で、圧力波の反射による空間的反射率分布の
測定を可能とし、これにより従来装置の構成を簡略化す
るばかりか、高度の空間変調能力を達成せしめるように
する。
[Effects of the Invention] As described above, with the configuration of the present invention, it is possible to avoid the use of a transducer array, which is required in conventional devices, and furthermore, it is possible to avoid the need for moving the transducer, and to improve the reflection of pressure waves. This not only simplifies the configuration of the conventional device, but also allows a high degree of spatial modulation capability to be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の概略説明図、第2A、
B及び0図は第1図の2−2線の位置の種々の構成例を
示す断面図、第3図は本発明の第2の実施例の概略説明
図である。 図で、10,12,34,36,38,40は超音波ト
ランスジューサ、14は金属管、30はリングを示す。 第1図 第2A図    第2B図 1口 第2C図
FIG. 1 is a schematic explanatory diagram of the first embodiment of the present invention, FIG.
FIGS. B and 0 are sectional views showing various configuration examples taken along line 2-2 in FIG. 1, and FIG. 3 is a schematic explanatory view of a second embodiment of the present invention. In the figure, 10, 12, 34, 36, 38, and 40 are ultrasonic transducers, 14 is a metal tube, and 30 is a ring. Figure 1 Figure 2A Figure 2B Figure 1 mouth Figure 2C

Claims (3)

【特許請求の範囲】[Claims] (1)圧力波媒質を満たし分布的なエネルギー漏洩通路
を持った伝送路空間と、該伝送路空間の少なくとも2つ
の隔たった位置に配置された圧電エネルギー変換トラン
スジューサとで構成され、上記伝送路空間の形状によっ
て決定される定在波を上記少なくとも2個のトランスジ
ューサを用いて発生せしめ、これらのトランスジューサ
に加える入力信号を制御して上記定在波を空間的に移動
させるようにしたことを特徴とする分布定数型圧力波ト
ランスジューサ組立体。
(1) The transmission line space is composed of a transmission line space filled with a pressure wave medium and having a distributed energy leakage path, and piezoelectric energy conversion transducers arranged at at least two separated positions in the transmission line space. A standing wave determined by the shape of is generated using the at least two transducers, and input signals applied to these transducers are controlled to spatially move the standing wave. Distributed constant pressure wave transducer assembly.
(2)特許請求の範囲第1項記載の分布定数型圧力波ト
ランスジューサ組立体において、上記伝送路空間を環状
に構成し、その両端部にそれぞれ上記トランスジューサ
を配置したことを特徴とする分布定数型圧力波トランス
ジューサ組立体。
(2) A distributed constant type pressure wave transducer assembly according to claim 1, wherein the transmission path space is formed into an annular shape, and the transducer is disposed at each end of the transmission path space. Pressure wave transducer assembly.
(3)特許請求の範囲第1項記載の分布定数型圧力波ト
ランスジューサ組立体において、上記伝送路空間を環状
に構成し、上記トランスジューサによって環状の定在波
を発生するようにしたことを特徴とする分布定数型圧力
波トランスジューサ組立体。
(3) In the distributed constant pressure wave transducer assembly according to claim 1, the transmission path space is configured in an annular shape, and the transducer generates an annular standing wave. Distributed constant pressure wave transducer assembly.
JP62152303A 1987-06-17 1987-06-17 Distributed constant type pressure wave transducer assembly Granted JPS63314486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62152303A JPS63314486A (en) 1987-06-17 1987-06-17 Distributed constant type pressure wave transducer assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152303A JPS63314486A (en) 1987-06-17 1987-06-17 Distributed constant type pressure wave transducer assembly

Publications (2)

Publication Number Publication Date
JPS63314486A true JPS63314486A (en) 1988-12-22
JPH052952B2 JPH052952B2 (en) 1993-01-13

Family

ID=15537576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152303A Granted JPS63314486A (en) 1987-06-17 1987-06-17 Distributed constant type pressure wave transducer assembly

Country Status (1)

Country Link
JP (1) JPS63314486A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI621314B (en) 2013-05-29 2018-04-11 Nippon Light Metal Co Conductive member

Also Published As

Publication number Publication date
JPH052952B2 (en) 1993-01-13

Similar Documents

Publication Publication Date Title
JPH0734344Y2 (en) Clamp type ultrasonic flowmeter
JP3995270B2 (en) Two-dimensional array transducer and beamformer
JP2783684B2 (en) Filling condition measuring device
JPH10122923A (en) Ultrasonic flow meter
JPS62211047A (en) Ultrasonic converter probe equipped with mechanically operable ultrasonic beam
Weight Ultrasonic beam structures in fluid media
US4109108A (en) Attenuation of sound waves in ducts
JPS63314486A (en) Distributed constant type pressure wave transducer assembly
EP0293803B1 (en) Fan-shape scanning ultrasonic flaw detecting apparatus
JPS5925987B2 (en) Automatic control method for linear motion distance
JPH11262087A (en) Acoustic transducer
TW201002556A (en) Ultrasonic distance-measuring sensor assembly and ultrasonic distance-measuring sensor thereof
JPS5928260B2 (en) Ultrasonic probe position detection method and device
US5264971A (en) Transmissive doppler frequency shifter
Chen et al. A High-Accuracy in-Air Reflective Rangefinder Via PMUTS Arrays Using Multi-Frequency Continuous Waves
JP3013596B2 (en) Transmission ultrasonic flowmeter
KR20000018935A (en) Method to achieve limited diffraction beam in ultrasonic image
JP2019219337A (en) Ultrasonic sensor device
US3505639A (en) Directional array structures for frequency transducers
JPS61144566A (en) Electromagnetic acoustic transducer for generating ultrasonic wave
JP2018166262A (en) Ultrasonic output device
CN113068102B (en) Excitation generator
JP2631773B2 (en) Transceiver side-by-side ultrasonic probe
EP0616231A3 (en) Process and device for measuring the current volume in a layer with reflecting structure.
JPH0666627A (en) Acoustic characteristic measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees