JPS63312945A - Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production - Google Patents

Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production

Info

Publication number
JPS63312945A
JPS63312945A JP15075587A JP15075587A JPS63312945A JP S63312945 A JPS63312945 A JP S63312945A JP 15075587 A JP15075587 A JP 15075587A JP 15075587 A JP15075587 A JP 15075587A JP S63312945 A JPS63312945 A JP S63312945A
Authority
JP
Japan
Prior art keywords
aluminum alloy
cold forging
heat
alloy
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15075587A
Other languages
Japanese (ja)
Inventor
Sunao Aiura
直 相浦
Kazuhiko Asano
浅野 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15075587A priority Critical patent/JPS63312945A/en
Publication of JPS63312945A publication Critical patent/JPS63312945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To produce an Al alloy for cold forging having high strength and excellent machinability by hot extruding the non heat treatment type Al alloy to which specific amounts of Cu, Sn, Pb, Bi, Zr, Cr, Ti, etc., are added and thereafter cooling it at the specific cooling rate. CONSTITUTION:The alloy contg., by weight, 2-5% Cu and 0.01-1.0% Sn, contg. one or two kinds of 0.1-2.0% Pb and 0.1-2.0% Bi, one or more kinds among 0.05-0.3% Zr, 0.05-0.3% Cr and 0.005-0.3% Ti, contg. at need 0.05-2.0% Zn and consisting substantially of the balance Al is melted and cast. Said alloy is hot extruded and cooled at the cooling speed of >=100 deg.C/min from 350 deg.C to convert Cu into solid solution. By this method, the titled Al alloy can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は冷間鍛造用の非熱処理型アルミニウム合金の製
造に係り、より詳細には、加工硬化が大きく、かつ、切
屑の分断性に優れた冷間鍛造材を製造し得る非熱処理型
のアルミニウム合金とその製造方法に関するものである
。 (従来の技術及び解決しようとする問題点)アルミニウ
ム合金の中でも、一般に高強度を必要とする鍛造品用に
は熱処理型のアルミニウム合金が用いられており、析出
硬化によりマトリックスの強化を図ると共に低融点金属
を添加して快削性を付与している。 しかし、この種のアルミニウム合金は熱処理型であるた
め、0材→冷間鍛造→T6処理→切削という製造プロセ
スによって製品を得ることから、熱処理に起因してコス
ト高になると共に特にT66処理に歪等が発生し、品質
を低下させるという問題がある。 一方、熱処理型に対し、非熱処理型のアルミニウム合金
が知られており、Al−Mg系、Al−Mn系或いはA
l−8i系のものがある。しがし、この種の合金は非熱
処理型であるので熱処理に起因する問題はないものの、
非熱処理型に固有の問題がある0例えば、Al−Mg系
の場合にはMgを添加すると切屑分断性が阻害され、ま
たAl−Mn系やAl−8i系の場合にはそれぞれMn
、Si添加により高強度を得ることが蔑しいなどの問題
がある。このため、上記のような一般の非熱処理型のア
ルミニウム合金を用いて高強度で快削性のある冷間鍛造
材を得ることは非常に困難であると云われている。 しかし乍ら、非熱処理型のアルミニウム合金には低コス
ト化を可能にする等の利点があるため。 新規な非熱処理型アルミニウム合金の出現が要請されて
いるところである。 本発明は、上記要請に応えるべくなされたものであって
、非熱処理型であっても、高強度で快削性に優れた冷間
鍛造用の新規なアルミニウム合金を提供し、またその製
造方法を提供することを目的とするものである。 (問題点を解決するための手段) 上記目的を達成するため1本発明者は、従来の非熱処理
型アルミニウム合金に添加されているMg、Mn及びS
iの各元素とは別に、他の合金元素を添加し、更にこれ
と製造プロセス条件との関連性について鋭意研究した結
果、熱間押出後の冷却によりCuを固溶させてマトリッ
クスの強化を図るべくAn−Cu系をベースにし、併わ
せて快削性を付与し得る元素を添加するならば、非熱処
理型のもつ諸問題を解決できることを見い出し、ここに
本発明をなしたものである。 すなわち、本発明は、Cu:2〜5%及びSn:0゜0
1〜1.0%を含有し、更にPb:0.1〜2.0%及
びBi:O,1〜2.0%のうちの1種又は2種と、Z
r:0.05〜0.3%、Cr:0.05〜0.3%及
びTi:0.005〜0.3%のうちの1種又は2種以
上とを含有し、更に必要に応じてZn:0゜05〜2.
0%を含有し、残部が実質的にAlからなる組成を有し
、熱間押出後の冷却によりCuを固溶せしめてなること
を特徴とする冷間鍛造用非熱処理型高強度快削アルミニ
ウム合金を要旨とするものである。 また、製造方法に係る本発明は、上記組成のアルミニウ
ム合金につき、熱間押出後、350℃の温度から100
℃/min以上の冷却速度で冷却することを特徴とする
冷間鍛造用非熱処理型窩!J虫度快削アルミニウム合金
の製造方法を要旨とするものである。 以下に本発明を実施例に基づいて詳細には説明する。 まず、本発明におけるAl−Cu系合金の化学成分限定
理由を説明する。 Cuは、通常、熱処理型の合金においてT6処理で析出
硬化を図る元素であるが、本発明者は。 Cuがアルミニウムに対して成る固溶範囲を有すること
に着目して、Cu添加と製造プロセスとの関連を調べた
結果、適正範囲の添加量にて固溶させ、且つ加工(冷間
鍛造)を加えれば加工硬化する作用があることを見い出
したものである。このような加工硬化に寄与する範囲は
1本発明者の研究によれば、2〜5%の範囲である。 Snは低融点金属であるが、上記適量のCuのもとで添
加することにより始めて切屑分断性に寄与する元素であ
る。0.01%未満ではその効果は得られず、また1、
0%を超えて添加するとかえって耐食性を阻害するので
、Sn量は0.01〜1゜0%の範囲とする。 Pb、Biはいずれも低融点金属であって、上記適量の
Cuのもとで始めて切屑分断法に寄与する元素であるの
で、そのために適量を添加する。いずれも0.1%未満
ではそのような効果が得られず、またそれぞれ2.0%
を超えて添加すると耐食性を阻害するので、Pb及びB
iの添加量はそれぞれ0.1〜2.0%の範囲とする。 但し、Pb。 Biの少なくとも1種を添加すれば足りる。 Zr、Cr、Tiは結晶粒を微細化する作用があり、加
工性及び強度を向上させる元素である。そのためにはそ
れぞれ0.05%以上添加する必要があるが、0.3%
を超えて多量に添加しても効果が飽和し、かえって巨大
化合物を形成して機械的性質を阻害するので、それぞれ
0.05〜0.3%の範囲とする。但し、これらの元素
は1種又は2種以上添加すれば足りる。 Znは切削後の表面仕上がり性を向上させる効果がある
ので、必要に応じて添加することができる。添加すると
きは、0.05%未満ではその効果がなく、また1、5
%を超えると耐食性を阻害するので、0.05〜1.5
%の範囲とする。 なお、上記組成のアルミニウム合金には不純物が随伴さ
れるが、それらは本発明の効果を阻害しない限度で許容
できる。例えば、Mgは快削性を阻害するので0.2%
以下に規制するのが望ましい。また、Mnは1.5%以
下であれば巨大金属間化合物の析出の恐れがなくなり、
強度の低下を防止できるので、15%以下に規制するの
が望ましく、同様にSLも0.5%以下に規制するのが
望ましい、Feは0.1%以下であれば支障はない。 上記化学成分を有するアルミニウム合金は、比熱処理型
であって、熱間押出し後の冷却条件をコントロールする
ことによりはじめて優れた特性を発揮することが可能と
なるものであり、特にCuの添加による効果が一充分得
られる。そのためには。 熱間押出後、350℃以上の温度から100’C/wi
nの冷却速度で冷却する必要がある。冷却開始温度が3
50℃又は冷却速度が100℃/sin未満の条件では
、Cuの固溶効果が得られず、したがって、冷間鍛造に
より加工硬化率を上げることが不可能となり、加工後の
強度上昇を期待で青ない。 なお、熱間押出は、上記押出後の冷却開始温度(350
℃以上)を確保できれば、特に条件は制限されない。冷
間鍛造は鍛造製品に応じた条件で行えばよく、その条件
も特に制限されないが、加工率は20%以上であるのが
望ましい。また、熱間押出用素材は、通常の方法により
、溶解、鋳造し、均質化処理等を行って製造したもので
よい。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分(wt%)を有するアルミニウム
合金を常法により溶解鋳造し、680IIIlφの鋳塊
とした。次いで、この鋳塊に475℃×8時間の均質化
処理を施した後、1000ton押出プレスにより押出
比9.4.押出温度320”C1押出速度3m/win
で押出し、2211Ilφの丸棒を得た。その際、押出
し後、第2表に示す条件で冷却した。 この押出したままの丸棒について、切削試験を行って切
削性を調べると共に、落槌試験により加工率20%、5
0%での加工硬化率を調べて強度を評価した。それらの
効果を第2表に併記する。 なお、切削試験は以下に示す条件で実施し、第1図(A
)〜(E)に示す基準で切屑の分断性を調べ。 切削性をA(優)→E(不良)の5段階で評価した。 豆I粂止 送   リ: 0 、3 +u+/ rev切削速度:
200e 切込み深さ:11 使用工具:に10超硬ロウ付はバイト ノーズR=0.3R 横すくい角=15゜
(Industrial Application Field) The present invention relates to the production of non-heat-treatable aluminum alloys for cold forging, and more specifically, to the production of cold forged materials that are highly work hardened and have excellent chip separation properties. The present invention relates to a non-heat-treatable aluminum alloy and a method for manufacturing the same. (Prior art and problems to be solved) Among aluminum alloys, heat-treated aluminum alloys are generally used for forged products that require high strength. Melting point metal is added to give free machinability. However, since this type of aluminum alloy is a heat-treated type, the product is obtained through the manufacturing process of 0 material → cold forging → T6 treatment → cutting. etc., resulting in a problem of deterioration of quality. On the other hand, as opposed to heat-treated aluminum alloys, non-heat-treated aluminum alloys are known, such as Al-Mg type, Al-Mn type or A
There is one of l-8i series. However, since this type of alloy is non-heat treated, there are no problems caused by heat treatment.
There are problems specific to non-heat-treated types.0 For example, in the case of Al-Mg type, adding Mg inhibits chip breaking, and in the case of Al-Mn type and Al-8i type, Mn
, it is difficult to obtain high strength by adding Si. For this reason, it is said to be extremely difficult to obtain a cold forged material with high strength and free machinability using the above-mentioned general non-heat-treated aluminum alloy. However, non-heat-treated aluminum alloys have advantages such as lower costs. There is a need for the emergence of new non-heat-treatable aluminum alloys. The present invention has been made in response to the above-mentioned demands, and provides a novel aluminum alloy for cold forging that has high strength and excellent free machinability even if it is a non-heat-treated type, and a method for manufacturing the same. The purpose is to provide the following. (Means for Solving the Problems) In order to achieve the above object, the present inventors have discovered that Mg, Mn and S, which are added to conventional non-heat-treatable aluminum alloys,
Apart from each element of i, other alloying elements were added, and as a result of intensive research on the relationship between this and the manufacturing process conditions, the matrix was strengthened by solid solution of Cu by cooling after hot extrusion. We have discovered that the various problems associated with non-heat-treated types can be solved by using an An--Cu base as the base and adding an element that can impart free machinability, and have thus accomplished the present invention. That is, in the present invention, Cu: 2 to 5% and Sn: 0°0
1 to 1.0%, and further one or two of Pb: 0.1 to 2.0% and Bi:O, 1 to 2.0%, and Z
r: 0.05 to 0.3%, Cr: 0.05 to 0.3%, and Ti: 0.005 to 0.3%. Zn: 0°05~2.
A non-heat-treated, high-strength, free-cutting aluminum for cold forging, characterized in that it contains 0% Al and the remainder substantially consists of Al, and is made by solid-dissolving Cu by cooling after hot extrusion. The main focus is on alloys. Further, the present invention relating to a manufacturing method provides an aluminum alloy having the above composition, after hot extrusion, from a temperature of 350°C to 100°C.
A non-heat-treated mold cavity for cold forging that is characterized by cooling at a cooling rate of ℃/min or more! The gist of this paper is a method for manufacturing a free-cutting aluminum alloy. The present invention will be explained in detail below based on examples. First, the reason for limiting the chemical composition of the Al-Cu alloy in the present invention will be explained. Cu is an element that is normally precipitation hardened by T6 treatment in heat-treatable alloys, but the present inventors. Focusing on the fact that Cu has a solid solution range in aluminum, we investigated the relationship between Cu addition and the manufacturing process, and found that it was possible to make it solid solution in an appropriate range of addition and process (cold forging). It was discovered that when added, it has a work-hardening effect. According to research by the present inventor, the range contributing to such work hardening is 2 to 5%. Although Sn is a low melting point metal, it is an element that only contributes to chip separation when added in the appropriate amount of Cu. If it is less than 0.01%, the effect cannot be obtained, and 1.
Since adding more than 0% will actually impair corrosion resistance, the amount of Sn should be in the range of 0.01 to 1.0%. Pb and Bi are both low-melting point metals, and are elements that only contribute to the chip breaking method when the appropriate amount of Cu is present, so they are added in appropriate amounts for this purpose. No such effect can be obtained at less than 0.1% for each, and at 2.0% for each.
If added in excess of Pb and B, corrosion resistance will be inhibited.
The amount of i added is in the range of 0.1 to 2.0%, respectively. However, Pb. It is sufficient to add at least one type of Bi. Zr, Cr, and Ti are elements that have the effect of refining crystal grains and improve workability and strength. For that purpose, it is necessary to add 0.05% or more of each, but 0.3%
Even if added in a large amount exceeding 0.2%, the effect will be saturated and a giant compound will be formed, which will impair mechanical properties. However, it is sufficient to add one or more of these elements. Since Zn has the effect of improving the surface finish after cutting, it can be added as necessary. When adding, it has no effect if it is less than 0.05%, and 1,5%
If it exceeds 0.05 to 1.5%, corrosion resistance will be impaired.
% range. Note that impurities are included in the aluminum alloy having the above composition, but these can be tolerated as long as they do not impede the effects of the present invention. For example, 0.2% Mg inhibits free machinability.
It is desirable to regulate as follows. Furthermore, if Mn is 1.5% or less, there is no fear of precipitation of giant intermetallic compounds.
Since a decrease in strength can be prevented, it is desirable to limit SL to 15% or less, and similarly, it is desirable to limit SL to 0.5% or less, and there is no problem if Fe is 0.1% or less. The aluminum alloy having the above chemical components is a specific heat treatment type, and it is possible to exhibit excellent properties only by controlling the cooling conditions after hot extrusion.In particular, the effect of the addition of Cu is You can get more than enough. for that purpose. After hot extrusion, from a temperature of 350°C or higher to 100'C/wi
It is necessary to cool at a cooling rate of n. Cooling start temperature is 3
Under conditions of 50°C or a cooling rate of less than 100°C/sin, the solid solution effect of Cu cannot be obtained, and therefore it is impossible to increase the work hardening rate by cold forging, and an increase in strength after working cannot be expected. It's not blue. Note that hot extrusion is performed at the cooling start temperature after extrusion (350
℃ or higher), there are no particular restrictions on the conditions. Cold forging may be performed under conditions suitable for the forged product, and the conditions are not particularly limited, but it is desirable that the processing rate is 20% or more. Further, the material for hot extrusion may be manufactured by melting, casting, homogenizing, etc. using a conventional method. Next, examples of the present invention will be shown. (Example) An aluminum alloy having the chemical components (wt%) shown in Table 1 was melted and cast by a conventional method to obtain an ingot of 680IIIlφ. Next, this ingot was subjected to a homogenization treatment at 475°C for 8 hours, and then an extrusion ratio of 9.4. Extrusion temperature 320"C1 Extrusion speed 3m/win
A round bar with a diameter of 2211 Ilφ was obtained. At that time, after extrusion, it was cooled under the conditions shown in Table 2. A cutting test was conducted on this round bar as extruded to examine its machinability, and a drop hammer test was conducted to determine the machinability of 20% and 5%.
The strength was evaluated by examining the work hardening rate at 0%. Their effects are also listed in Table 2. The cutting test was conducted under the conditions shown below, and the cutting test was carried out under the conditions shown below.
) to (E), examine the breakability of the chips. The machinability was evaluated on a 5-grade scale from A (excellent) to E (poor). Bean I kettle feeding Re: 0, 3 +u+/rev Cutting speed:
200e Depth of cut: 11 Tools used: 10 Carbide brazed tool nose R = 0.3R Side rake angle = 15°

【以下余白】[Left below]

第2表から明らかなとおり5本発明による。非熱処理型
アルミニウム合金は、いずれも冷間鍛造による加工硬化
率がHVIIO以上と高く高強度であり、しかも切削性
も優れている。 これに対し、比較例&5は固溶強化に寄与するCuを含
まないので加工硬化効果がなく、且つ、Sn、及びPb
、Biが添加されていても切削性が劣っている。同様に
Cuを若干増加した比較例Nα6でも、幾らか強度は改
善されるが、切削性の向上は期待できない。一方、Cu
量が本発明範囲内にある比較例Nα7及びNα8の場合
には、Sn及びPb、Biを含むので切削性は良好であ
るものの、熱間押出後の冷却条件がCu添加による効果
を発揮し得ない条件であるため、加工硬化の効果が全く
得られていない。 (発明の効果) 以上詳述したように、本発明によれば、非熱処理型でそ
の化学成分を単に調整するのではなく、適量のCuの添
加による加工硬化を実現し得るのに適合した製造プロセ
スと相俟って得られる非熱処理型のアルミニウム合金と
するので、熱処理型に匹敵し得る高強度化が可能で、且
つ切削性も付与でき、したがって、従来の非熱処理型の
問題点を完全に解決した全く新規な非熱処理型アルミニ
ウム合金を提供可能にしたものである。しかも非熱処理
型であるので、T6処理のようにコスト高の問題がなく
、更に熱処理に起因する歪発生等の問題もないので、実
用上の効果は極めて大きい。
As is clear from Table 2, 5 according to the present invention. All of the non-heat treated aluminum alloys have a high work hardening rate of HVIIO or higher due to cold forging, and have high strength, and also have excellent machinability. On the other hand, Comparative Example &5 does not contain Cu, which contributes to solid solution strengthening, and therefore has no work hardening effect, and also contains Sn and Pb.
Even if Bi is added, the machinability is poor. Similarly, in Comparative Example Nα6 in which Cu was slightly increased, the strength was improved to some extent, but no improvement in machinability could be expected. On the other hand, Cu
In the case of Comparative Examples Nα7 and Nα8 whose amounts are within the range of the present invention, the machinability is good because they contain Sn, Pb, and Bi, but the cooling conditions after hot extrusion are such that the effect of Cu addition cannot be exhibited. Since the conditions are such that no work hardening effect is obtained. (Effects of the Invention) As detailed above, according to the present invention, the manufacturing process is suitable for realizing work hardening by adding an appropriate amount of Cu, rather than simply adjusting the chemical components of the non-heat treatment type. Since it is a non-heat-treated aluminum alloy obtained in conjunction with the process, it is possible to achieve high strength comparable to heat-treated aluminum alloys, and it also has machinability, completely eliminating the problems of conventional non-heat-treating types. This makes it possible to provide a completely new non-heat-treatable aluminum alloy that solves the problem. Moreover, since it is a non-heat treatment type, there is no problem of high cost unlike T6 treatment, and there is also no problem of distortion caused by heat treatment, so the practical effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(E)はそれぞれ切屑分断性の評価基準
を段階的に示す切屑状況を示す説明図である。 特許出願人   株式会社神戸製鋼所 代理人弁理士  中  村   尚 第1図 (A)   (B) (0)        (E) (C)
FIGS. 1(A) to 1(E) are explanatory diagrams showing the state of chips, each showing evaluation criteria for chip separation in stages. Patent applicant: Kobe Steel, Ltd. Patent attorney Hisashi Nakamura Figure 1 (A) (B) (0) (E) (C)

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Cu:2〜5%及びS
n:0.01〜1.0%を含有し、更にPb:0.1〜
2.0%及びBi:0.1〜2.0%のうちの1種又は
2種と、Zr:0.05〜0.3%、Cr:0.05〜
0.3%及びTi:0.005〜0.3%のうちの1種
又は2種以上を含有し、残部が実質的にAlからなる組
成を有し、熱間押出後の冷却によりCuを固溶せしめて
なることを特徴とする冷間鍛造用非熱処理型高強度快削
アルミニウム合金。
(1) In weight% (the same applies hereinafter), Cu: 2 to 5% and S
Contains n: 0.01 to 1.0%, and further contains Pb: 0.1 to 1.0%.
2.0% and one or two of Bi: 0.1~2.0%, Zr: 0.05~0.3%, Cr: 0.05~
0.3% and Ti: 0.005 to 0.3%, the remainder is substantially Al, and Cu is removed by cooling after hot extrusion. A non-heat-treated, high-strength, free-cutting aluminum alloy for cold forging that is characterized by being formed by solid solution.
(2)Cu:2〜5%及びSn:0.01〜1.0%を
含有し、更にPb:0.1〜2.0%及びBi:0.1
〜2.0%のうちの1種又は2種と、Zr:0.05〜
0.3%、Cr:0.05〜0.3%及びTi:0.0
05〜0.3%のうちの1種又は2種以上と、Zn:0
.05〜2.0%とを含有し、残部が実質的にAlから
なる組成を有し、熱間押出後の冷却によりCuを固溶せ
しめてなることを特徴とする冷間鍛造用非熱処理型高強
度快削アルミニウム合金。
(2) Contains Cu: 2-5% and Sn: 0.01-1.0%, and further contains Pb: 0.1-2.0% and Bi: 0.1
~2.0% of one or two types and Zr: 0.05~
0.3%, Cr: 0.05-0.3% and Ti: 0.0
One or more of 05 to 0.3% and Zn: 0
.. 05 to 2.0%, the remainder being substantially Al, and a non-heat treatment die for cold forging, characterized in that it has a composition in which Cu is dissolved as a solid solution by cooling after hot extrusion. High-strength free-cutting aluminum alloy.
(3)Cu:2〜5%及びSn:0.01〜1.0%を
含有し、更にPb:0.1〜2.0%及びBi:0.1
〜2.0%のうちの1種又は2種と、Zr:0.05〜
0.3%、Cr:0.05〜0.3%及びTi:0.0
05〜0.3%のうちの1種又は2種以上を含有し、更
に必要に応じてZn:0.05〜2.0%を含有し、残
部が実質的にAlからなる組成のアルミニウム合金につ
き、熱間押出後、350℃の温度から100℃/min
以上の冷却速度で冷却することを特徴とする冷間鍛造用
非熱処理型高強度快削アルミニウム合金の製造方法。
(3) Contains Cu: 2-5% and Sn: 0.01-1.0%, and further contains Pb: 0.1-2.0% and Bi: 0.1
~2.0% of one or two types and Zr: 0.05~
0.3%, Cr: 0.05-0.3% and Ti: 0.0
An aluminum alloy containing one or more of Zn: 0.05 to 0.3%, further containing Zn: 0.05 to 2.0% as necessary, and the remainder substantially consisting of Al. 100℃/min from a temperature of 350℃ after hot extrusion
A method for producing a non-heat-treated, high-strength, free-cutting aluminum alloy for cold forging, characterized by cooling at a cooling rate equal to or higher than the above.
JP15075587A 1987-06-17 1987-06-17 Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production Pending JPS63312945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15075587A JPS63312945A (en) 1987-06-17 1987-06-17 Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15075587A JPS63312945A (en) 1987-06-17 1987-06-17 Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production

Publications (1)

Publication Number Publication Date
JPS63312945A true JPS63312945A (en) 1988-12-21

Family

ID=15503707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15075587A Pending JPS63312945A (en) 1987-06-17 1987-06-17 Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production

Country Status (1)

Country Link
JP (1) JPS63312945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033740A1 (en) * 2002-10-09 2004-04-22 Showa Denko K.K. Aluminum alloy for cutting processing, and aluminum alloy worked article made of the same
CN115305393A (en) * 2022-08-15 2022-11-08 保定市立中车轮制造有限公司 High-toughness high-castability heat-treatment-free aluminum alloy stressed member material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033740A1 (en) * 2002-10-09 2004-04-22 Showa Denko K.K. Aluminum alloy for cutting processing, and aluminum alloy worked article made of the same
EP1549778A1 (en) * 2002-10-09 2005-07-06 Showa Denko K.K. Aluminum alloy for cutting processing, and aluminum alloy worked article made of the same
EP1549778A4 (en) * 2002-10-09 2006-04-05 Showa Denko Kk Aluminum alloy for cutting processing, and aluminum alloy worked article made of the same
CN115305393A (en) * 2022-08-15 2022-11-08 保定市立中车轮制造有限公司 High-toughness high-castability heat-treatment-free aluminum alloy stressed member material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
US20080078480A1 (en) Hot-and cold-formed aluminum alloy
US6248188B1 (en) Free-cutting aluminum alloy, processes for the production thereof and use thereof
JP3107517B2 (en) High corrosion resistant aluminum alloy extruded material with excellent machinability
JPH1112705A (en) Production of high strength aluminum alloy forging excellent in machinability
JPH0557348B2 (en)
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JPS63140060A (en) Free-cutting aluminum-alloy casting and its production
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JPS63312945A (en) Non heat treatment type high strength free cutting aluminum alloy for cold forging and its production
JPH09279319A (en) Production of aluminum alloy for compressor parts, excellent in machinability, wear resistance and toughness
JPS6328978B2 (en)
JPS6227147B2 (en)
JPH01283338A (en) Free-cutting aluminum alloy for hot forging
JP4017105B2 (en) Aluminum alloy cast bar with excellent machinability and hot workability
JPH0925533A (en) Production of aluminum alloy for machining, excellent in cold forgeability, and cold forged aluminum alloy material for machining
JPS6210290B2 (en)
JPS63103046A (en) Aluminum alloy for cold forging
JPH11323472A (en) Al-mg-si alloy extrusion material excellent in machinability and its production
JP3453607B2 (en) High-strength aluminum alloy extruded material with excellent chip breaking performance
JPH08199276A (en) Aluminum alloy for cold forging
JP2002206132A (en) Aluminum alloy extrusion material having excellent machinability and production method therefor