JPS6330998B2 - - Google Patents

Info

Publication number
JPS6330998B2
JPS6330998B2 JP56089386A JP8938681A JPS6330998B2 JP S6330998 B2 JPS6330998 B2 JP S6330998B2 JP 56089386 A JP56089386 A JP 56089386A JP 8938681 A JP8938681 A JP 8938681A JP S6330998 B2 JPS6330998 B2 JP S6330998B2
Authority
JP
Japan
Prior art keywords
tin
chromate
amount
treatment
coulombs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089386A
Other languages
Japanese (ja)
Other versions
JPS57203798A (en
Inventor
Noriji Tsugai
Kazuo Mochizuki
Yasuhei Sakamoto
Shunichi Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8938681A priority Critical patent/JPS57203798A/en
Publication of JPS57203798A publication Critical patent/JPS57203798A/en
Publication of JPS6330998B2 publication Critical patent/JPS6330998B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 本発明は、シーム溶接により接胴され、食缶、
飲料缶に使用される錫目付量1.5g/m2以下の薄
目付ぶりきの耐錆性を向上させることができるシ
ーム溶接缶用表面処理鋼板の製造方法に関するも
のである。 従来、食缶、飲料缶を製造するにあたつてぶり
きの接胴は半田を用いて行われてきた。しかしな
がら、半田に含まれている有害な鉛が缶内容物中
に溶出する可能性があるために、近年半田による
接胴は次第に行われなくなり、これに代つてシー
ム溶接(スードロニツク溶接)による接胴法が普
及しつつある。スードロニツク溶接法では、缶胴
接合部の重ね合せ幅(オーバーラツプ)が0.3〜
0.4mmであるため鋼板の表面処理法によつて接合
の良否が大きく左右される。市販ぶりきで錫付着
量の低いものほど溶接性が良くなる傾向がある。
錫付着量の多いぶりきでは、抵抗溶接で発生した
熱が錫の溶融にも使われ、溶接線に沿つて溶融錫
が流れて溶接部が汚れることがその理由の一つで
ある。 また、錫価格が上昇しているため缶用材料の需
要家からは薄目付のぶりき、特に缶内面を塗装し
て使用される場合には、現在市販品で最低の錫付
着量(2.8g/m2)のいわゆる#25ぶりきの1/2以
下の付着量を有する材料が要求されている。しか
しながら、このような錫付着量の少いぶりきで
は、製造後出荷され需要家で製缶されるまでの数
ケ月以上に亘る期間中に錆が発生し、缶用材料と
して使用できなくなることがある。 本発明者等は、薄目付ぶりきの耐錆性、耐食性
を向上させる方法について鋭意研究を行つた結
果、錫めつき後直ちに溶錫処理(リフロー)を行
う通常の方法とは異り、食品衛生上支障のないク
ロメート処理を薄目付の錫めつき表面に施し、し
かる後溶錫処理(リフロー)を行い、さらにリフ
ロー後通常のクロメート処理を行うのが有効であ
ることを見い出し、本発明に至つた。 すなわち、錫付着量が少いと錫めつき層内にピ
ンホール(素地鋼の露出した孔)が多く、ぶりき
の耐錆性が悪い。錫めつき表面のピンホールの大
きさあるいは数がどの程度のものであるかを知る
指標として古くから知られているチオシアネート
有孔度試験法がある。チオシアネート試験は一定
面積の錫めつき板を酢酸、過酸化水素およびチオ
シアン酸アンモニウムからなる腐食液に浸漬して
所定の時間経過後溶解した鉄イオンを赤色のチオ
シアン酸鉄として比色定量する方法である。 通常の方法で作製したぶりきの錫付着量とチオ
シアネート値の関係を第1図に示す。同図中に点
線で示すように曲線を外挿すると錫付着量が約
1.5g/m2以下のぶりきでは素地鋼の露出面積が
著しく大きいことがわかる。封孔処理として錫め
つき鋼板にはリフロー後に通常約4.5クーロン/
dm2の電解クロメート処理が行われているが、錫
付着量が1.5g/dm2以下の錫めつき鋼板に対し
ては更に多くのクロメート量が必要になる。しか
し、リフロー後に施されたクロメート皮膜自体は
電気絶縁物質であるためこの皮膜が厚い場合は溶
接電流が流れにくく、溶接速度を小さくしなけれ
ばならない。例えば、10クーロン/dm2を超える
電気量で処理されたクロメート皮膜を有する鋼板
をスードロニツク溶接機により溶接すると1ナゲ
ツト当りの溶接電流がクロメート皮膜のない場合
に比べて10%以上低下する。 次に、錫めつきマツト表面、すなわち、溶錫処
理を施されていない電着錫表面にクロメート処理
を行うと溶接性を損うことなく薄目付ぶりきの耐
錆性を向上させることができる理由について説明
する。 1.5g/m2以下の錫付着量の錫めつき鋼板に溶
錫処理を施す通常の方法によると、第2図の電子
顕微鏡写真に示すように、粗い鉄−錫合金が発達
し、素地鋼の露出部分が多い。一方、本発明にお
けるように、錫付着量0.05〜1.5g/m2の錫めつ
き鋼板にリフロー前クロメート処理を施した薄目
付ぶりきの合金層およびその断面構造をそれぞれ
第3図および第4図に示す。第2図に示す通常の
方法による薄目付ぶりきに比して、第3図の本発
明法によるぶりきの合金層は緻密であり、第4図
の断面構造に示されるようにクロメート1(クロ
ム水和酸化物)に錫層2中に埋没して島状に分布
し、鉄−錫合金層3の粗大化を阻止するとともに
表面への素地鋼4の露出を少なくしている。本発
明による錫めつき鋼板が高い耐錆性を示す理由は
錫めつき層2が上記のような構造を呈することに
よる。すなわち、錫層2の中に埋没したクロメー
ト1が鉄−錫合金3の鋼板面に対しての直角もし
くはそれに近い方向への成長を抑制し、その結果
微細な合金結晶によつて鋼板素地4が被覆される
ためである。リフロー前に施されたクロメートに
よる上記のような効果は薄目付ぶりき、特に錫付
着量が2.8g/m2以下の時に著しい。 ところで、錫めつき鋼板のリフロー前にクロメ
ート処理を施す方法については電気ぶりきの耐硫
化性を改良する方法として既に特公昭48−24619
(以下刊行物と称する)に開示されている。刊
行物の対象とするぶりきは実施例にも記載され
ているように#500(錫付着量5.6g/m2)程度の
厚目付ぶりきであり、缶内容物中の蛋白質あるい
は野菜に含有されている硫黄による缶壁の硫化黒
変を防ぐための材料である。錫付着量の多い錫め
つき鋼板のリフロー前に施されたクロメート皮膜
は刊行物に推測にて示されているように、錫め
つき上に高度の耐硫化性を与える「表皮層」とし
て存在している。このため鉄−錫合金層は錫付着
量1.5g/m2以下の錫めつき鋼板のリフロー前に
クロメート処理した時に形成される合金層より著
しく粗く、緻密性は通常のリフロー前クロメート
処理を施されていないぶりきの場合と同程度であ
る(第5図参照)。第5図は錫付着量1.5g/m2
超える錫めつき鋼板にリフロー前クロメート処理
を施した場合、クロメート1は錫めつき層2の表
層部にのみ分布し、鋼板素地4上の鉄−錫合金層
3の粗大化を阻止することができないことを示し
ている。以上の説明から明らかなように、本発明
の目的な錫付着量の少ない錫めつき鋼板のリフロ
ー前にクロメート処理を施すことによつて、引き
続くリフロー処理により形成される合金層を緻密
にし、薄目付のぶりきの耐錆性、耐食性を向上さ
せることにある。また、本発明における錫付着量
以下の処理を行なう限り、リフロー前に施された
クロメートは第4図から理解されるように錫層の
中に埋没しているため溶接電流の妨げにはならな
い。 薄目付ぶりきにおいても、ぶりきの耐錆性、耐
食性を向上させるためには、鉄−錫合金層を緻密
にすることが必須要件である。本発明において対
象とする溶接缶用材料としてのぶりきにおいて
は、上記要件に加えて溶接電流の流れるのを妨げ
ることのない処理でなければならない。本発明者
等はこのような2つの条件を同時に満足する方法
を種々検討した結果、錫めつき鋼板のリフロー前
の電解クロメート処理量が適切な範囲にある時薄
目付ぶりきの錫層中でクロメートが島状に分布し
て鉄−錫合金層の粗大化を阻止することを見い出
し本発明に至つた。 本発明方法に従つて溶接缶用素材を製造する場
合に用いる鋼板は造塊材あるいは連続鋳造材のい
ずれでも良い。通常の方法に従つて0.15〜0.33mm
に冷間圧延され、焼鈍後調質圧延された鋼板を原
板とする。ぶりきを製造するための通常の脱脂、
酸洗をこの原板に施し、錫めつきを行う。錫めつ
きはハロゲン浴、フエロスタン浴あるいは硼弗化
浴などの酸性めつき浴あるいはアルカリめつき浴
によつて行い、錫を0.05g/m2以上、1.5g/m2
以下付着せしめる。本発明において錫付着量をこ
のように限定する理由は、リフロー時に錫層中に
クロメートを島状に埋没させ、、鉄−錫合金を微
細にするためである。すなわち、(1)錫付着量が
1.5g/m2を超える錫めつき鋼板では錫層表面に
クロメート表皮層が形成されるのみで合金層は緻
密にならず、(2)0.05g/m2未満の錫付着量ではリ
フロー前のクロメート処理によつてもピンホール
の発生を防ぐことができない、という2つの事実
に基いている。 このように錫めつきされた鋼板には引き続いて
クロメート処理が施される。本発明においてクロ
メート処理が0.3クーロン/dm2未満の場合は錫
付着量1.5g/m2以下のぶりきに対して錫層中の
クロメートが鉄−錫合金層の粗大化を抑制する効
果はない。また、クロメート処理量が10クーロ
ン/dm2超える場合は錫層中のクロメートが島状
にならないためにシーム溶接電流に対する抵抗が
大きくなる。 ぶりきの後処理としてのクロメート処理は通常
30g/の重クロム酸水溶液(40〜60℃)を用い
て行われるが、本発明においてリフロー前に行う
クロメート処理も全く同様で良い。クロメート処
理の電解時間および電流密度それぞれについては
本発明では特に限定されることはなく、両者の積
としての電気量が上記の範囲にあることが好まし
い。 0.05〜1.5g/m2の錫めつき後0.3〜10クーロ
ン/dm2のクロメート処理を施された鋼板には引
き続いて溶錫処理(リフロー)が行われる。本発
明方法に従つてリフロー時に形成される合金層
は、錫めつき後のクロメート(クロム水加酸化
物)が存在するために、、鋼板/錫界面において、
リフロー前クロメート処理を施さない通常の薄目
付ぶりきに比べて密度が高く、そのため合金錫量
も多い。第6図において、実線で示す曲線はリ
フロー前にクロメート処理を施さない#5ぶりき
についての、点線で示す曲線はリフロー前にク
ロメート処理(5クーロン/dm2)を施した#5
ぶりきについてのリフロー最高到達温度と合金錫
層の関係を示す。このグラフから、同一条件でリ
フロー処理を行つても、リフロー前クロメート処
理を施したぶりきの方が合金錫易が多いことがわ
かる。しかし、溶接性、耐錆性の観点から合金錫
量は全錫付着量の約2/3であることが好ましい。
このようにしてリフロー処理された錫めつき鋼板
は水洗、乾燥され、封孔処理を目的とした通常の
化学処理、すなわち30g/の重クロム酸水溶液
(液温40〜60℃)中で電気量4.5クーロン/dm2
陰極処理を施される。以下、本発明を実施例につ
き具体的に説明する。 実施例 1 脱脂、酸洗された冷延鋼板に0.82g/m2の錫め
つきを行い、水洗後30g/の重クロム酸ソーダ
水溶液(45℃)中で5クーロン/dm2のクロメー
ト処理を行つた。この錫めつき鋼板を水洗乾燥後
3.4秒間で260℃まで加熱し、直ちに水冷した後30
g/の重クロム酸ソーダ水溶液(45℃)中で
4.5クーロン/dm2の電気量で陰極処理した。 実施例 2 脱脂、酸洗された冷延鋼板に0.56g/m2の錫め
つきを行い、水洗後30g/の重クロム酸ソーダ
水溶液(45℃)中で0.5クーロン/dm2の電気量
でクロメート処理を行つた。このめつき錫めつき
鋼板を水洗乾燥後3.4秒間で260℃まで加熱し、直
ちに水冷した後30g/の重クロム酸ソーダ水溶
液(45℃)中で4.5クーロン/dm2の電気量で陰
極処理した。 実施例 3 脱脂、酸洗された冷延鋼板に1.24g/m2の錫め
つきを行い、水洗後30g/の重クロム酸ソーダ
水溶液(45℃)中で8クーロン/dm2の電気量で
クロメート処理を行つた。このめつき錫めつき鋼
板を水洗乾燥後3.4秒間で260℃まで加熱し、直ち
に水冷した後30g/の重クロム酸ソーダ水溶液
(45℃)中で4.5クーロン/dm2の電気量で陰極処
理した。 比較例 1 脱脂、酸洗された冷延鋼板に0.87g/m2の錫め
つきを行い、水洗後30g/の重クロム酸ソーダ
水溶液(45℃)中で0.2クーロン/dm2の電気量
でクロメート処理を行つた。このめつき錫めつき
鋼板を水洗乾燥後3.4秒間で260℃まで加熱し、直
ちに水冷した後30g/の重クロム酸ソーダ水溶
液(45℃)中で4.5クーロン/dm2の電気量で陰
極処理した。 比較例 2 脱脂、酸洗された冷延鋼板に0.92g/m2の錫め
つきを行い、水洗後30g/の重クロム酸ソーダ
水溶液(45℃)中で12クーロン/dm2の電気量で
クロメート処理を行つた。このめつき錫めつき鋼
板を水洗乾燥後3.4秒間で260℃まで加熱し、直ち
に水冷した後30g/の重クロム酸ソーダ水溶液
(45℃)中で4.5クーロン/dm2の電気量で陰極処
理した。 比較例 3 脱脂、酸洗された冷延鋼板に0.85g/m2の錫め
つきを行い、水洗後3.4秒間で260℃まで加熱し、
直ちに水冷した後30g/の重クロム酸ソーダ水
溶液(45℃)中で4.5クーロン/dm2の電気量で
陰極処理した。 比較例 4 脱脂、酸洗された冷延鋼板に2.8g/m2の錫め
つきを行い、水洗後3.4秒間で260℃まで加熱し、
直ちに水冷した後30g/の重クロム酸ソーダ水
溶液(45℃)中で4.5クーロン/dm2の電気量で
陰極処理した。 これは市販の#25ぶりきに相当する。 参考例 脱脂、酸洗された冷延鋼板に2.16g/m2の錫め
つきを行い、水洗後30g/の重クロム酸ソーダ
水溶液(45℃)中で5クーロン/dm2の電気量で
クロメート処理を行つた。このめつき錫めつき鋼
板を水洗乾燥後3.4秒間で260℃まで加熱し、直ち
に水冷した後30g/の重クロム酸ソーダ水溶液
(45℃)中で4.5クーロン/dm2の電気量で陰極処
理した。 上記のような処理をした鋼板から50×80mmの大
きさの試片を切り出し、端部を接着テープでシー
ルして表面積40×70を残した試料を用いて以下に
記すようにして、湿潤試験および塩水噴霧試験を
行つた。またチオシアネート有孔度試験を行つ
た。さらに、165.5×80mmの試片を用いてシーム
溶接性試験を行つた。 (1) 湿潤試験 温度50℃、相対湿度93%の試験槽に試片を取
り付け、一定期間経過後試片表面の赤錆面積率
(%)を目視判定した。 (2) 塩水噴霧試験 JIS Z 2371法に基いて試験し、赤錆面積率
(%)を目視判定した。 (3) チオシアネート有孔度試験 Tin Research Institute刊(1964年第2版)
P30を準拠した。 (4) シーム溶接性試験 (a) 溶接機 スードロニツク社製雑缶製造用
機、202径用ガイドツール組込み、オーバー
ラツプ 約0.4mm (b) 溶接速度 8m/min (c) 溶接電流 25〜30A (d) 接胴加圧力 4da.N (e) 試験項目 (e‐1) ハインテスト 溶接部をはさんだ円筒端部からV字型の
切り込みを入れ、三角部をプライヤーで握
つて他端に向つて引つ張る。途中で溶接部
分が切断しなければ“良”とする。 (e‐2) スパツター観察 溶接部の1ナゲツト毎にスパツターが出
ていないかどうかを目視で調べる。 (e‐3) 溶接断面光学顕微鏡観察 溶接部断面を樹脂に埋め込んで100倍で
観察する。接合面にヘアラインなどがなけ
れば“良”とする。 上記試料についての諸試験結果を示す下表1か
ら明らかなように、本発明の実施例1〜3はいず
れも錫薄目付であるにもかかわらず比較例1〜3
に比べて、湿潤試験、塩水噴霧試験、チオシアネ
ート値およびシーム溶接性において優れており、
市販の#25ぶりきに相当する比較例4に示すよう
な錫厚目付量のぶりきと同等の性能を有するもの
であることがわかる。すなわち、クロメート処理
条件が電気量の点で不足している比較例1はチオ
シアネート値が高く、湿潤試験値および塩水噴霧
試験値が悪く、耐錆性および耐食性に劣つてい
る。 比較例2は電気量が過多であり、クロム量が著
しく多いので、チオシアネート値は低く、耐錆性
および耐食性は良好であるが、シーム溶接性に劣
る。比較例3は錫薄めつき後すぐに溶錫処理した
クロメート処理をしたので、チオシアネート値が
高く、耐錆性および耐食性劣化する。 また、参考例は、錫付着量が2.16g/m2の厚め
つきであるので、耐錆性、耐食性およびシーム溶
接性が良好であるのは当然であるが、本発明の目
的は薄目付量にすることにあり、目的を達成して
いない。また、本参考例のチオシアネート値が本
発明の実施例に比較して劣つている点から、本発
明法は錫薄めつきにおいて有効な方法であること
がわかる。 以上、詳述したように、本発明のシーム溶接缶
用表面処理鋼板の製造方法によれば、薄目付
(0.05〜1.5g/m2)の錫めつき鋼板であつても、
リフロー前に0.3〜10クーロン/dm2クロメート
処理を行うことにより、耐錆性およびシーム溶接
性に優れ、市販の#25ぶりき(錫付着量2.8g/
m2)に比肩するものを得ることができる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention provides food cans,
The present invention relates to a method for manufacturing a surface-treated steel sheet for seam-welded cans that can improve the rust resistance of light tin coatings used in beverage cans with a tin coating amount of 1.5 g/m 2 or less. Conventionally, when manufacturing food and beverage cans, tinplate bodies have been joined using solder. However, because the harmful lead contained in the solder may be leached into the contents of the can, soldering has gradually become less common in recent years, and seam welding (sudronic welding) has replaced the method. The law is becoming popular. In the Sudronik welding method, the overlap width (overlap) of the can body joint is 0.3~
Since it is 0.4 mm, the quality of the joint is greatly influenced by the surface treatment method of the steel plate. Among commercially available tinplates, the lower the amount of tin deposited, the better the weldability tends to be.
One of the reasons for this is that with tinplate that has a large amount of tin deposited, the heat generated during resistance welding is also used to melt the tin, and molten tin flows along the weld line, staining the weld area. In addition, due to the rise in tin prices, can material consumers are looking for thin tin tin, especially when used with the inner surface of the can painted, which has the lowest amount of tin adhesion (2.8 g There is a demand for materials that have a coating weight that is less than half that of so-called #25 tin, which has a coating weight of 1/m 2 ). However, with such tin tin with a low amount of tin adhesion, rust may develop during the period of several months or more from the time it is manufactured to the time it is shipped and canned by the customer, making it unusable as a material for cans. . As a result of intensive research into methods for improving the rust and corrosion resistance of thin tin plating, the present inventors found that, unlike the usual method of immediately applying hot tin treatment (reflow) after tin plating, We have discovered that it is effective to apply a chromate treatment that does not cause sanitary problems to a lightly tinned surface, then perform a molten tin treatment (reflow), and then perform a normal chromate treatment after the reflow, and have developed the present invention. I've reached it. That is, if the amount of tin deposited is small, there will be many pinholes (holes where the base steel is exposed) in the tin-plated layer, and the rust resistance of the tin plate will be poor. The thiocyanate porosity test method has long been known as an indicator of the size or number of pinholes on a tin-plated surface. The thiocyanate test is a method in which a tin-plated plate of a certain area is immersed in a corrosive liquid consisting of acetic acid, hydrogen peroxide, and ammonium thiocyanate, and after a predetermined period of time, dissolved iron ions are colorimetrically determined as red iron thiocyanate. be. Figure 1 shows the relationship between the amount of tin deposited and the thiocyanate value of tin plate produced by a conventional method. By extrapolating the curve as shown by the dotted line in the figure, the amount of tin deposited is approximately
It can be seen that in tinplates of 1.5 g/m 2 or less, the exposed area of the base steel is significantly large. As a sealing treatment, tin-plated steel plates usually have a pressure of about 4.5 coulombs/min after reflow.
Electrolytic chromate treatment of dm 2 is carried out, but a much larger amount of chromate is required for tin-plated steel sheets with a tin adhesion of 1.5 g/dm 2 or less. However, since the chromate film applied after reflow is itself an electrically insulating material, if this film is thick, it is difficult for welding current to flow, and the welding speed must be reduced. For example, when welding a steel plate with a chromate film treated with an electrical charge exceeding 10 coulombs/dm 2 using a Sudronik welding machine, the welding current per nugget decreases by more than 10% compared to a case without the chromate film. Next, by applying chromate treatment to the surface of the tinned pine, that is, the surface of electrodeposited tin that has not been subjected to molten tin treatment, it is possible to improve the rust resistance of light tinting without impairing weldability. Let me explain the reason. According to the usual method of applying hot tin treatment to tin-plated steel sheets with a tin coating amount of 1.5 g/ m2 or less, as shown in the electron micrograph in Figure 2, a rough iron-tin alloy develops and the base steel There are many exposed parts. On the other hand, as in the present invention, a thinly coated alloy layer and its cross-sectional structure obtained by applying chromate treatment before reflow to a tin-plated steel plate with a tin coating amount of 0.05 to 1.5 g/m 2 are shown in FIGS. 3 and 4, respectively. As shown in the figure. Compared to the thin tinting produced by the conventional method shown in Fig. 2, the alloy layer of the tin tin produced by the method of the present invention shown in Fig. 3 is denser, and as shown in the cross-sectional structure of Fig. 4, chromate 1 ( The iron-tin alloy layer 3 is buried in the tin layer 2 (chromium hydrated oxide) and distributed in the form of islands, thereby preventing the iron-tin alloy layer 3 from becoming coarse and reducing the exposure of the base steel 4 to the surface. The reason why the tin-plated steel sheet according to the present invention exhibits high rust resistance is that the tin-plated layer 2 has the above-described structure. That is, the chromate 1 buried in the tin layer 2 suppresses the growth of the iron-tin alloy 3 in a direction perpendicular to the steel sheet surface or in a direction close to it, and as a result, the steel sheet base 4 is formed by fine alloy crystals. This is because it is coated. The above-mentioned effect of chromate applied before reflow is noticeable when the tin coating is light, especially when the amount of tin deposited is 2.8 g/m 2 or less. By the way, the method of applying chromate treatment to tin-plated steel sheets before reflow has already been reported in Japanese Patent Publication No. 48-24619 as a method for improving the sulfidation resistance of electroplating.
(hereinafter referred to as the publication). As described in the examples, the tinplate covered by this publication has a thick tint of approximately #500 (tin adhesion amount: 5.6g/m 2 ), and it is said that the tinplate contained in the protein or vegetables in the contents of the can is approximately #500 (tin coating amount 5.6g/m 2 ). This material is used to prevent blackening of can walls caused by sulfur. The chromate film applied to tin-plated steel sheets with a large amount of tin coating before reflow exists as a "skin layer" on the tin-plated surface that provides a high degree of sulfidation resistance, as speculated in publications. are doing. For this reason, the iron-tin alloy layer is significantly rougher than the alloy layer formed when chromate treatment is performed before reflow on a tin-plated steel sheet with a tin coating amount of 1.5 g/ m2 or less, and its density is lower than that of the alloy layer formed when chromate treatment is performed before reflow. It is about the same level as the case of tinplate that is not coated (see Figure 5). Figure 5 shows that when pre-reflow chromate treatment is applied to a tin-plated steel plate with a tin coating amount exceeding 1.5 g/ m2 , chromate 1 is distributed only in the surface layer of the tin-plated layer 2, and the chromate 1 is distributed only on the surface layer of the tin-plated layer 2. - This shows that it is not possible to prevent the tin alloy layer 3 from becoming coarser. As is clear from the above explanation, by performing chromate treatment before reflow of a tin-plated steel plate with a small amount of tin adhesion, which is the object of the present invention, the alloy layer formed by the subsequent reflow treatment can be made denser and thinner. The objective is to improve the rust and corrosion resistance of tinplate. Furthermore, as long as the treatment is carried out to reduce the amount of tin deposited in the present invention, the chromate applied before reflow is buried in the tin layer, as seen from FIG. 4, and does not interfere with the welding current. Even in the case of thin tinting, it is essential to make the iron-tin alloy layer dense in order to improve the rust resistance and corrosion resistance of the tin. In addition to the above-mentioned requirements, tinplate as a material for welded cans, which is the object of the present invention, must be treated so as not to impede the flow of welding current. The present inventors investigated various methods to satisfy these two conditions at the same time, and found that when the amount of electrolytic chromate treated before reflow of the tin-plated steel sheet is within an appropriate range, it is possible to The present inventors have discovered that chromate is distributed in island shapes to prevent coarsening of the iron-tin alloy layer, leading to the present invention. The steel plate used in manufacturing a welded can material according to the method of the present invention may be either an ingot material or a continuous casting material. 0.15~0.33mm according to normal method
The original sheet is a steel sheet that has been cold-rolled, annealed, and temper-rolled. Normal degreasing for producing tinplate,
This original plate is pickled and then tinned. Tin plating is carried out using an acid plating bath such as a halogen bath, ferrostane bath, or borofluoride bath, or an alkaline plating bath, and the tin plating is carried out using an acid plating bath such as a halogen bath, a ferrostane bath, or a borofluoride bath, and the amount of tin is 0.05 g/m 2 or more, and 1.5 g/m 2 or more.
Attach the following. The reason why the amount of tin deposited in the present invention is limited in this way is to embed chromate in the form of islands in the tin layer during reflow, thereby making the iron-tin alloy fine. In other words, (1) the amount of tin attached is
If the tin coating exceeds 1.5 g/ m2 , only a chromate skin layer will be formed on the surface of the tin layer, and the alloy layer will not become dense.(2) If the tin coating amount is less than 0.05 g/ m2 , This is based on two facts: even chromate treatment cannot prevent the occurrence of pinholes. The tinned steel sheet is subsequently subjected to a chromate treatment. In the present invention, when the chromate treatment is less than 0.3 coulombs/dm 2 , the chromate in the tin layer has no effect on suppressing the coarsening of the iron-tin alloy layer for tin plate with a tin coating amount of 1.5 g/m 2 or less. . Furthermore, when the amount of chromate treated exceeds 10 coulombs/dm 2 , the chromate in the tin layer does not become island-like, resulting in increased resistance to seam welding current. Chromate treatment is usually used as a post-treatment for tinplate.
Although this is carried out using 30 g/dichromic acid aqueous solution (40 to 60°C), the chromate treatment carried out before reflow in the present invention may be exactly the same. The electrolytic time and current density of the chromate treatment are not particularly limited in the present invention, and it is preferable that the amount of electricity as the product of both is within the above range. After tin plating with a concentration of 0.05 to 1.5 g/m 2 and chromate treatment of 0.3 to 10 coulombs/dm 2 , the steel plate is subsequently subjected to a molten tin treatment (reflow). In the alloy layer formed during reflow according to the method of the present invention, due to the presence of chromate (chromium hydroxide) after tin plating, at the steel plate/tin interface,
It has a higher density than normal thin tin coating that is not subjected to chromate treatment before reflow, and therefore has a higher amount of alloyed tin. In FIG. 6, the curve shown by a solid line is for #5 tin plate which is not subjected to chromate treatment before reflow, and the curve shown by a dotted line is for #5 tin plate which is subjected to chromate treatment (5 coulombs/dm 2 ) before reflow.
The relationship between the maximum reflow temperature and the alloy tin layer for tinplate is shown. From this graph, it can be seen that even if the reflow treatment is performed under the same conditions, the tin alloy treated with chromate treatment before reflow has more tin alloy. However, from the viewpoint of weldability and rust resistance, the amount of alloyed tin is preferably about 2/3 of the total amount of tin deposited.
The tin-plated steel sheet that has been reflow-treated in this way is washed with water, dried, and subjected to the usual chemical treatment for the purpose of sealing. Cathodic treatment of 4.5 coulombs/dm 2 is applied. Hereinafter, the present invention will be specifically explained with reference to examples. Example 1 A degreased and pickled cold-rolled steel sheet was tinned at 0.82 g/m 2 , and after washing with water, it was subjected to chromate treatment at 5 coulombs/dm 2 in a 30 g/dm aqueous solution of sodium dichromate (45°C). I went. After washing and drying this tin-plated steel plate
After heating to 260℃ for 3.4 seconds and immediately cooling with water, 30℃
g/in an aqueous solution of sodium dichromate (45°C)
Cathodic treatment was performed with an electrical charge of 4.5 coulombs/dm 2 . Example 2 A degreased and pickled cold-rolled steel sheet was tinned at 0.56 g/ m2 , and after washing with water, it was tinned in a 30 g/aqueous sodium dichromate solution (45°C) with an electric charge of 0.5 coulomb/ dm2 . Chromate treatment was performed. After washing and drying this plated tin-plated steel plate, it was heated to 260°C for 3.4 seconds, immediately cooled with water, and then cathodically treated in a 30g/aqueous solution of sodium dichromate (45°C) with an electric charge of 4.5 coulombs/ dm2. . Example 3 A degreased and pickled cold-rolled steel plate was tinned at 1.24 g/ m2 , and after washing with water, it was tinned with 8 coulombs/ dm2 of electricity in a 30 g/aqueous sodium dichromate solution (45°C). Chromate treatment was performed. After washing and drying this plated tin-plated steel plate, it was heated to 260°C for 3.4 seconds, immediately cooled with water, and then cathodically treated in a 30g/aqueous solution of sodium dichromate (45°C) with an electric charge of 4.5 coulombs/ dm2. . Comparative Example 1 A degreased and pickled cold-rolled steel sheet was tinned at 0.87 g/m 2 , and after washing with water, it was tinned at 0.2 coulombs/dm 2 in a 30 g/dm aqueous solution of sodium dichromate (45°C). Chromate treatment was performed. After washing and drying this plated tin-plated steel plate, it was heated to 260°C for 3.4 seconds, immediately cooled with water, and then cathodically treated in a 30g/aqueous solution of sodium dichromate (45°C) with an electric charge of 4.5 coulombs/ dm2. . Comparative Example 2 A degreased and pickled cold-rolled steel sheet was tinned at 0.92 g/m 2 , and after washing with water, it was tinned in a 30 g/dm aqueous solution of sodium dichromate (45°C) with an electric charge of 12 coulombs/dm 2 . Chromate treatment was performed. After washing and drying this plated tin-plated steel plate, it was heated to 260°C for 3.4 seconds, immediately cooled with water, and then cathodically treated in a 30g/aqueous solution of sodium dichromate (45°C) with an electric charge of 4.5 coulombs/ dm2. . Comparative Example 3 A degreased and pickled cold-rolled steel sheet was tinned at 0.85 g/m 2 and heated to 260°C for 3.4 seconds after washing with water.
Immediately after cooling with water, it was cathodically treated in a 30 g sodium dichromate aqueous solution (45° C.) with an electrical charge of 4.5 coulombs/dm 2 . Comparative Example 4 A degreased and pickled cold-rolled steel sheet was tinned at 2.8 g/m 2 and heated to 260°C for 3.4 seconds after washing with water.
Immediately after cooling with water, it was cathodically treated in a 30 g sodium dichromate aqueous solution (45° C.) with an electrical charge of 4.5 coulombs/dm 2 . This is equivalent to commercially available #25 tin. Reference example A degreased and pickled cold-rolled steel sheet is tinned at 2.16 g/ m2 , and after washing with water, it is chromated with an electric charge of 5 coulombs/ dm2 in a 30 g/aqueous sodium dichromate solution (45°C). I processed it. After washing and drying this plated tin-plated steel plate, it was heated to 260°C for 3.4 seconds, immediately cooled with water, and then cathodically treated in a 30g/aqueous solution of sodium dichromate (45°C) with an electric charge of 4.5 coulombs/ dm2. . A specimen measuring 50 x 80 mm was cut from the steel plate treated as described above, and the edges were sealed with adhesive tape, leaving a surface area of 40 x 70 mm. Using the sample, a wet test was performed as described below. and a salt spray test. A thiocyanate porosity test was also conducted. Furthermore, a seam weldability test was conducted using a 165.5 x 80 mm specimen. (1) Humidity test A specimen was attached to a test tank at a temperature of 50°C and a relative humidity of 93%, and after a certain period of time, the area ratio (%) of red rust on the specimen surface was visually determined. (2) Salt spray test A test was conducted based on the JIS Z 2371 method, and the red rust area ratio (%) was visually determined. (3) Thiocyanate porosity test Published by Tin Research Institute (1964 2nd edition)
Compliant with P30. (4) Seam weldability test (a) Welding machine Sudronik can manufacturing machine, built-in guide tool for 202 diameter, overlap approximately 0.4 mm (b) Welding speed 8 m/min (c) Welding current 25 to 30 A (d ) Contact force 4da.N (e) Test items (e-1) Hein test Make a V-shaped cut from the end of the cylinder that sandwiches the weld, grasp the triangular part with pliers, and pull it toward the other end. Stretch. If the welded part does not break during the process, it is considered "good". (e-2) Spatter observation Visually inspect each nugget of the weld to see if there are spatters. (e-3) Optical microscope observation of weld cross section Embed the weld cross section in resin and observe at 100x magnification. If there are no hair lines on the joint surface, it is considered "good". As is clear from Table 1 below showing the various test results for the above samples, although Examples 1 to 3 of the present invention all have a light tin weight, Comparative Examples 1 to 3
Superior in wetness tests, salt spray tests, thiocyanate values and seam weldability compared to
It can be seen that it has the same performance as the tin plate with a thick tin weight as shown in Comparative Example 4, which corresponds to commercially available #25 tin plate. That is, Comparative Example 1, in which the chromate treatment conditions were insufficient in terms of the amount of electricity, had a high thiocyanate value, poor wet test values and salt spray test values, and was inferior in rust resistance and corrosion resistance. Comparative Example 2 has an excessive amount of electricity and a significantly large amount of chromium, so the thiocyanate value is low and the rust resistance and corrosion resistance are good, but the seam weldability is poor. In Comparative Example 3, the chromate treatment was performed immediately after the tin dilution, so the thiocyanate value was high and the rust resistance and corrosion resistance deteriorated. In addition, since the reference example has a thick coating with a tin coating amount of 2.16 g/m 2 , it is natural that it has good rust resistance, corrosion resistance, and seam weldability, but the purpose of the present invention is to The purpose is not achieved. In addition, the thiocyanate value of this reference example is inferior to that of the examples of the present invention, which shows that the method of the present invention is an effective method for tin thinning. As described above in detail, according to the method of manufacturing a surface-treated steel sheet for seam-welded cans of the present invention, even if the tin-plated steel sheet has a light weight (0.05 to 1.5 g/m 2 ),
By performing chromate treatment at 0.3 to 10 coulombs/ dm2 before reflow, it has excellent rust resistance and seam weldability.
m 2 ) can be obtained. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は錫めつき鋼板の錫付着量とチオシアネ
ート値の関係を示すグラフ、第2図および第3図
は金属の表面組織の電子顕微鏡写真であつて、第
2図は通常の薄目付ぶりき(錫付着量0.85g/
m2、合金錫量0.38g/m2)の合金層の1万倍電子
顕微鏡写真、第3図はリフロー前クロメート処理
(5クーロン/dm2)を行つた薄目付ぶりき(錫
付着量0.82g/m2、合金錫量0.36g/m2)の合金
層の1万倍電子顕微鏡写真、第4図は錫付着量
0.05〜1.5g/m2の錫めつき鋼板のリフロー前に
0.3〜10クーロン/dm2のクロメート処理を施し
たぶりきの表面構造を示す断面図、第5図は錫付
着量1.5g/m2以上のぶりきの表面構造を示す断
面図、第6図は錫付着量が0.50〜0.65g/m2
#5ぶりきの、リフロー前にクロメート処理した
場合としない場合についての合金錫量の変化を示
すグラフである。 符号の説明、1……クロメート、2……錫層、
3……合金層、4……素地鋼。
Figure 1 is a graph showing the relationship between the amount of tin deposited and the thiocyanate value of tin-plated steel sheets, Figures 2 and 3 are electron micrographs of the surface structure of the metal, and Figure 2 is a graph showing the relationship between the tin coating amount and the thiocyanate value. (Tin adhesion amount 0.85g/
Fig. 3 is a 10,000 times electron micrograph of an alloy layer with a chromate treatment (5 coulombs/dm 2 ) before reflow (tin adhesion amount 0.82) . 10,000 times electron micrograph of an alloy layer with an alloy tin content of 0.36 g/m 2 ) , Figure 4 shows the amount of tin deposited.
Before reflow of 0.05~1.5g/ m2 tinned steel plate
Figure 5 is a cross-sectional view showing the surface structure of tin plate with a chromate treatment of 0.3 to 10 coulombs/ dm2 . Figure 6 is a cross-sectional view showing the surface structure of tin plate with a tin coating of 1.5 g/ m2 or more. is a graph showing the change in the amount of tin alloy for #5 tin with a tin adhesion amount of 0.50 to 0.65 g/m 2 with and without chromate treatment before reflow. Explanation of symbols, 1...Chromate, 2...Tin layer,
3... Alloy layer, 4... Base steel.

Claims (1)

【特許請求の範囲】[Claims] 1 脱脂、酸洗された冷延鋼板に0.05〜1.5g/
m2の薄目付の錫めつきを施し、さらに重クロム酸
ソーダ水溶液中で0.3〜10クーロン/dm2のクロ
メート処理を行つた後溶錫処理し、さらにクロメ
ート処理を行うことを特徴とするシーム溶接缶用
表面処理鋼板の製造方法。
1 0.05 to 1.5 g per degreased and pickled cold-rolled steel plate
A seam characterized by being tin-plated with a light weight of m 2 , further subjected to chromate treatment at 0.3 to 10 coulombs/dm 2 in an aqueous solution of sodium dichromate, followed by hot tin treatment, and further chromate treatment. A method for manufacturing surface-treated steel sheets for welded cans.
JP8938681A 1981-06-10 1981-06-10 Production of surface treated steel plate for seam welded can Granted JPS57203798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8938681A JPS57203798A (en) 1981-06-10 1981-06-10 Production of surface treated steel plate for seam welded can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8938681A JPS57203798A (en) 1981-06-10 1981-06-10 Production of surface treated steel plate for seam welded can

Publications (2)

Publication Number Publication Date
JPS57203798A JPS57203798A (en) 1982-12-14
JPS6330998B2 true JPS6330998B2 (en) 1988-06-21

Family

ID=13969219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8938681A Granted JPS57203798A (en) 1981-06-10 1981-06-10 Production of surface treated steel plate for seam welded can

Country Status (1)

Country Link
JP (1) JPS57203798A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159998A (en) * 1983-02-28 1984-09-10 Kawasaki Steel Corp Method for preventing formation of grainy pattern on tinned steel sheet
JPS62107093A (en) * 1985-11-05 1987-05-18 Mitsubishi Electric Corp Treatment of tin-lead alloy film on copper alloy bar
FR2687693B1 (en) * 1992-02-25 1994-05-27 Lorraine Laminage METHOD OF SURFACE TREATMENT OF A PRODUCT FORMED OF A METAL SUBSTRATE COMPRISING A MULTILAYERED METAL COATING AND AN ORGANIC COATING AND PRODUCTS OBTAINED BY THIS PROCESS.
KR20020044651A (en) * 2000-12-06 2002-06-19 이구택 A method for forming chromate coating for tin coating steel sheet with excellent paint adherence

Also Published As

Publication number Publication date
JPS57203798A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
JPS6254399B2 (en)
US4468292A (en) Production of highly rust resistant tinplate sheets for welded cans
KR890004791B1 (en) Process for preparing surface-treated steel strips for electric resistance welding
JPS59598B2 (en) Tampered steel plate with excellent weldability
CA1317858C (en) Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability and method for producing same
JPS6330998B2 (en)
JPS5993900A (en) Galvanized steel sheet having excellent weldability
JPS6214240B2 (en)
JP2522074B2 (en) Ultra-thin Sn-plated steel sheet for can and method for producing the same
KR910005239B1 (en) Method for manufacturing electrolytically chromated steel sheet
JPS5941495A (en) Surface treated steel plate for welded can
JPS6318676B2 (en)
JPH0431039B2 (en)
JPH0425350B2 (en)
JPH11106952A (en) Steel sheet for welded can excellent in waldability, corrosion resistance and film adhesion
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JP2959026B2 (en) Ultra-thin Sn-plated steel sheet for welding can and method for producing the same
JP2522075B2 (en) Ultra-thin Sn-plated steel sheet for can and method for producing the same
JPH11106953A (en) Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion
JPH02156096A (en) Material for very thin welded can having superior seam weldability, adhesion to coating material and corrosion resistant after coating
JPS59133398A (en) Production of surface treated steel sheet for welded can having excellent rust preventiveness and paintability
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JPS5974294A (en) Manufacture of surface treated steel sheet for welded can
JPS5989784A (en) Manufacture of steel sheet for welded can with superior corrosion resistance after coating
JPS6342718B2 (en)