JPS6330980B2 - - Google Patents

Info

Publication number
JPS6330980B2
JPS6330980B2 JP3878381A JP3878381A JPS6330980B2 JP S6330980 B2 JPS6330980 B2 JP S6330980B2 JP 3878381 A JP3878381 A JP 3878381A JP 3878381 A JP3878381 A JP 3878381A JP S6330980 B2 JPS6330980 B2 JP S6330980B2
Authority
JP
Japan
Prior art keywords
alloy
alloys
metal
weight
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3878381A
Other languages
Japanese (ja)
Other versions
JPS57155342A (en
Inventor
Mitsuo Kodama
Akira Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3878381A priority Critical patent/JPS57155342A/en
Publication of JPS57155342A publication Critical patent/JPS57155342A/en
Publication of JPS6330980B2 publication Critical patent/JPS6330980B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は従来から超微粒合金として各種用途に
多用されているWC−Co基合金を改良した(Mo、
W)C−Co基合金に関する。
[Detailed Description of the Invention] The present invention improves the WC-Co-based alloy, which has been conventionally used as an ultrafine-grained alloy for various purposes (Mo,
W) Regarding C-Co based alloy.

一般にWC−Co系合金は切削工具、耐摩工具と
して広く用いらているが、ドリル、エンドミルな
ど回転工具では破損により実用に供し得ない場合
が多い。しかるに、近年WC粒を微細化して分散
強化を図り強度を増加させる試みがなされ、在来
の品種では無理または不満足とされていた各種領
域で使用に供されている。また、(Mo、W)C
を鉄族金属で結合した合金も耐摩工具(特開和53
−72710号公報)や切削工具(特開和51−146306
号公報)に適用した例は従来から知られている
が、特に微粒化炭化物を用いた例は未だ知られて
いない。
In general, WC-Co alloys are widely used as cutting tools and wear-resistant tools, but in many cases they cannot be used in rotating tools such as drills and end mills due to breakage. However, in recent years, attempts have been made to increase the strength by making the WC grains finer and dispersing them, and they are now being used in various areas where conventional varieties were considered impossible or unsatisfactory. Also, (Mo, W)C
Alloys made by bonding iron group metals with iron group metals are also used as wear-resistant tools
-72710) and cutting tools (JP-A No. 51-146306)
Although examples in which this method is applied have been known for some time, examples in which micronized carbides are used have not yet been known.

超硬合金の組織は、Co相中にWC粒子が分散し
ていると考えることができるので、その強度は本
質的に分散強化型合金に関するOrowanの式: Ty2Gb/L ……(1) Ty:引張強度 G:剛性率 b:バーガースベクトトル L:粒子間距離 で表わされる。粒度の微細化は式(1)のLを減少さ
せることになり、これに伴ない強度は向上する。
実用的にもCo相厚み0.15μ程度までは微粒化によ
つて高Co合金の強度向上が図れることが本発明
者らの実験により明らかとなつた。また低Co合
金でも多少の抗折強度低下はあるが、圧縮強度増
大という利点があるので、いずれの場合も微粒化
は特性向上の有効な手段と考えられる。
The structure of cemented carbide can be thought of as WC particles dispersed in a Co phase, so its strength is essentially determined by Orowan's formula for dispersion-strengthened alloys: Ty2Gb/L...(1) Ty: Tensile strength G: Rigidity b: Burgers vector torque L: Represented by interparticle distance. Refinement of grain size reduces L in formula (1), and the strength improves accordingly.
Experiments conducted by the present inventors have revealed that in practical terms, the strength of high-Co alloys can be improved by grain refinement up to a Co phase thickness of about 0.15 μm. Furthermore, even low-Co alloys have the advantage of increasing compressive strength, although the flexural strength decreases to some extent, so in any case, grain refinement is considered to be an effective means of improving properties.

また一方、ドリル、エンドミル、タツプなど回
転工具で鋼を比較的低速度において切削すると
き、工具切刃にいわゆる「構成刃先」が生成する
ことはよく知られている。通常の超硬合金を用い
ると該構成刃先が工具切刃に付着し、切削時間の
経過と共に生成脱落を繰返し超硬工具切刃は繰返
し応力を受け、遂にはチツピングを生ずる。この
現象については、主として工具と鋼との摩擦力、
反応性の小さい材料が好ましいことが本発明者ら
の研究により明らかとなつた。特に溶着性欠損に
ついては切削速度が低い時に生じ易く、特に回転
工具のうち、中心にも切刃を有する場合は、前記
工具切刃の中心は速度が0m/分で外周切刃に移
行するにつれて切削速度が増大し切刃の部分毎に
構成刃先の大きさが異なり切刃が受ける応力も変
化する。したがつて、回転工具切刃のうち中心部
の切刃のみが溶着性欠損を生じ使用不能に到る場
合が多い。
On the other hand, it is well known that when cutting steel at relatively low speeds with rotating tools such as drills, end mills, taps, etc., a so-called "built-up edge" is generated on the cutting edge of the tool. When a normal cemented carbide is used, the built-up cutting edge adheres to the cutting edge of the tool, and as the cutting time passes, it repeatedly forms and falls off, and the cutting edge of the cemented carbide tool is subjected to repeated stress, eventually causing chipping. This phenomenon is mainly caused by the frictional force between the tool and the steel.
The research conducted by the present inventors has revealed that materials with low reactivity are preferable. In particular, welding defects are more likely to occur when the cutting speed is low, and especially when a rotary tool has a cutting edge at the center, the center of the tool cutting edge changes as the speed moves to the outer cutting edge at a speed of 0 m/min. As the cutting speed increases, the size of the constituent cutting edge differs for each part of the cutting edge, and the stress that the cutting edge receives also changes. Therefore, only the central cutting edge of the rotating tool often suffers from welding defects and becomes unusable.

以上のことから、回転工具用材料としては、(1)
切刃に繰返し応力が作用しても耐え得るだけの強
靭性を有すること、(2)構成刃先が生じにくいこと
の二つの要因を満足することが必要である。
From the above, as materials for rotating tools, (1)
It is necessary to satisfy the following two factors: (2) the cutting edge must have enough toughness to withstand even when repeated stress is applied, and (2) built-up edges are unlikely to occur.

本発明者らは上記(1)および(2)の条件を満たす材
料の開発に努めた結果、超微粒合金がこれらの条
件を満足し、特に(Mo、W)C基合金が従来の
WC基合金よりも焼結時の粒成長抑制効果を有す
るため、従来のWC基合金では得られなかつた微
粒硬質相を持つた合金の製造が可能であることを
見出した。
As a result of our efforts to develop materials that satisfy the conditions (1) and (2) above, the present inventors found that ultrafine-grained alloys satisfy these conditions, and in particular, (Mo, W)C-based alloys are superior to conventional materials.
It has been found that because this alloy has a grain growth suppressing effect during sintering better than that of WC-based alloys, it is possible to produce alloys with fine-grained hard phases that cannot be obtained with conventional WC-based alloys.

本発明はこの発見に基ずくものであつて、1種
もしくはそれ以上のモリブデンおよびタングステ
ンの複合炭化物、または該炭化物中の金属成分の
30モル%以下を周期律表Va族金属の少くとも1
種で置換したものからなり、それらの結晶構造が
単純ヘキサゴナル型のMC〔M:金属、C:炭素〕
タイプの化合物である硬質相を主成分とし、該硬
質相は1〜60重量%の鉄族金属で結合され、平均
粒径が0.5μ以下であり、かつマトリツクスに均一
に分散した超微粒超硬合金である。
The present invention is based on this discovery, and comprises a composite carbide of one or more molybdenum and tungsten, or a metal component in the carbide.
30 mol% or less of at least 1 group Va metal of the periodic table
MC consisting of substituted species and whose crystal structure is a simple hexagonal type [M: metal, C: carbon]
The main component is a hard phase that is a type of compound, the hard phase is bonded with 1 to 60% by weight of iron group metal, the average particle size is 0.5μ or less, and ultrafine carbide particles are uniformly dispersed in the matrix. It is an alloy.

従来のWC−Co系超硬合金では、微粒合金を製
造する場合、炭化物および合金粉末の製造条件を
調整することにより微細な炭化物を生じさせ焼結
するのであるが、液相焼結特有の溶解析出反応に
より微細な粒子が液相中に溶解し粗大な粒子の周
囲に再析出するという現象が律速となり粗成長を
避けることができない。このことは第1図のWC
−Co基合金の組織写真より明らかである。aは
液相を介しない比較的低温での固相焼結時の組織
写真であり、bは液相を介した焼結による合金の
組織写真であり、aに比べWC粒が粗大化してい
るのが観察される。
In conventional WC-Co cemented carbide, when manufacturing fine-grained alloys, fine carbides are generated and sintered by adjusting the manufacturing conditions of carbides and alloy powder, but the melting process unique to liquid phase sintering The rate-determining phenomenon in which fine particles dissolve in the liquid phase and re-precipitate around coarse particles due to the precipitation reaction becomes rate-determining, and coarse growth cannot be avoided. This is true for WC in Figure 1.
-This is clear from the microstructure photograph of the Co-based alloy. Figure a is a photograph of the structure during solid phase sintering at a relatively low temperature without involving a liquid phase, and Figure b is a photograph of the structure of the alloy obtained by sintering through a liquid phase, where the WC grains are coarser than in a. is observed.

ところが、本発明者らは(Mo、W)C基合金
につき焼結現象を詳細に研究した結果驚くべき知
見を得るに至り本発明を完成したのである。すな
わち、(Mo、W)C基合金は通常のWC基合金に
見られるような溶解析出反応型のオストワルドワ
イプニングによる炭化物の粒成長は液相出現時に
も殆んど起らず、あたかも拡散律速型のしかも速
度の遅い粒成長しか示さないという事実を発見す
るに至つた。この現象は第2図の(Mo、W)C
基合金の組織写真より明らかである。併せて本発
明者らはWC基合金と(Mo、W)C基合金のこ
の決定的な焼結メカニズムの違いは微粒合金でも
全く同様であることも実験により確認した。
However, as a result of detailed research into the sintering phenomenon of (Mo, W)C-based alloys, the present inventors obtained surprising findings and completed the present invention. In other words, in (Mo, W)C-based alloys, grain growth of carbides due to Ostwald wiping of the solution precipitation reaction type, which is observed in normal WC-based alloys, hardly occurs even when the liquid phase appears, and it is as if diffusion-limited. We have discovered that the grains grow only in a pattern and at a slow rate. This phenomenon is shown in Figure 2 (Mo, W)C
This is clear from the microstructure photograph of the base alloy. In addition, the present inventors also confirmed through experiments that this crucial difference in sintering mechanism between the WC-based alloy and the (Mo,W)C-based alloy is exactly the same in the fine-grained alloy.

本発明の合金において、鉄族金族(Fe、Co、
Ni)を1〜60重量%に限定した理由は、1重量
%未満では脆すぎ、60重量%を超えると焼結性や
高温特性が悪化するからである。また炭化物の平
均粒径は0.5μ以下、特に0.1μ〜0.3μとするが、こ
れは0.5μを超えると微粒合金特有の刃立性および
強度が低下するからである。また硬質相中のMo
とWのモル比は5≦Mo/Mo+W≦95%とするのが 好ましいが、これはMo/Mo+W<5ではMoの効果 が何ら表れず実質的にはWC基合金と変らないか
らであり、Mo/Mo+W>95ではWC特有の単純ヘキ サゴナル型の固溶体が形成されにくく、また合金
とした場合の焼結性が悪化するからである。
In the alloy of the present invention, iron group metals (Fe, Co,
The reason why Ni) is limited to 1 to 60% by weight is that if it is less than 1% by weight, it is too brittle, and if it exceeds 60% by weight, the sinterability and high temperature properties deteriorate. Further, the average grain size of the carbide is set to 0.5μ or less, particularly 0.1μ to 0.3μ, because if it exceeds 0.5μ, the sharpness and strength characteristic of fine-grained alloys will decrease. Also, Mo in the hard phase
It is preferable that the molar ratio of and W is 5≦Mo/Mo+W≦95%, because when Mo/Mo+W<5, no effect of Mo appears and it is essentially the same as the WC-based alloy. This is because when Mo/Mo+W>95, it is difficult to form a simple hexagonal type solid solution peculiar to WC, and the sinterability when made into an alloy deteriorates.

さらに本発明の合金の硬質相の金属部分
(Mo、W)の30モル%以下を周期律表a族お
よびVa族金属の少くとも1種で置換しても本発
明による分散炭化物相の微粒化による実用上の特
徴(例えば、耐チツピング性、耐溶着性)は何ら
失なわれない。しかしこの置換量が30モル%を超
えると強度が低下するので実用には供せない。ま
た鉄族元素中にVa、a族の硬質相形成元素が
固溶するのは当然の現象であり本発明の思想を変
えるものではない。本合金を実用に供するため
に、発明者らはテイムケン式摩擦試験機により
WC基及び(Mo、W)C基微粒合金の動摩擦係
数を測定した。その結果、本発明の合金はWC−
Co合金に比べて50%以上摩擦係数が減少した
(第3図)。これからも本発明の合金が回転工具用
材料として供するための必須条件である、鋼との
摩擦力、反応性の小さい材料として従来のWC基
の微粒合金よりも優れていることが判明した。
Further, even if 30 mol% or less of the metal portion (Mo, W) of the hard phase of the alloy of the present invention is replaced with at least one metal of group A or Va of the periodic table, the dispersed carbide phase can be atomized according to the present invention. The practical characteristics (for example, chipping resistance, welding resistance) are not lost at all. However, if the amount of substitution exceeds 30 mol%, the strength decreases and it cannot be put to practical use. Further, it is a natural phenomenon that hard phase forming elements of Va and a groups are dissolved in iron group elements, and does not change the idea of the present invention. In order to put this alloy into practical use, the inventors conducted a Teimken friction tester.
The dynamic friction coefficients of WC-based and (Mo, W)C-based fine grain alloys were measured. As a result, the alloy of the present invention has WC-
The friction coefficient was reduced by more than 50% compared to Co alloy (Figure 3). It has been found that the alloy of the present invention is superior to conventional WC-based fine-grained alloys as a material with low frictional force and low reactivity with steel, which are essential conditions for the alloy to be used as a material for rotating tools.

本発明品の有効なる用途は必ずしもドリル、エ
ンドミル、タツプなどの回転工具に限られるわけ
ではないが、前述した如く、鋼を低速度で切削す
る切刃には構成刃先が生成、脱落をくりかえす
が、本発明品においては特に構成刃先の影響を受
けにくい特徴を有するため、有効である。
The effective use of the product of the present invention is not necessarily limited to rotating tools such as drills, end mills, taps, etc. However, as mentioned above, built-up edges repeatedly form and fall off on cutting edges that cut steel at low speeds. This is particularly effective in the product of the present invention because it has a characteristic that it is not easily affected by the built-up cutting edge.

以下実施例により本発明をさらに詳細に説明す
る。
The present invention will be explained in more detail with reference to Examples below.

実施例 1 平均粒径1μの(Mo0.7W0.3)C85重量%を12重
量%ニツケルと3重量%のコバルトを湿式ボール
ミルにて120時間混合後、乾燥しパラフイン2%
投入した粉末を8mm径ドリルに成型した後1400℃
にて真空焼成した。この合金の硬質相の平均粒径
を市販のイメージアナライザーで測定したところ
0.3μであつた。このようにして作成した本発明ド
リルは市販高速度鋼SKH9種、及び市販超微粒超
硬合金の3者で鋼S45C、30mm厚さの鋼板にて寿
命試験を行なつた。
Example 1 12% by weight of nickel and 3% by weight of cobalt were mixed by weight of (Mo 0.7 W 0.3 )C85 with an average particle size of 1μ for 120 hours in a wet ball mill, then dried and mixed with 2% paraffin.
After molding the powder into an 8mm diameter drill, it is heated to 1400℃.
Baked in vacuum. The average grain size of the hard phase of this alloy was measured using a commercially available image analyzer.
It was 0.3μ. The drill of the present invention thus produced was subjected to a life test using a commercially available high-speed steel SKH9 type and a commercially available ultra-fine grained cemented carbide, S45C steel, and a 30 mm thick steel plate.

ドリル外周切削速度15m/min、送り0.1mm/
rev乾式切削条件で、SKH9種では40穴、超微粒
合金では85穴加工出来たのに対し、本発明品は
156穴加工し、しかも未だ切削可能な切刃を有し
ていた。
Drill peripheral cutting speed 15m/min, feed 0.1mm/
Under rev dry cutting conditions, 40 holes could be machined with the SKH9 type and 85 holes could be machined with the ultrafine-grained alloy, but the product of the present invention
It had 156 holes drilled and still had a cutting edge that could be cut.

比較例 平均粒径3μの(Mo0.7W0.3)C85重量%をニツ
ケル粉末12重量%およびコバルト粉末3重量%と
共に湿式ボールミルに入れ48時間混合後乾燥し、
次いでパラフイン2重量%と混合したものを8mm
径ドリルに成形した後1400℃で真空焼成した。こ
の合金の硬質相の平均粒径を市販のイメージアナ
ライザーで測定したところ0.8μであつた。このよ
うにして作成した本発明のドリルを実施例1と同
じ寿命試験に供したところ72穴加工したところで
寿命となつた。
Comparative Example 5% by weight of (Mo 0.7 W 0.3 )C with an average particle size of 3μ was placed in a wet ball mill with 12% by weight of nickel powder and 3% by weight of cobalt powder, mixed for 48 hours, and then dried.
Next, 8 mm of the mixture with 2% by weight of paraffin
After forming into a diameter drill, it was vacuum fired at 1400℃. The average grain size of the hard phase of this alloy was measured with a commercially available image analyzer and was found to be 0.8μ. When the drill of the present invention thus produced was subjected to the same life test as in Example 1, its life reached its end after drilling 72 holes.

実施例 2 実施例1にて使用した粉末より千鳥刃サイドカ
ツター用インサートを作成しホールダーに20枚装
置し在来の超微粒合金及びハイスと比較テストを
行なつた。被削材はS55Cを使用し、切削条件は
速度50m/min送り0.10mm/刃を選んだ。工具寿
命としては機械主軸のビビリ発生までの切削溝数
により判定した。その結果、在来の超微粒合金で
は280ハイスでは240の寿命を示したのに対し、本
発明合金は475にて寿命となつた。
Example 2 Inserts for staggered side cutters were made from the powder used in Example 1, 20 inserts were placed in a holder, and a comparison test was conducted with conventional ultrafine grain alloys and high speed steel. The work material used was S55C, and the cutting conditions were a speed of 50 m/min and a feed of 0.10 mm/tooth. Tool life was determined by the number of cutting grooves until chatter occurred in the machine spindle. As a result, while the conventional ultrafine-grained alloy showed a life of 240 at 280 HSS, the alloy of the present invention reached its life at 475.

実施例 3 平均粒径1μの(Mo0.7W0.3)Cを75重量%、平
均粒径2μのTaC7重量%、平均粒径2μのNbC5重
量%を13重量%のコバルトと実施例1の方法にて
合金粉末を作成した。この合金の硬質相の平均粒
径を市販のイメージアナライザーで測定したとこ
ろ0.2μであつた。8φ2枚刃で右刃右ネジし25゜のソ
リツドエンドミルを成型した後1425℃にて真空焼
成した。被削材はSCM3で切削速度26.5m/min
(1060rpm)送り速度55mm/min切り込み6mmに
てテストし、在来の超微粒合金及びハイスと比較
した。VBが0.15mmに到るまでの溝切り長さを測定
したところ、在来の超微粒合金では27m、ハイス
では4.5mであつたが、本発明合金は48mにてVB
が0.15mmに達した。
Example 3 Using the method of Example 1, 75% by weight of (Mo 0.7 W 0.3 )C with an average particle size of 1μ, 7% by weight of TaC with an average particle size of 2μ, 5% by weight of NbC with an average particle size of 2μ, and 13% by weight of cobalt. An alloy powder was prepared. The average grain size of the hard phase of this alloy was measured with a commercially available image analyzer and was found to be 0.2μ. A 25° solid end mill with 8φ 2-flute right-handed screws was molded and then vacuum fired at 1425°C. The work material is SCM3 and the cutting speed is 26.5m/min.
(1060rpm) A test was conducted at a feed rate of 55mm/min and a cutting depth of 6mm, and comparison was made with conventional ultrafine grain alloys and high speed steel. When we measured the length of grooving until V B reached 0.15 mm, it was 27 m for conventional ultrafine grained alloys and 4.5 m for high speed steel, but the inventive alloy had V B of 48 m.
reached 0.15mm.

【図面の簡単な説明】[Brief explanation of the drawing]

添付の第1図a,bはそれぞれWC基合金の固
相焼結、液相焼結における組織の顕微鏡写真を示
し、第2図a,bはそれぞれ(Mo、W)C基合
金の固相焼結、液相焼結における組織の顕微鏡写
真を示し、第3図はテイムケン式摩擦試験機によ
り測定した従来の超微粒超硬合金Aと本発明合金
Bの動摩擦係数である。
Attached Figures 1a and b show micrographs of the structure in solid phase sintering and liquid phase sintering of a WC-based alloy, respectively, and Figures 2a and b show the solid phase of a (Mo, W)C-based alloy, respectively. A microscopic photograph of the structure during sintering and liquid phase sintering is shown, and FIG. 3 shows the coefficient of dynamic friction of the conventional ultrafine cemented carbide A and the alloy B of the present invention measured using a Teimken friction tester.

Claims (1)

【特許請求の範囲】 1 1種もしくはそれ以上のモリブデンおよびタ
ングステンの複合炭化物、または該炭化物中の金
属部分の30モル%以下を周期律表Va族の金属の
少なくとも1種で置換したものからなり、それら
の結晶構造が単純ヘキサゴナル型のMC(M:金
属;C:炭素)タイプの化合物である硬質相を主
成分とし、該硬質相は1〜60重量%の鉄族金属で
結合され、平均粒径が0.5μ以下であり、かつマト
リツクスに均一に分散した超微粒超硬合金からな
る回転切削用工具。 2 硬質相中の金属部分におけるモリブデンの占
める割合が5〜95モル%である特許請求の範囲1
の工具。
[Claims] 1 Comprising one or more composite carbides of molybdenum and tungsten, or 30 mol% or less of the metal portion in the carbide replaced with at least one metal of group Va of the periodic table. , their crystal structure is a simple hexagonal MC (M: metal; C: carbon) type compound as a main component, and the hard phase is bonded with 1 to 60% by weight of iron group metals, and the average A rotary cutting tool made of ultra-fine cemented carbide with a grain size of 0.5μ or less and uniformly dispersed in a matrix. 2 Claim 1 in which the proportion of molybdenum in the metal part in the hard phase is 5 to 95 mol%
tools.
JP3878381A 1981-03-19 1981-03-19 Extra fine grained alloy tool for rotary cutting Granted JPS57155342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3878381A JPS57155342A (en) 1981-03-19 1981-03-19 Extra fine grained alloy tool for rotary cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3878381A JPS57155342A (en) 1981-03-19 1981-03-19 Extra fine grained alloy tool for rotary cutting

Publications (2)

Publication Number Publication Date
JPS57155342A JPS57155342A (en) 1982-09-25
JPS6330980B2 true JPS6330980B2 (en) 1988-06-21

Family

ID=12534887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3878381A Granted JPS57155342A (en) 1981-03-19 1981-03-19 Extra fine grained alloy tool for rotary cutting

Country Status (1)

Country Link
JP (1) JPS57155342A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258446A (en) * 1984-06-04 1985-12-20 Toshiba Tungaloy Co Ltd Sintered alloy

Also Published As

Publication number Publication date
JPS57155342A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
US4231762A (en) Method of producing a sintered diamond compact
EP0374358B1 (en) High strength nitrogen-containing cermet and process for preparation thereof
JP4662599B2 (en) Manufacturing method of submicron cemented carbide with increased toughness
US4145213A (en) Wear resistant alloy
EP0598140B1 (en) Cubic boron nitride-base sintered ceramics for cutting tool
JP6703757B2 (en) Cermet and cutting tool
JP5902613B2 (en) Cemented carbide tool
JP2000514722A (en) Cemented carbide inserts for turning, milling and drilling
JPH11302767A (en) Cemented carbide excellent in mechanical characteristic and its production
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP3612966B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JPS6330980B2 (en)
JPH0346538B2 (en)
JPH0681072A (en) Tungsten carbide base sintered hard alloy
JP3950229B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JP5008789B2 (en) Super hard sintered body
JP2757469B2 (en) Tungsten carbide based cemented carbide end mill
JP2017148895A (en) Wc-based cemented carbide drill excellent in breakage resistance
JPS6176645A (en) Tungsten carbide-base sintered hard alloy
JP2503770B2 (en) Tungsten carbide based cemented carbide for cutting tools
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JPS61194148A (en) Sintered hard alloy of super fine grains
JP3878334B2 (en) Cemented carbide and coated cemented carbide
JPS61124548A (en) Ultrafine particle sintered hard alloy
JPS6245295B2 (en)