JPS63309772A - Ignition timing control device for internal combustion engine - Google Patents

Ignition timing control device for internal combustion engine

Info

Publication number
JPS63309772A
JPS63309772A JP14614087A JP14614087A JPS63309772A JP S63309772 A JPS63309772 A JP S63309772A JP 14614087 A JP14614087 A JP 14614087A JP 14614087 A JP14614087 A JP 14614087A JP S63309772 A JPS63309772 A JP S63309772A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
pressure
ignition timing
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14614087A
Other languages
Japanese (ja)
Inventor
Hisashi Iida
寿 飯田
Norio Omori
大森 徳郎
Hidehiko Inoue
英彦 井上
Hachiro Sasakura
笹倉 八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP14614087A priority Critical patent/JPS63309772A/en
Publication of JPS63309772A publication Critical patent/JPS63309772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To make the maximum torque obtainable without the occurrence of knocking by providing a compensating means for intake temperature in a cylinder to compensate ignition timing within a knocking limit which fluctuates according to change in the intake air quantity or the like of an internal combustion engine. CONSTITUTION:A control device has means 100-300 for detecting the intake air quantity of an internal combustion engine 1, pressure in an intake pipe 2 mounted downstream from a throttle valve 4 and the number of revolutions of the internal combustion engine 1 respectively, and moreover a means 400 for computing the ignition timing of the internal combustion engine 1 on each of detecting signals issued from the means 100-300. In addition to that, the above formation is provided with a compensating means 500 for intake temperature in a cylinder to compensate the ignition timing computed by the means 400 within a knocking limit which fluctuates according to change in the intake air quantity of the internal combustion engine 1 or pressure in the intake pipe 2. Thus, when the intake air in a cylinder 9 of the internal combustion engine 1 changes in its temperature, the ignition timing can be therefore compensated to value compensated for the above-mentioned temperature change.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は内燃機関の点火時期制御装置に係り、詳しくは
内燃機関の吸気管圧力と機関回転数とに応じて点火時期
の調節を行う点火時期制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to an ignition timing control device for an internal combustion engine, and more specifically, to an ignition timing control device for an internal combustion engine, and more specifically, for adjusting the ignition timing according to the intake pipe pressure and engine speed of the internal combustion engine. This invention relates to an ignition timing control device that performs the following.

(従来の技術) 内燃機関の点火時期制御ではノンキングが発生せず、し
かも発生トルクが最大となるように点火進角を調節する
ことが必要である。このため、従来の点火時期制御装置
として、スロソトルハルブよりも下流の吸気管圧力値を
検出する圧力センサと、機関回転数を検出する回転検出
センサとを備え、両センサからの検出信号に応じて点火
時期を進角又は遅角させるようにしたものがあった。そ
して、この構成では、例えば内燃機関の回転数が一定で
あって、低負荷から高負荷に移行する過渡運転状態、即
ち、第6図falに実線で示すように吸気管圧力値PM
が急激に変化する場合には、最終進角値θは第6図1f
lに鎖線で示すように前記圧力値PMの変化に対応して
一義的に決められていた。
(Prior Art) In the ignition timing control of an internal combustion engine, it is necessary to adjust the ignition advance angle so that non-king does not occur and the generated torque is maximized. For this reason, conventional ignition timing control devices are equipped with a pressure sensor that detects the intake pipe pressure value downstream of the throttle valve, and a rotation detection sensor that detects the engine speed, and the ignition timing is activated according to the detection signals from both sensors. There were some that advanced or retarded the timing. In this configuration, for example, when the rotational speed of the internal combustion engine is constant and the transient operating state changes from low load to high load, the intake pipe pressure value PM is changed as shown by the solid line in FIG.
If the value changes rapidly, the final advance value θ is as shown in Fig. 6 1f.
As shown by the chain line in 1, it is uniquely determined in response to the change in the pressure value PM.

その結果、発生トルクは第6図1flに鎖線で示すよう
になる。
As a result, the generated torque becomes as shown by the chain line in FIG. 6, 1fl.

又、内燃機関の吸気管圧力値と機関回転数とを一定にし
た場合、吸入空気温度が低いときにはノンキングが発生
しない点火進角値であっても、吸入空気温度が高いとき
にはその点火進角値がノッキングを発生する値となる場
合があるため、上記構成に加えて、インテークバルブ上
流にて吸入空気温度を検出する温度検出センサを設け、
前記点火進角値をインテークバルブ上流の吸入空気温度
に応じて補正するようにしたものが、特開昭57〜59
060号公報において開示されている。この構成におい
ても、第6図falに実線で示すように吸気管圧力値P
Mが急激に変化する場合には、最終進角値θは第6図(
e)に鎖線で示すように前記圧力値PMの変化に対応し
て一義的に決められ、発生トルクは第6図(flに鎖線
で示すようになる。
Furthermore, when the intake pipe pressure value and engine speed of an internal combustion engine are held constant, even if the ignition advance value does not cause non-king when the intake air temperature is low, the ignition advance value will change when the intake air temperature is high. may be a value that causes knocking, so in addition to the above configuration, a temperature detection sensor is installed upstream of the intake valve to detect the intake air temperature.
A device in which the ignition advance value is corrected according to the intake air temperature upstream of the intake valve is disclosed in Japanese Patent Application Laid-open No. 57-59.
It is disclosed in Japanese Patent No. 060. Even in this configuration, the intake pipe pressure value P
When M changes rapidly, the final advance angle value θ is as shown in Figure 6 (
As shown by the chain line in e), it is uniquely determined in response to the change in the pressure value PM, and the generated torque becomes as shown by the chain line in FIG. 6 (fl).

(発明が解決しようとする問題点) ところが、上記過渡運転状態、即ち、第6図Fa)に実
線で示すように吸気管圧力が急激に変化する場合におい
て、シリンダ内吸入空気温度は第6図fd)に示すよう
に前記吸気管圧力の急激な変化に対して一次遅れとなる
緩やかな上昇となっている。
(Problem to be Solved by the Invention) However, in the above transient operating state, that is, when the intake pipe pressure changes rapidly as shown by the solid line in Figure 6 Fa), the cylinder intake air temperature changes as shown in Figure 6. As shown in fd), there is a gradual increase that is a first-order lag with respect to the sudden change in the intake pipe pressure.

従って、前記のように、最終進角値を第6図1flに鎖
線で示すように急激に遅角させることは、ノンキングの
発生はないが、この過渡運転状態における出力アンプを
図ることができないという問題点がある。
Therefore, as mentioned above, by rapidly retarding the final advance value as shown by the chain line in Figure 6, 1fl, although non-king will not occur, it will not be possible to improve the output amplifier in this transient operating state. There is a problem.

又、特開昭57−59060号公報に示す構成は、イン
テークバルブ上流の吸入空気温度が所定温度と比較して
高いか低いかにより、内燃機関の点火進角値を補正する
ものであって、やはり過渡運転状態における出力アンプ
を図ることはできない。
Further, the configuration shown in Japanese Patent Application Laid-Open No. 57-59060 corrects the ignition advance value of the internal combustion engine depending on whether the intake air temperature upstream of the intake valve is higher or lower than a predetermined temperature. After all, it is not possible to achieve output amplification during transient operating conditions.

本発明は上記問題点を解決するためになされたものであ
って、その目的は内燃機関の吸入空気流量若しくは吸気
管圧力の変化に応じて変動するノッキング限界の範囲内
で点火時期を進角又は遅角し、最大トルクを発生させる
ことができる内燃機関の点火時期制御装置を提供するこ
とにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to advance or advance the ignition timing within the range of the knocking limit that varies according to changes in the intake air flow rate or intake pipe pressure of the internal combustion engine. An object of the present invention is to provide an ignition timing control device for an internal combustion engine that can retard the ignition timing and generate maximum torque.

発明の構成 (問題点を解決するための手段) 本発明は前記目的を達成するためになされたものであっ
て、第1図に示すように内燃機関1の吸入空気流量を検
出する空気流量検出手段100若しくはスロソトルハル
プ下流の吸気管圧力を検出する圧力検出手段200と、
内燃機関1の回転数を検出する回転検出手段300と、
前記空気流量検出手段100若しくは圧力検出手段20
0及び前記回転検出手段300のそれぞれの検出信号に
基づいて点火時期を算出する演算手段400とを備えた
内燃機関の点火時期制御装置において、演算手段400
は、内燃機関1の吸入空気流量若しくは吸気管圧力の変
化に応じて変動するノンキング限界の範囲内で前記点火
時期を補正するシリンダ内吸気温度補正手段500を備
えた内燃機関の点火時期制御装置を要旨とする。
Structure of the Invention (Means for Solving Problems) The present invention has been made to achieve the above object, and includes an air flow rate detection method for detecting the intake air flow rate of an internal combustion engine 1 as shown in FIG. a pressure detection means 200 for detecting the intake pipe pressure downstream of the means 100 or Slosotorhalp;
a rotation detection means 300 for detecting the rotation speed of the internal combustion engine 1;
The air flow rate detection means 100 or the pressure detection means 20
0 and a calculation means 400 for calculating the ignition timing based on respective detection signals of the rotation detection means 300, the calculation means 400
provides an ignition timing control device for an internal combustion engine, which includes an in-cylinder intake air temperature correction means 500 that corrects the ignition timing within a non-king limit that varies according to changes in the intake air flow rate or intake pipe pressure of the internal combustion engine 1. This is the summary.

(作用) 従って、内燃機関1の吸入空気流量若しくは吸気管圧力
、及び内燃機関1の回転数に基づいて演算手段400に
より基本進角値が算出され、シリンダ内吸気温度補正手
段500により内燃機関1の吸入空気流量若しくは吸気
管圧力の変化に応じて変動するノッキング限界の範囲内
で前記基本進角値が補正される。このため、吸入空気流
量若しくは吸気管圧力の変動に基づいて内燃機関1のシ
リンダ内の吸入空気温度の変化が生じても、点火時期、
即ち点火進角値がこの温度変化を補償した値に補正され
、ノッキング限界の範囲内で出力アツブを図ることがで
きる。
(Function) Therefore, the basic advance value is calculated by the calculation means 400 based on the intake air flow rate or intake pipe pressure of the internal combustion engine 1 and the rotation speed of the internal combustion engine 1, and the cylinder intake air temperature correction means 500 calculates the basic advance value of the internal combustion engine 1. The basic advance angle value is corrected within the range of the knocking limit, which varies according to changes in the intake air flow rate or intake pipe pressure. Therefore, even if the intake air temperature inside the cylinder of the internal combustion engine 1 changes due to changes in the intake air flow rate or intake pipe pressure, the ignition timing
That is, the ignition advance value is corrected to a value that compensates for this temperature change, making it possible to increase the output within the knocking limit.

(実施例) 以下、本発明を具体化した一実施例を図面に従って説明
する。
(Example) An example embodying the present invention will be described below with reference to the drawings.

第2図は本発明を通用した内燃機関の点火時期制御装置
全体を示し、内燃機関1には吸気管2が接続され、吸気
管2内の途中には運転者のアクセル操作に応じて回動す
るスロットルバルブ4が設けられている。又、吸気管2
にはスロットルバルブ4の下流側の空気の圧力値を検出
する圧力検出手段としての圧力センサ3が設けられてい
て、その出力は点火時期の演算手段、及び圧力なまし値
算出手段と圧力差算出手段とを含むシリンダ内吸気温度
補正手段としての電子制御回路(以下、ECUという)
6に入力されるようになっている。
FIG. 2 shows the entire ignition timing control system for an internal combustion engine according to the present invention. An intake pipe 2 is connected to the internal combustion engine 1, and a portion inside the intake pipe 2 rotates in response to the driver's accelerator operation. A throttle valve 4 is provided. Also, intake pipe 2
A pressure sensor 3 is provided as a pressure detection means for detecting the pressure value of the air downstream of the throttle valve 4, and its output is used as an ignition timing calculation means, a pressure smoothing value calculation means, and a pressure difference calculation means. an electronic control circuit (hereinafter referred to as ECU) as a cylinder intake air temperature correction means including means;
6.

スロットルバルブ4には吸入空気流量を検出する流量検
出手段としてのスロットルポジションセンサ5が設けら
れ、前記スロットルバルブ4の開度に応じた電気信号を
前記ECU6に出力するようになっている。又、スロッ
トルバルブ4の上流の吸気管2の入口にはエアクリーナ
7が設けられ、エアクリーナ7にはスロットルバルブ4
上流の吸入空気温度を検出する温度検出手段としての吸
気温センサ8が取付けられている。吸気温センサ8はエ
アクリーナ7を通して吸入される吸入空気温度に応じた
電気信号を前記ECU6に出力するようになっている。
The throttle valve 4 is provided with a throttle position sensor 5 as a flow rate detection means for detecting the flow rate of intake air, and is adapted to output an electric signal according to the opening degree of the throttle valve 4 to the ECU 6. Further, an air cleaner 7 is provided at the inlet of the intake pipe 2 upstream of the throttle valve 4, and the air cleaner 7 is provided with the throttle valve 4.
An intake air temperature sensor 8 is attached as a temperature detection means for detecting the upstream intake air temperature. The intake air temperature sensor 8 outputs an electric signal corresponding to the temperature of intake air taken in through the air cleaner 7 to the ECU 6.

内燃機関1のシリンダ9の外壁には冷却水温を検出して
この検出値をECU6に出力する水温センサ10が設け
られている。又、内燃機関1のカム軸に取付けられたデ
ィストリビュータ11には、同機関1の回転数NBを検
出する回転検出手段としての回転角センサ12とクラン
ク角センサ13が取着されており、回転角センサ12は
内燃機関1のクランク軸の30度回転毎に、クランク角
センサ13は1−80度回転毎に所定のクランク角度位
置でそれぞれ1パルスを出力するものであり、これらの
パルスも又前記ECU6に入力されるようになっている
A water temperature sensor 10 is provided on the outer wall of the cylinder 9 of the internal combustion engine 1 to detect the temperature of cooling water and output the detected value to the ECU 6. Further, a rotation angle sensor 12 and a crank angle sensor 13 are attached to the distributor 11 attached to the camshaft of the internal combustion engine 1 as rotation detection means for detecting the rotation speed NB of the engine 1. The sensor 12 outputs one pulse at a predetermined crank angle position every 30 degree rotation of the crankshaft of the internal combustion engine 1, and the crank angle sensor 13 outputs one pulse at a predetermined crank angle position every 1 to 80 degree rotation of the crankshaft of the internal combustion engine 1. It is designed to be input to the ECU6.

シリンダ9に設けられたインテークパルプ14と前記ス
ロットルバルブ4との間には、インジェクタ15が各気
筒毎に設けられており、各インジェクタ15は前記EC
U6から出力される噴射信号により各シリンダ9内に燃
料を噴射するようになっている。
An injector 15 is provided for each cylinder between the intake pulp 14 provided in the cylinder 9 and the throttle valve 4, and each injector 15 is connected to the EC
Fuel is injected into each cylinder 9 based on the injection signal output from U6.

前記ECU6は、内燃機関1の運転状態において、その
時の吸気管圧力値PMと機関回転数NEとに基づいて、
基本進角値θ0を求めるようになっている。
The ECU 6, in the operating state of the internal combustion engine 1, based on the intake pipe pressure value PM and the engine speed NE at that time,
The basic advance angle value θ0 is determined.

又、前記ECU6は、例えば第6図(alに実線で示す
ように急激に上昇変化する吸気管圧力値PMを、第6図
(81に鎖線で示すように一次遅れとなる緩やかな上昇
変化になまし、その圧力なまし値PMNに基づいて前記
圧力値PMの上昇変化に対する実際のシリンダ内吸入空
気温度T(第6図(d+に示す)を割り出し、割り出し
たこのシリンダ内吸入空気温度Tに基づいてノッキング
限界の範囲内で第6図fe)に実線で示す最終進角値θ
を算出するようになっている。
Further, the ECU 6 converts the intake pipe pressure value PM, which rapidly increases as shown by the solid line in FIG. Based on the pressure annealing value PMN, the actual cylinder intake air temperature T (shown in Figure 6 (d+)) for the increase in the pressure value PM is determined, and the cylinder intake air temperature T determined is Based on the final advance angle value θ shown by the solid line in Fig. 6 (fe) within the range of the knocking limit.
is designed to be calculated.

即ち、第6図(elに実線で示す最終進角値θが、第6
図Fdlに示すシリンダ内吸入空気温度Tの変化に応じ
て変動し、又、このシリンダ内吸入空気温度Tは前記第
6図(alに実線で示す吸気管圧力値PMに対して一次
遅れた緩やかな上昇変化となるため、この吸気管圧力値
PMを第6図fatに鎖線で示すように前記シリンダ内
吸入空気温度Tと同様に緩やかな上昇変化になまし、こ
れにより第6図(elに示すように前記シリンダ内の吸
気温度Tを割り出し、その割り出した吸気温度Tに対す
る最終進角値θを決定しようとするものである。
That is, the final advance angle value θ shown by the solid line in FIG.
The cylinder intake air temperature T fluctuates according to changes in the cylinder intake air temperature T shown in Figure Fdl, and this cylinder intake air temperature T is gradually delayed by one order with respect to the intake pipe pressure value PM shown in the solid line in Figure 6 (al). As a result, the intake pipe pressure value PM becomes a gradual upward change as shown by the chain line in fat in Figure 6, similar to the cylinder intake air temperature T. As shown, the intake air temperature T in the cylinder is determined, and the final advance angle value θ for the determined intake air temperature T is determined.

そして、本実施例のECU6は、第6図(alに実線で
示す吸気管圧力値PMと鎖線で示す圧力なまし値PMN
との圧力差DPMに基づいて、予め用意された圧力差D
PMに対する温度変化へTのマツプから、第6図(c+
に示すようにその時々の前記シリンダ内吸入空気温度T
の変化ΔTを算出するようになっている。そして、EC
U6は第6図(C)に示すシリンダ内吸入空気温度Tの
変化ΔTと前記吸気温センサ8により検出された吸入空
気温度TM(第6図tb+に示す)とに基づき、ノソキ
ング限界の範囲内で前記基本進角値θ0を補正した最終
進角値θ(第6図(elに実線で示す)を算出するよう
になっている。
The ECU 6 of this embodiment has an intake pipe pressure value PM shown by a solid line in FIG. 6 (al) and a pressure smoothed value PMN shown by a chain line
A pressure difference D prepared in advance is based on the pressure difference DPM between
From the map of T to temperature change with respect to PM, Figure 6 (c+
As shown in the figure, the intake air temperature T in the cylinder at each time is
The change ΔT is calculated. And E.C.
U6 is within the exhaustion limit based on the change ΔT in the cylinder intake air temperature T shown in FIG. 6(C) and the intake air temperature TM detected by the intake air temperature sensor 8 (shown in FIG. 6 tb+). The final advance angle value θ (shown by the solid line in FIG. 6 (el)) is calculated by correcting the basic advance angle value θ0.

次に前記ECU6の電気的構成を第3図に基づいて詳細
に説明する。
Next, the electrical configuration of the ECU 6 will be explained in detail based on FIG. 3.

ECU6は上述した各センサにより検出された各信号を
制御プログラムに従って入力及び演算するとともに上述
した各機器を制御するための処理を行うCPU6 a、
制御プログラム及び初期データが予め記憶されているR
OM6b、ECU6に入力される各種信号や演算制御に
必要なデータが一時的に記憶されるRAM6C,内燃機
関1のキースイッチが運転者によりOFFされたのちの
内燃機関1の制御に必要な各種のデータをハソテリーに
よって記憶保持可能なハックアップRAM6d等を備え
ている。
The ECU 6 is a CPU 6 a that inputs and calculates each signal detected by each sensor described above according to a control program, and also performs processing for controlling each device described above.
R in which control programs and initial data are stored in advance
OM6b, RAM6C in which various signals input to the ECU6 and data necessary for calculation control are temporarily stored, various types of data necessary for controlling the internal combustion engine 1 after the key switch of the internal combustion engine 1 is turned OFF by the driver. It is equipped with a hack-up RAM 6d, etc., which can store and hold data by memory.

これらはコモンバス6eを介して入カポートロf、入出
カポ−トロg、出カポ−)6hに接続され、外部機器と
の入出力を行う。即ち、ECU6内には前記圧力センサ
3.水温センサ10.吸気1センサ8.スロットルポジ
ションセンサ5からの出力信号をそれぞれ保持するバッ
ファ61〜61が設けられるとともに、各センサからの
出力信号をCPU6aに選択的に出力するマルチプレク
サ6m及びその選択された出力信号をデジタル信号に変
換するA/D変換器6nが配設されている。これらの各
信号は入出カポ−)6gを介してCPLJ6aに入力さ
れる。又、ECU6は回転角センサ12及びクランク角
センサ13から出力される岡山力信号の波形を整形する
波形整形回路6pを備えている。両センサ12.13の
出力信号は入力ポートロfを介してCPU6 aに入力
される。さらにECU6は前記インジェクタ15及びイ
グナイタ16のための駆動回路6r、6sを備えており
、CPU6 aは出カポ−)6hを介して前記両駆動回
路6r、6sに制御信号を出力する。又、ECU6はク
ロック信号CKを送るクロック回路6tも備えている。
These are connected to an input port f, an input/output port g, and an output port 6h via a common bus 6e, and perform input/output with external equipment. That is, the pressure sensor 3. Water temperature sensor 10. Intake 1 sensor 8. Buffers 61 to 61 are provided to hold the output signals from the throttle position sensor 5, respectively, and a multiplexer 6m selectively outputs the output signal from each sensor to the CPU 6a, and a multiplexer 6m converts the selected output signal into a digital signal. An A/D converter 6n is provided. Each of these signals is input to the CPLJ 6a via an input/output capo 6g. Further, the ECU 6 includes a waveform shaping circuit 6p that shapes the waveform of the Okayama force signal output from the rotation angle sensor 12 and the crank angle sensor 13. The output signals of both sensors 12 and 13 are input to the CPU 6a via an input port f. Further, the ECU 6 includes drive circuits 6r and 6s for the injector 15 and igniter 16, and the CPU 6a outputs control signals to both drive circuits 6r and 6s via an output capacitor 6h. The ECU 6 also includes a clock circuit 6t that sends a clock signal CK.

そして、第4図に示すように、ECU6は制御プログラ
ムに従って前記圧力センサ3により検出される吸気管圧
力値PMと、前記回転角センサ12及びクランク角セン
サ13により検出される機関回転数NEに基づいて点火
時期を前記ROM6b内に予め用意されたマツプ(第4
図に示す)から検索し、基本進角値θ0を算出する。
As shown in FIG. 4, the ECU 6 is based on the intake pipe pressure value PM detected by the pressure sensor 3 and the engine speed NE detected by the rotation angle sensor 12 and crank angle sensor 13 according to the control program. The ignition timing is set using a map (No. 4) prepared in advance in the ROM 6b.
shown in the figure) to calculate the basic advance angle value θ0.

又、ECU6は前記圧力値PMの変化に基づい 。Further, the ECU 6 is based on the change in the pressure value PM.

て圧力差DPMを割り出し、この圧力差DPMに基づい
てシリンダ9内の吸気温度Tの変化ΔTをマツプ検索し
、この変化ΔTと前記吸気温センサ8により検出された
吸入空気温度TMとに基づいて最終進角値θを、次式■
に基づいて算出する。
The pressure difference DPM is determined based on this pressure difference DPM, the change ΔT in the intake air temperature T in the cylinder 9 is searched on a map, and based on this change ΔT and the intake air temperature TM detected by the intake air temperature sensor 8, The final advance angle value θ is calculated using the following formula■
Calculated based on.

θ−θO* f  (T)       ・・・ ■な
お、T=TM+Σ(ΔT) ここで、Σ(ΔT)は吸気管圧力値PMの変化開始時か
ら250m5毎に算出した温度変化ΔTの和である。
θ−θO* f (T) ... ■T=TM+Σ(ΔT) Here, Σ(ΔT) is the sum of temperature changes ΔT calculated every 250 m5 from the start of change in intake pipe pressure value PM. .

そして、ECU6はこの最終進角値θに基づいて前記駆
動回路6Sを駆動させ、イグナイタ16よりディストリ
ビュータ11を介して点火プラグ17に点火電流を通電
させるようになっている。
Then, the ECU 6 drives the drive circuit 6S based on this final advance value θ, and causes the ignition current to flow from the igniter 16 to the spark plug 17 via the distributor 11.

次に内燃機関1の最終進角値θを算出するために、この
ECU6により実行されるシリンダ吸入時の吸気温度T
の変化へTを演算する過程を第5図に基づいて説明する
Next, in order to calculate the final advance value θ of the internal combustion engine 1, the intake air temperature T at the time of cylinder intake is executed by this ECU 6.
The process of calculating T for the change in will be explained based on FIG.

今、内燃機関1が吸気管圧力値PMをPMO1吸入空気
温度TMをTMO、機関回転数NEを500rpmで、
点火進角値θ(=θ0)のアイドリング状態から、機関
回転数NEを50Orpmに保ったまま加速(低負荷か
ら高負荷に移行する過渡運転)状態、即ち、吸気圧PM
が第6図(alに実線で示すように急激に上昇変化する
場合に、この吸気管圧力値PMの値をなまして第6図f
d+に示すシリンダ内吸入空気温度Tと相似の波形を作
成するだめの演算過程を示している。
Now, internal combustion engine 1 has intake pipe pressure value PM as PMO1, intake air temperature TM as TMO, and engine speed NE as 500 rpm.
From the idling state with the ignition advance value θ (=θ0), the engine speed NE is accelerated while maintaining it at 50 rpm (transient operation from low load to high load), that is, the intake pressure PM
When the intake pipe pressure value PM changes rapidly as shown by the solid line in Fig. 6 (al), the value of this intake pipe pressure value PM is smoothed to obtain the value shown in Fig. 6 (f).
The calculation process for creating a waveform similar to the cylinder intake air temperature T shown in d+ is shown.

ルーチン310は、常時250 ms毎にその時々のシ
リンダ内吸気温度Tにほぼ相当する圧力なまし値PMN
を演算するものであり、Sllにて今回の圧力値PMか
ら先(250+11s前)の圧力なまし値PMN−+を
減じた圧力差DPMを求める。この圧力差DPMは第6
図(alに実線で示す圧力値PMと、第6図[d+に示
すシリンダ内吸気温度Tとの相対的なずれ、即ち温度変
化ΔTに相当する。S12は、今回の圧力値PMを先(
250ms前)の圧力なまし値PMN−+にてなますス
テップで、今回の圧力なまし値PMNを下記の式にて求
めて終了する。
The routine 310 constantly calculates a pressure smoothing value PMN approximately corresponding to the current cylinder intake air temperature T every 250 ms.
The pressure difference DPM is calculated by subtracting the previous pressure smoothed value PMN-+ (250+11 seconds ago) from the current pressure value PM in Sll. This pressure difference DPM is the 6th
This corresponds to the relative deviation between the pressure value PM shown by the solid line in Fig. 6 (al) and the cylinder intake air temperature T shown in Fig. 6 [d+, that is, the temperature change ΔT.
In the step of using the pressure annealing value PMN-+ of 250 ms before, the current pressure annealing value PMN is obtained using the following formula and the process ends.

PMN−(PMN−+*63+PM)/64そして、上
記のように算出した圧力差DPMに基づいて250 m
s毎のシリンダ内吸気温度Tの変化ΔTをマツプ検索し
求める。
PMN-(PMN-+*63+PM)/64 and 250 m based on the pressure difference DPM calculated as above.
A map search is performed to find the change ΔT in the cylinder intake air temperature T every s.

そして、この温度変化ΔTと吸気温センサ8により検出
されたその時の吸入空気温度TM (−TMo)とに基
づいて、その時の最適な点火時期、即ち最終進角値θが
前記式■にて求められる。
Then, based on this temperature change ΔT and the intake air temperature TM (-TMo) detected by the intake air temperature sensor 8 at that time, the optimum ignition timing at that time, that is, the final advance value θ is calculated using the above formula (2). It will be done.

この最終進角値θに基づいた点火時期制御が行われるこ
とにより、ノッキングを発生させることなく、第6図(
f)に実線で示すように過渡運転状態において出力アン
プを行うことができる。
By performing ignition timing control based on this final advance value θ, knocking does not occur and the ignition timing is controlled as shown in Fig. 6 (
Output amplification can be performed during transient operating conditions as shown by the solid line in f).

なお、シリンダ9の温度上昇度合と温度下降度合とが異
なる内燃機関1の最終進角値θを算出するには、第7図
に示すような過程によりシリンダ吸入時の吸気温度Tの
変化ΔTを求めてもよい。
In addition, in order to calculate the final advance value θ of the internal combustion engine 1 in which the degree of temperature rise and the degree of temperature fall of the cylinder 9 are different, the change ΔT in the intake air temperature T at the time of cylinder intake is calculated by the process shown in FIG. You can ask for it.

このルーチンS20は、常時250m5毎にその時々の
シリンダ内吸気温度Tにほぼ相当する圧力なまし値PM
Nを演算するものであり、S21にて今回の圧力値PM
から先(250ms前)の圧力なまし値PMN−1を減
じた圧力差DPMを求める。
This routine S20 constantly calculates a pressure smoothing value PM approximately corresponding to the current cylinder intake air temperature T every 250 m5.
This is to calculate N, and in S21 the current pressure value PM
The pressure difference DPM is obtained by subtracting the pressure annealed value PMN-1 after (250 ms before).

S22は、圧力差DPMの正負により内燃機関1が加速
状態か減速状態かを判別するステップで、圧力なまし値
PMN−+の立上がり、立下がりが実際の吸気管圧力値
PMに較べて遅れることを利用している。即ち、DPM
≦0のときは吸気管圧力値PMが不変又は低下する平常
運転状態若しくは減速状態であり、このときはS24に
進み、今回の圧力なまし値PMNを下記の式にて求めて
終了する。
S22 is a step of determining whether the internal combustion engine 1 is in an acceleration state or a deceleration state based on the sign or negative of the pressure difference DPM, and the rise and fall of the pressure smoothed value PMN-+ are delayed compared to the actual intake pipe pressure value PM. is used. That is, D.P.M.
When ≦0, it is a normal operating state or a deceleration state in which the intake pipe pressure value PM remains unchanged or decreases, and in this case, the process advances to S24, where the current pressure smoothed value PMN is calculated using the following formula, and the process ends.

PMN−(PMN−1* 31 +PM)/32又、3
22にてDPM>Oと判別すると、S23に進んで前記
Sllと同様に今回の圧力なまし値PMNを下記の式に
て求めて終了する。
PMN-(PMN-1* 31 +PM)/32 or 3
If it is determined in step 22 that DPM>O, the process proceeds to step S23, where the current pressure annealing value PMN is calculated using the following formula in the same manner as in Sll, and the process ends.

 O PMN−(PMN−+* 63 +PM)/ 64そし
て、上記のように算出した圧力差DPMに基づいて25
0m5毎のシリンダ内吸気温度Tの変化ΔTをマツプ検
索し求める。
O PMN-(PMN-+*63 +PM)/64 and 25 based on the pressure difference DPM calculated as above.
The change ΔT in the intake air temperature T in the cylinder every 0 m5 is determined by searching the map.

この温度変化ΔTと吸気温センサ8により検出されたそ
の時の吸入空気温度TM (=TMo )とに基づいて
、その時の最適な点火時期、即ち最終進角値θが前記式
■にて求められる。
Based on this temperature change ΔT and the current intake air temperature TM (=TMo) detected by the intake air temperature sensor 8, the optimal ignition timing at that time, that is, the final advance value θ is determined using the above equation (2).

第8図Fal〜(e)は第7図に示す例において、機関
回転数NBを11000rpに保った状態で減速を行い
、吸気管2内の圧力値PMを第8図fal中実線で示す
ように変化させた場合の点火時期の補正を示したもので
あり、圧力なまし値PMNを減速時における実圧力値P
Mに早く収束させることができる。
Fig. 8 Fal to (e) shows the example shown in Fig. 7, where deceleration is performed with the engine speed NB kept at 11000 rpm, and the pressure value PM in the intake pipe 2 is shown by the solid line in Fig. 8 fal. This shows the correction of the ignition timing when changing the pressure annealed value PMN to the actual pressure value P during deceleration.
It is possible to quickly converge to M.

なお、前記実施例では最終進角値θを式■により算出し
たが、式■におけるf  (T)を補正進角値として取
扱い、最終進角値θを次式■により算出してもよい。
In the above embodiment, the final lead angle value θ was calculated using the formula (2), but f (T) in the formula (2) may be treated as a corrected lead angle value, and the final lead angle value θ may be calculated using the following formula (2).

θ−θo+f(T)       ・・・ ■なお、T
=TM+Σ(ΔT) ここで、Σ(八T)は吸気管圧力値PMの変化開始時か
ら250m5毎に算出した温度変化ΔTの和である。
θ−θo+f(T) ... ■Note that T
=TM+Σ(ΔT) Here, Σ(8T) is the sum of temperature changes ΔT calculated every 250 m5 from the start of change in the intake pipe pressure value PM.

又、前記実施例では吸気管圧力値の変化をなまずことに
より内燃機関1の点火進角値を補正するようにしたが、
吸入空気流量の変化をなますことにより点火進角値を補
正するようにしてもよい。
Furthermore, in the embodiment described above, the ignition advance value of the internal combustion engine 1 is corrected by smoothing out changes in the intake pipe pressure value.
The ignition advance value may be corrected by smoothing out changes in the intake air flow rate.

発明の効果 以上詳述したように、本発明によれば内燃機関のシリン
ダ部の温度を直接検出するための高価なセンサを用いな
くても、内燃機関の吸入空気流量若しくは吸気管圧力の
変化に応じて変動するノッキング限界の範囲内で点火時
期を進角又は遅角し、ノッキングを発生させずに最大の
トルクを得られる、より理想の点火時期を設定すること
ができる優れた効果がある。
Effects of the Invention As detailed above, according to the present invention, it is possible to detect changes in the intake air flow rate or intake pipe pressure of the internal combustion engine without using an expensive sensor for directly detecting the temperature of the cylinder section of the internal combustion engine. This has the excellent effect of advancing or retarding the ignition timing within the range of the knocking limit, which varies accordingly, and setting a more ideal ignition timing that can obtain maximum torque without causing knocking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明を具
体化した一実施例を示す内燃機関の全体構成図、第3図
は電子制御回路の電気的構成を示すブロック図、第4図
は電子制御回路による点火時期を説明するための図、第
5図は圧力なまし過程を説明するためのフローチャート
、第6図(a)〜(flは加速時における結果を示した
グラフ、′第7図は圧力なまし過程を説明するためのフ
ローチャート、第8図(ai〜(elは減速時における
結果を示したグラフである。 図中、1は内燃機関、2は吸気管、3は圧力検出手段と
しての圧力センサ、5は空気流量検出手段としてのスロ
ットルポジションセンサ、6は演算手段及びシリンダ内
吸気温度補正手段としてのECU、12は回転検出手段
を構成する回転角センサ、13は回転検出手段を構成す
るクランク角センサ、PMは吸気圧、NEは回転数であ
る。 特許出願人     日本電装 株式会社代 理 人 
    弁理士 恩1)博宣oo          
o。 @        法 ○ 0 目 砦 Wltw !lv e田Rに   区 円苦い 味        味 γλ朗 トーへ の ―
Fig. 1 is a diagram corresponding to claims of the present invention, Fig. 2 is an overall configuration diagram of an internal combustion engine showing an embodiment embodying the invention, Fig. 3 is a block diagram showing the electrical configuration of an electronic control circuit, and Fig. 3 is a block diagram showing the electrical configuration of an electronic control circuit. Figure 4 is a diagram for explaining the ignition timing by the electronic control circuit, Figure 5 is a flowchart for explaining the pressure annealing process, Figures 6 (a) to (fl are graphs showing the results during acceleration, ' Fig. 7 is a flow chart for explaining the pressure annealing process, and Fig. 8 (ai to (el) are graphs showing the results during deceleration. In the figure, 1 is the internal combustion engine, 2 is the intake pipe, 3 5 is a pressure sensor as a pressure detection means, 5 is a throttle position sensor as an air flow rate detection means, 6 is an ECU as a calculation means and cylinder intake air temperature correction means, 12 is a rotation angle sensor constituting a rotation detection means, and 13 is a rotation angle sensor. In the crank angle sensor that constitutes the rotation detection means, PM is the intake pressure and NE is the rotation speed. Patent applicant: Nippondenso Co., Ltd. Agent
Patent Attorney On 1) Hironobuoo
o. @ Law ○ 0 Eye Fortress Wltw! lv e field R ward bitter taste taste γλroto -

Claims (1)

【特許請求の範囲】 1 内燃機関の吸入空気流量を検出する空気流量検出手
段若しくはスロットルバルブ下流の吸気管圧力を検出す
る圧力検出手段と、 内燃機関の回転数を検出する回転検出手段と、前記空気
流量検出手段若しくは圧力検出手段及び前記回転検出手
段のそれぞれ検出信号に基づいて点火時期を算出する演
算手段と を備えた内燃機関の点火時期制御装置において、演算手
段は、内燃機関の吸入空気流量若しくは吸気管圧力の変
化に応じて変動するノッキング限界の範囲内で前記点火
時期を補正するシリンダ内吸気温度補正手段を備えたこ
とを特徴とする内燃機関の点火時期制御装置。 2 前記シリンダ内吸気温度補正手段は、前記圧力検出
手段の検出した圧力値をなますための圧力なまし値算出
手段と、 この圧力なまし値算出手段により算出された圧力なまし
値と前記圧力値との差を算出する圧力差算出手段と を含む特許請求の範囲第1項に記載の内燃機関の点火時
期制御装置。 3 前記圧力なまし値算出手段は、内燃機関の加速減速
状態に応じて前記圧力値のなまし周期を変える特許請求
の範囲第2項に記載の内燃機関の点火時期制御装置。
[Scope of Claims] 1. Air flow rate detection means for detecting the intake air flow rate of the internal combustion engine or pressure detection means for detecting the intake pipe pressure downstream of the throttle valve; Rotation detection means for detecting the rotation speed of the internal combustion engine; In an ignition timing control device for an internal combustion engine, the calculation means includes an air flow rate detection means or a pressure detection means and a calculation means for calculating ignition timing based on detection signals of the rotation detection means, the calculation means calculating the intake air flow rate of the internal combustion engine. Alternatively, an ignition timing control device for an internal combustion engine, comprising an in-cylinder intake air temperature correction means for correcting the ignition timing within a range of a knocking limit that varies according to changes in intake pipe pressure. 2. The cylinder intake air temperature correction means includes a pressure smoothing value calculating means for smoothing the pressure value detected by the pressure detecting means, and a pressure smoothing value calculated by the pressure smoothing value calculating means and the pressure. The ignition timing control device for an internal combustion engine according to claim 1, further comprising pressure difference calculation means for calculating a difference between the pressure difference and the pressure difference. 3. The ignition timing control device for an internal combustion engine according to claim 2, wherein the pressure smoothing value calculation means changes the smoothing cycle of the pressure value depending on the acceleration/deceleration state of the internal combustion engine.
JP14614087A 1987-06-11 1987-06-11 Ignition timing control device for internal combustion engine Pending JPS63309772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14614087A JPS63309772A (en) 1987-06-11 1987-06-11 Ignition timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14614087A JPS63309772A (en) 1987-06-11 1987-06-11 Ignition timing control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63309772A true JPS63309772A (en) 1988-12-16

Family

ID=15401045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14614087A Pending JPS63309772A (en) 1987-06-11 1987-06-11 Ignition timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63309772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228571A (en) * 2008-03-24 2009-10-08 Suzuki Motor Corp Ignition timing control device for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228571A (en) * 2008-03-24 2009-10-08 Suzuki Motor Corp Ignition timing control device for engine

Similar Documents

Publication Publication Date Title
JP3331789B2 (en) Ignition timing control device for internal combustion engine
JPH0141823B2 (en)
JPH11229951A (en) Knocking control device for multiple cylinder internal combustion engine provided with variable valve timing control device
JPS6123868A (en) Ignition-timing controller
JPH0233873B2 (en)
JPH04109075A (en) Ignition timing control device for internal combustion engine
JPS63309772A (en) Ignition timing control device for internal combustion engine
JPS61169666A (en) Ignition timing control device in internal-combustion engine
JP2000009007A (en) Ignition period controlling device for internal combustion engine
JPS5941666A (en) Ignition timing control method of internal-combustion engine
JPS63106365A (en) Method of controlling ignition timing of internal combustion engine
JPS61205377A (en) Ignition timing controlling method in internal-combustion engine
JP2528168B2 (en) Ignition timing control device for internal combustion engine
JPH0751925B2 (en) Ignition timing control method for internal combustion engine
JPH01106934A (en) Control device for air-fuel ratio of internal combustion engine
JPS6217369A (en) Ignition timing control method under idling of internal-combustion engine
JPH0252113B2 (en)
JP2546368B2 (en) Internal combustion engine speed control device
JPS6027784A (en) Method of controlling ignition timing of internal- combustion engine
JPH05195852A (en) Ignition timing control device for reopening fuel supply to internal combustion engine
JPH01190969A (en) Ignition timing control method
JPH01106933A (en) Control device for air-fuel ratio of internal combustion engine
JPH01193063A (en) Control device for engine
JPH0411746B2 (en)
JPS6073056A (en) Firing timing controller