JPS63308590A - Contamination mode discriminating instrument - Google Patents

Contamination mode discriminating instrument

Info

Publication number
JPS63308590A
JPS63308590A JP62144791A JP14479187A JPS63308590A JP S63308590 A JPS63308590 A JP S63308590A JP 62144791 A JP62144791 A JP 62144791A JP 14479187 A JP14479187 A JP 14479187A JP S63308590 A JPS63308590 A JP S63308590A
Authority
JP
Japan
Prior art keywords
measured
measuring means
radioactive
ray
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62144791A
Other languages
Japanese (ja)
Other versions
JP2563341B2 (en
Inventor
Jiro Sakurai
次郎 櫻井
Masaki Yoda
正樹 依田
Tetsuo Goto
哲夫 後藤
Hiroaki Kato
裕明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP14479187A priority Critical patent/JP2563341B2/en
Publication of JPS63308590A publication Critical patent/JPS63308590A/en
Application granted granted Critical
Publication of JP2563341B2 publication Critical patent/JP2563341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable whether the contamination mode of a radioactive waste is of a surface contaminant or of a radioactive matter to be accurately discriminated by comparing a difference between the ratios of measured beta ray values to measured gamma ray values obtained by measuring objects to be measured by radiation measuring means with a reference value. CONSTITUTION:beta rays and gamma rays radiated from an object to be measured 1 being conveyed by a conveyor line 7 are measured by beta ray detectors 4a-4d and gamma ray detectors 5a-5b on radiation detecting means 2a-2d, respectively. Then, measured results are fed to arithmetic means 3 and the ratios of measured betaby values to measured gamma ray values for every measuring means 2a-2d are calculated. A difference between the ratios obtained by two pairs of the means (2a and 2b) and (2c and 2d) respectively opposing to each other is calculated and compared with a reference value. The object to be measured can be accurately judged to be a surface contamination when the absolute value of the difference is larger than the reference value while it is judged as a radioactive matter when the value is not larger than the reference value.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、原子力発電所等の放射性物質取扱施設から発
生する放射性廃棄物が、表面汚染物であるか放射化物で
あるかを判別するための装置に関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) The present invention is directed to wastes generated from radioactive material handling facilities such as nuclear power plants that are surface contaminants or radioactive materials. The present invention relates to a device for determining whether

(従来の技術) 一般に、原子力発電所等の放射性物質取扱施設から発生
する放射性廃棄物には、表面汚染物と放射化物とがある
。これらの放射性廃棄物のうち表面汚染物については、
酸、合成洗剤等を用いた化学除染、あるいはサンドブラ
スト、ペースト状除去剤等を用いた機械除染等により放
射性物質を除去した後、通常の廃棄物として処理するこ
とができる。一方、放射化物については、上述した除染
等を施してもいたずらに2次汚染あるいは2次廃棄物を
発生させるのみで、放射性物質を除去することは不可能
であるなめ、減容処理等を行った後、放射性廃棄物貯蔵
庫等に保管する必要がある。
(Prior Art) In general, radioactive waste generated from facilities handling radioactive materials such as nuclear power plants includes surface contaminants and radioactive materials. Among these radioactive wastes, surface contaminants are
After radioactive materials are removed by chemical decontamination using acids, synthetic detergents, etc., or mechanical decontamination using sandblasting, paste removal agents, etc., it can be treated as normal waste. On the other hand, regarding radioactive materials, even if the above-mentioned decontamination is carried out, it will only unnecessarily generate secondary contamination or secondary waste, and it is impossible to remove the radioactive materials. After that, it must be stored in a radioactive waste storage facility.

従来、放射性廃棄物か表面汚染物であるか放射化物であ
るかを判別する方法としては、対象となる放射性廃棄物
の発生場所から推測する方法がある。
Conventionally, as a method for determining whether radioactive waste is radioactive waste, surface contaminant, or radioactive material, there is a method of inferring from the location where the target radioactive waste is generated.

〈発明が解決しようとする問題点) しかしながら、上述の従来の方法では、表面汚染物と放
射化物を正確に判別することが困難である。したかって
、たとえば放射化物か誤って表面汚染物として処理され
、2次汚染あるいは2次廃棄物を発生させる可能性があ
る。一方このような問題を避けるために、たとえば放射
性廃棄物を全て放射化物として処理すると、その処理量
は膨大となり、放射性廃棄物貯蔵スペースの確保か困難
になるという問題が発生する。
<Problems to be Solved by the Invention> However, with the above-described conventional methods, it is difficult to accurately distinguish between surface contaminants and radioactive substances. Therefore, for example, radioactive materials may be mistakenly treated as surface contaminants, resulting in secondary contamination or secondary waste. On the other hand, in order to avoid such problems, for example, if all radioactive waste is treated as radioactive materials, the amount of waste to be treated will be enormous, and the problem arises that it will be difficult to secure storage space for the radioactive waste.

本発明は、このような問題点を解決するためになされた
ものであり、放射性廃棄物の汚染形態が表面汚染物であ
るか放射化物であるかを正確に判別することのできる、
汚染形態判別装置を提供することを目的とする。
The present invention has been made to solve these problems, and it is possible to accurately determine whether the form of contamination of radioactive waste is surface contamination or radioactivity.
The purpose of this invention is to provide a contamination type discrimination device.

[発明の構成] (問題点を解決するだめの手段) すなわち本発明の汚染形態判別装置は、被測定物が配置
可能な間隔を設けて対向配置されそれぞれβ線検出器お
よびγ線検出器を有する少なくとも1対の放射線測定手
段と、これらの放射線測定手段により測定されたβ線測
定値とγ線測定値の比をそれぞれの放射線測定手段ごと
に算出し、これらの比の差を基準値と比較して、前記放
射線測定手段の間に配置された被測定物が表面汚染物で
あるか放射化物であるかを判別する演算手段とを有する
ことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) That is, the contamination type discriminating device of the present invention includes a β-ray detector and a gamma-ray detector, which are arranged facing each other with an interval that allows the objects to be measured to be arranged. at least one pair of radiation measuring means, and the ratio of the β-ray measurement value and the gamma-ray measurement value measured by these radiation measuring means is calculated for each radiation measuring means, and the difference between these ratios is calculated as a reference value. In comparison, the present invention is characterized in that it includes arithmetic means for determining whether the object to be measured placed between the radiation measuring means is a surface contaminant or a radioactive substance.

(作 用) 本発明の汚染形態判別装置においては、対向配置された
放射線測定手段によりこれらの放射線測定手段の間に配
置された被測定物から放出されるβ線およびγ線を測定
する。この測定結果は演算手段へ送られ、演算手段は、
放射線測定手段ごとのβ線測定値とγ線測定値の比を算
出し、対向する放射線測定手段で測定されたβ線測定値
とγ線測定値の比の差を算出し基準値と比較する。
(Function) In the contamination type discrimination device of the present invention, the radiation measuring means arranged opposite each other measure β-rays and γ-rays emitted from the object to be measured placed between these radiation measuring means. This measurement result is sent to the calculation means, and the calculation means
Calculate the ratio between the β-ray measurement value and the γ-ray measurement value for each radiation measurement means, calculate the difference in the ratio between the β-ray measurement value and the γ-ray measurement value measured by the opposing radiation measurement means, and compare it with the standard value. .

ここで、β線はγ線に比べて透過力が小さくかつ自己吸
収が大きいため、被測定物か表面汚染物の場合には、汚
染面側の放射線測定手段で測定されたβ線測定値とγ線
測定値の比と、非汚染面側の放射線測定手段で測定され
たβ線測定値とγ線測定値の比との間には、大きな差が
生じる。これに対し被測定物が放射化物の場合には、放
射性廃棄物内部まで一様に汚染しているため、対向する
放射線測定部で測定されたβ線測定値とγ線測定値の比
は、はぼ等しくなる。
Here, β-rays have a smaller penetrating power and greater self-absorption than γ-rays, so in the case of an object to be measured or a surface contaminated object, the β-ray measurement value measured by the radiation measuring means on the contaminated surface side A large difference occurs between the ratio of the gamma ray measurement value and the ratio of the β ray measurement value and the gamma ray measurement value measured by the radiation measuring means on the non-contaminated surface side. On the other hand, if the object to be measured is a radioactive substance, the inside of the radioactive waste is uniformly contaminated, so the ratio of the β-ray measurement value and the γ-ray measurement value measured by the opposing radiation measurement unit is become almost equal.

したがって、演算手段は、被測定物が配置可能な間隔を
設けて対向配置された少なくとも1対の放射線測定手段
から得られたβ線測定値とγ線測定値の比の差を基準値
と比較し、これらの差が基準値より大きければ表面汚染
物、基準値以下であれば放射化物であると判別する。
Therefore, the calculation means compares the difference in the ratio between the β-ray measurement value and the γ-ray measurement value obtained from at least one pair of radiation measurement means arranged opposite each other with an interval that allows the measurement object to be placed, with the reference value. However, if the difference between these is larger than the standard value, it is determined that it is surface contaminant, and if it is less than the standard value, it is determined that it is radioactive material.

また同時に、表面汚染の際の汚染面をも同定することが
できる。
At the same time, it is also possible to identify contaminated surfaces in the case of surface contamination.

(実施例) 次に本発明の実施例について図を用いて説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の汚染形態判別装置の一実施例の概略
図である。
FIG. 1 is a schematic diagram of an embodiment of the contamination type discriminating device of the present invention.

この実施例の汚染形態判別装置は、主に、被測定物1が
配置可能な間隔を設けて対向配置された2対の放射線測
定手段2a、2bおよび2c。
The contamination type discrimination device of this embodiment mainly includes two pairs of radiation measuring means 2a, 2b, and 2c that are arranged facing each other with an interval that allows the object to be measured 1 to be placed thereon.

2dと、測定されたβ線測定値およびγ線測定値の比を
放射線測定手段2a、2b、2c、2dごとに算出し、
対向する放射線測定手段2a、2bおよび2c、2d″
C″得られたこの比の差を基準値と比較することにより
、この被測定物1が表面汚染物であるか放射化物である
かを判別する演算手段3とから構成されている。
2d, and the measured β-ray measurement value and γ-ray measurement value are calculated for each radiation measurement means 2a, 2b, 2c, and 2d,
Opposing radiation measuring means 2a, 2b and 2c, 2d''
The calculation means 3 compares the difference in the obtained ratio with a reference value to determine whether the object to be measured 1 is a surface contaminant or a radioactive substance.

なお、放射線測定手段2a〜2dは、それぞれたとえば
カスフローカウンタ等からなるβ線検出器4a〜4dと
、これらのβ線検出器4a〜4dの外側に配置された、
たとえばプラスチックシンチレーションカウンタ等から
なるγ線検出器5a〜5dを備えている。また、これら
β線検出器4a、4b、4c、4dとγ線検出器5a、
5b。
Note that the radiation measuring means 2a to 2d each include β ray detectors 4a to 4d each consisting of, for example, a cassow counter or the like, and disposed outside of these β ray detectors 4a to 4d.
For example, gamma ray detectors 5a to 5d made of plastic scintillation counters or the like are provided. In addition, these β-ray detectors 4a, 4b, 4c, 4d and the γ-ray detector 5a,
5b.

5c、5dとの間には、いずれもγ線検出器5a。5c and 5d, both have a gamma ray detector 5a.

5b、5c、5dかβ線により感応するのを防ぐため、
アルミニウム製の境界板6 a + 6 b y 6c
 。
In order to prevent 5b, 5c, 5d from being sensitive to β rays,
Aluminum boundary plate 6a + 6b y 6c
.

6dが設けられている。6d is provided.

そして、この汚染形態判別装置により被測定物1の汚染
形態を判別するに際しては、第1図に示ずように、まず
、移送ライン7により送られた被測定物1から放出され
るβ線およびγ線を、放射線測定手段2a、2b、2c
、2d上のβ線検出器4a、4b、4c、4dおよびγ
線検出器5a。
When determining the type of contamination of the object to be measured 1 using this contamination type discriminator, first, as shown in FIG. The gamma rays are measured by radiation measuring means 2a, 2b, 2c.
, 2d, β-ray detectors 4a, 4b, 4c, 4d and γ
Line detector 5a.

5b、5c、5dによりそれぞれ測定する。次に、この
測定結果は演算手段3へ送られ、演算手段3は、放射線
測定手段2a、2b、2c、2dごとのβ線測定値とγ
線測定値の比を算出し、対向する放射線測定手段2a、
2bおよび2c、2dで得られた比の差を算出し、基準
値と比較する。すなわち、対向する放射線測定手段2a
、2bおよび2c、2d″C″得られたβ線測定値とγ
線測定値の比の差7の絶対値か基準値より大きければ表
面汚染物、基準値以下であれば放射化物であると判別す
る。
5b, 5c, and 5d, respectively. Next, this measurement result is sent to the calculation means 3, and the calculation means 3 calculates the β-ray measurement value and the γ-ray measurement value for each radiation measurement means 2a, 2b, 2c, and 2d.
calculating the ratio of the line measurement values and facing radiation measuring means 2a;
The difference between the ratios obtained in 2b, 2c, and 2d is calculated and compared with the reference value. That is, the opposing radiation measuring means 2a
, 2b and 2c, 2d "C" obtained β-ray measurement value and γ
If the absolute value of the difference 7 in the ratio of line measurement values is larger than a reference value, it is determined that it is a surface contaminant, and if it is less than the reference value, it is determined that it is an activated material.

このときの汚染形態の判別原理を、第2図、第3図およ
び第4図により説明する。
The principle of determining the contamination form at this time will be explained with reference to FIGS. 2, 3, and 4.

第2図は、表面汚染物8の汚染面9側とそれに対向する
非汚染面10側で、それぞれβ線およびγ線を測定した
場合を示す概略図である。
FIG. 2 is a schematic diagram showing the case where β rays and γ rays are measured on the contaminated surface 9 side of the surface contaminant 8 and on the non-contaminated surface 10 side opposite thereto.

この図において、汚染面9側の放射線測定手段11aで
得られたβ線測定値とγ線測定値の比は、非汚染面10
側の放射線測定手段11b”e得られたβ線測定値とγ
線測定値の比より大きくなる。
In this figure, the ratio of the β-ray measurement value and the γ-ray measurement value obtained by the radiation measuring means 11a on the contaminated surface 9 side is the same as that on the non-contaminated surface 9.
The side radiation measuring means 11b”e obtained β-ray measurement value and γ
is greater than the ratio of line measurements.

これは、β線の透過力はγ線に比べて小さく、かつ自己
吸収が大きいため、非汚染面10側の放射線測定手段1
1bではβ線がほとんど検出されないなめである。
This is because the penetrating power of β rays is smaller than that of γ rays, and self-absorption is greater, so the radiation measuring means 1 on the non-contaminated surface 10 side
In 1b, almost no β-rays are detected.

したかって、これらの比の差の絶対値も大きくなる。Therefore, the absolute value of the difference between these ratios also becomes large.

第3図は、放射化物12の上面13側と下面14側で、
それぞれβ線およびγ線を測定した場合を示す概略図で
ある。
FIG. 3 shows the upper surface 13 side and lower surface 14 side of the radioactive substance 12,
FIG. 2 is a schematic diagram showing the case where β rays and γ rays are measured, respectively.

この図において、上面13側の放射線測定手段15aで
得られたβ線測定値とγ線測定値の比と、下面14側の
放射線測定手段15bで得られたβ線測定値とγ線測定
値の比は、近似した値をとる。
In this figure, the ratio of the β-ray measurement value and the γ-ray measurement value obtained by the radiation measurement means 15a on the upper surface 13 side, and the β-ray measurement value and the γ-ray measurement value obtained by the radiation measurement means 15b on the lower surface 14 side. The ratio of takes an approximate value.

これは、放射化物12中では放射性物質がほとんど均一
に分布しているなめ、放射線測定手段15aおよび15
bのどちらでも、はぼ同量のβ線およびγ線が測定され
るためである。
This is because the radioactive substances are almost uniformly distributed in the radioactivity 12, so the radiation measuring means 15a and 15
This is because approximately the same amount of β rays and γ rays are measured in both cases.

したがって、これらの比の差の絶対値は小さくなる。Therefore, the absolute value of the difference between these ratios becomes small.

第4図は、対向配置された放射線測定手段で得られたβ
線測定値とγ線測定値の比の差を、グラフ上に表した例
を示すものである。
Figure 4 shows β obtained by the radiation measuring means arranged opposite to each other.
This figure shows an example in which the difference in the ratio between the ray measurement value and the γ-ray measurement value is expressed on a graph.

このグラフにおいて、対向配置された1対の放射線測定
手段で得られたβ線測定値とγ線測定値の比の一方をx
I、他方を、YIとしたとき、これらの比の差の絶対値
Ix+y+lが小さければ、たとえば座標成分(xI 
+ yI )で表される点Aのように、直線y=x上ま
たはその近傍に示される。これに対し、lx+ −yI
 1が大きければ、たとえば座標成分(X2 、 y2
 )で表される点Bのように、直線y=xから離れた位
置に示される。
In this graph, x
I, and the other is YI, if the absolute value of the difference between these ratios Ix+y+l is small, for example, the coordinate component (xI
+ yI ), such as point A, shown on or near the straight line y=x. On the other hand, lx+ −yI
If 1 is large, for example, the coordinate components (X2, y2
) is shown at a position away from the straight line y=x.

したかって、たとえば放射化物はグラフ中、斜線部で示
す領域X中に含まれる点として表すことができる。この
領域Xは、被測定物の形状、材質、検出器の検出効率等
により変化するが、領域Xの境界部が基準値となる。
Therefore, for example, the activated substance can be represented as a point included in the shaded region X in the graph. This region X varies depending on the shape and material of the object to be measured, the detection efficiency of the detector, etc., but the boundary of the region X serves as a reference value.

= 9 = 演算手段3はこの原理に基づき、被測定物1が表面汚染
物であるか放射化物であるかを判別する。
=9=Based on this principle, the calculation means 3 determines whether the object to be measured 1 is a surface contaminant or a radioactive substance.

なおこれらの判別は、放射線測定手段2a。Note that these determinations are made by the radiation measuring means 2a.

2bおよび2c、2dごとに行い、両方の判別結果から
被測定物質1の判別を行う。また、表面汚染物であった
場合、β線測定値とγ線測定値の比が最も大きい面が汚
染面である。
2b, 2c, and 2d, and the substance to be measured 1 is determined from the results of both determinations. Furthermore, in the case of surface contamination, the surface with the largest ratio of the β-ray measurement value to the γ-ray measurement value is the contaminated surface.

なお、本発明の汚染形態判別装置は第1図に示した実施
例に限定されるものではなく、例えば、β線検出器、γ
線検出器、境界板等は同様の機能を有するものであれば
、いかなるものを用いてもよい。また、放射線測定手段
は必ずしも2対である必要はなく、1対の放射線測定手
段により異なる2対向面以上を測定するようにしてもよ
いし、3対以−F用いてもよい。
Note that the contamination type discrimination device of the present invention is not limited to the embodiment shown in FIG.
Any line detector, boundary plate, etc. may be used as long as it has similar functions. Furthermore, the number of radiation measuring means does not necessarily have to be two pairs, and one pair of radiation measuring means may be used to measure two or more different opposing surfaces, or three or more pairs may be used.

さらに、各放射線測定手段と被測定物との距離は同一で
あることが望ましく、この調整は、各放射線測定手段に
距離センサを設置して自動測距により行う等いかなる方
法を用いてもよい。
Furthermore, it is desirable that the distances between each radiation measuring means and the object to be measured be the same, and any method may be used for this adjustment, such as installing a distance sensor in each radiation measuring means and performing automatic distance measurement.

「発明の効果」 以上説明したように、本発明の汚染形態判別装置によれ
ば、放射性廃棄物の汚染形態が表面汚染物であるか放射
化物であるかを正確に判別することができる。これによ
り、表面汚染物に対しては除染工程、放射化物に対して
は圧縮減容等、それぞれ最適な工程を選択することがで
き、放射性廃棄物の処理コストおよび放射性廃棄物の貯
蔵スペースの低減並びに安全性の向上を図ることができ
る。
"Effects of the Invention" As explained above, according to the contamination type discriminating device of the present invention, it is possible to accurately determine whether the contamination type of radioactive waste is surface contaminant or radioactive material. This makes it possible to select the most appropriate process, such as decontamination for surface contaminants and compression and volume reduction for radioactive substances, which saves on radioactive waste processing costs and radioactive waste storage space. It is possible to reduce this amount and improve safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の汚染形態判別装置の一実施例の概略図
、第2図は表面汚染物の汚染面側とそれに対向する非汚
染面側から放出されるβ線およびγ線を測定した場合を
示す概略図、第3図は放射化物の上面側とそれに対向す
る下面側から放出されるβ線およびγ線を測定した場合
を示す概略図、第4図は対向配置された放射線測定手段
で得られたβ線測定値とγ線測定値の比の差を示すグラ
フである。 1・・・・・・・・・・・・・・・被測定物3・・・・
・・・・・・・・・・・演算手段4a〜4d・・・β線
検出器 5a〜5d・・・γ線検出器
Figure 1 is a schematic diagram of an embodiment of the contamination type discrimination device of the present invention, and Figure 2 is a diagram showing the measurement of β-rays and γ-rays emitted from the contaminated surface of surface contaminants and the opposing non-contaminated surface. FIG. 3 is a schematic diagram showing the case in which β-rays and γ-rays emitted from the upper surface side of the activation object and the opposite lower surface side are measured. FIG. 4 is a schematic diagram showing the radiation measuring means arranged oppositely. It is a graph showing the difference in the ratio between the β ray measurement value and the γ ray measurement value obtained in . 1......Object to be measured 3...
......Calculating means 4a-4d...β-ray detectors 5a-5d...γ-ray detector

Claims (1)

【特許請求の範囲】[Claims] (1)被測定物が配置可能な間隔を設けて対向配置され
それぞれβ線検出器およびγ線検出器を有する少なくと
も1対の放射線測定手段と、これらの放射線測定手段に
より測定されたβ線測定値とγ線測定値の比をそれぞれ
の放射線測定手段ごとに算出し、これらの比の差を基準
値と比較して、前記放射線測定手段の間に配置された被
測定物が表面汚染物であるか放射化物であるかを判別す
る演算手段とを有することを特徴とする汚染形態判別装
置。
(1) At least one pair of radiation measuring means each having a β-ray detector and a gamma-ray detector, which are arranged facing each other with an interval that allows the object to be placed, and β-ray measurement measured by these radiation measuring means. The ratio of the gamma ray measurement value to the gamma ray measurement value is calculated for each radiation measurement means, and the difference between these ratios is compared with a reference value to determine whether the object to be measured placed between the radiation measurement means is a surface contaminant. 1. A contamination type discriminating device, comprising: a calculation means for discriminating whether it is a radioactive substance or a radioactive substance.
JP14479187A 1987-06-10 1987-06-10 Contamination type determination device Expired - Lifetime JP2563341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14479187A JP2563341B2 (en) 1987-06-10 1987-06-10 Contamination type determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14479187A JP2563341B2 (en) 1987-06-10 1987-06-10 Contamination type determination device

Publications (2)

Publication Number Publication Date
JPS63308590A true JPS63308590A (en) 1988-12-15
JP2563341B2 JP2563341B2 (en) 1996-12-11

Family

ID=15370536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14479187A Expired - Lifetime JP2563341B2 (en) 1987-06-10 1987-06-10 Contamination type determination device

Country Status (1)

Country Link
JP (1) JP2563341B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534462A (en) * 1991-07-30 1993-02-09 Toshiba Corp Device for discriminating between contamination and activation
JPH0682559A (en) * 1991-08-26 1994-03-22 Toshiba Corp Method for discriminating radioactivity of radioactive waste whether it is due to contamination or radioactivation
JP2015064272A (en) * 2013-09-25 2015-04-09 独立行政法人産業技術総合研究所 Large-solid-angle simultaneous detector of gamma ray and beta ray
JP2015172514A (en) * 2014-03-12 2015-10-01 日立造船株式会社 Device of measuring radioactivity of waste

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161481A (en) * 1985-01-11 1986-07-22 Fuji Electric Co Ltd Measuring device of radioactivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161481A (en) * 1985-01-11 1986-07-22 Fuji Electric Co Ltd Measuring device of radioactivity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534462A (en) * 1991-07-30 1993-02-09 Toshiba Corp Device for discriminating between contamination and activation
JPH0682559A (en) * 1991-08-26 1994-03-22 Toshiba Corp Method for discriminating radioactivity of radioactive waste whether it is due to contamination or radioactivation
JP2015064272A (en) * 2013-09-25 2015-04-09 独立行政法人産業技術総合研究所 Large-solid-angle simultaneous detector of gamma ray and beta ray
JP2015172514A (en) * 2014-03-12 2015-10-01 日立造船株式会社 Device of measuring radioactivity of waste

Also Published As

Publication number Publication date
JP2563341B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
EP3435119A9 (en) Radioactive contamination inspection device
JPH11194170A (en) Radioactive material inspection device and radioactive waste inspection system
JPS63308590A (en) Contamination mode discriminating instrument
Yokoyama et al. Development of clearance verification equipment for uranium-bearing waste
US7408161B2 (en) Investigations
JP6270556B2 (en) Radioactivity concentration measuring device for waste and radioactivity concentration measuring method for waste
JP2736189B2 (en) Radioactive waste contamination / activation radioactive identification method with openings
JP2023040830A (en) Method for inspecting contamination of powdery waste by radioactive material
JP2003004886A (en) Article radiation detector and article radiation detection system
JPH1090415A (en) Method for measuring contamination distribution in radioactive-contaminated pipe
JP2736186B2 (en) Pollution / activation radioactivity identification device
JP5900556B2 (en) Radioactivity measuring apparatus and radioactivity measuring method
JPH04235379A (en) Measuring method of radioactivity
JP2565877B2 (en) Radioactive waste sorter
SE9701407D0 (en) Device for detecting noble gases in exhaust gases from a nuclear reactor
US6353230B1 (en) Monitoring materials
JP2019148578A (en) Inspection method of uranium contamination of surface of inspection object
JPH10239438A (en) Measuring method of activity concentration of radioactive waste
JP2003050218A (en) Positron annihilation gamma-ray measuring method and device
WO1994002839A1 (en) A process for analyzing the contents of containers
JPH0547797B2 (en)
JP2736184B2 (en) Radioactivity identification method for radioactive waste
JPH0513472B2 (en)
EP1038190A1 (en) Monitoring a sample containing a neutron source
JPH02222855A (en) Pollution depth discriminator