JPS63308036A - Plasma-polymerized thin film from quinacridone - Google Patents

Plasma-polymerized thin film from quinacridone

Info

Publication number
JPS63308036A
JPS63308036A JP4500887A JP4500887A JPS63308036A JP S63308036 A JPS63308036 A JP S63308036A JP 4500887 A JP4500887 A JP 4500887A JP 4500887 A JP4500887 A JP 4500887A JP S63308036 A JPS63308036 A JP S63308036A
Authority
JP
Japan
Prior art keywords
quinacridone
plasma
thin film
film
polymerized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4500887A
Other languages
Japanese (ja)
Inventor
Yoshihito Osada
義仁 長田
Hiroyuki Ikenoya
池之野 弘幸
Hiroaki Tsuruta
洋明 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP4500887A priority Critical patent/JPS63308036A/en
Publication of JPS63308036A publication Critical patent/JPS63308036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled uniform, smooth and stable thin film with photovoltaic capability, without requiring additives or complicated processes, by polymerization of quinacridone sublimed by heating on the ITO glass plate applied on the electrode. CONSTITUTION:The objective plasma-polymerized thin film having the following characteristics; 1. insoluble in solvents 2. surface smoothness 3. two electronic spectrum absorptions (i.e., 490-510nm and 540-560nm) 4. photovoltaic conversion efficiency >=1X10<-5>% when irradiated with tungsten rays with an intensity of 100nw/cm<2>. For example, this thin film can be obtained, in a bell jar type reactor having internal electrodes in the form of a pair of parallel plates, by sublimation by heating of quinacridone on the ItO glass plate applied on the upper electrode to form as a polymerized film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶剤不溶でかつ光電変換能を有するキナクリド
ンのプラズマ重合R@に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to plasma polymerization R@ of quinacridone which is insoluble in solvents and has photoelectric conversion ability.

(従来の技術) 光堪変換素子即ち大局電池は、結晶シリコン或いは非品
性のシリコンで作られる無機系が殆んどである。近年、
フタロシアニンやメロシアニン等の色素或いは特定の物
質をドーピングしたポリアセチレン等を利用した有機系
の太陽電池も研究されている。有機系の特徴は、安価で
可とう性良好であり、大面積のフィルム状である点であ
る。
(Prior Art) Photovoltaic conversion elements, ie, global batteries, are mostly inorganic ones made of crystalline silicon or non-quality silicon. recent years,
Organic solar cells using polyacetylene doped with dyes such as phthalocyanine or merocyanine or specific substances are also being researched. The characteristics of organic materials are that they are inexpensive, have good flexibility, and are in the form of a large-area film.

一方、有機系太陽電池においては、有機系半導体の力学
物性の向上、太陽光の吸収効果の増大、キャリアー発生
効率の向上、内部抵抗の低下及び長期使用に耐える安定
性等が必要であるが、未だ満足なものはない。
On the other hand, in organic solar cells, it is necessary to improve the mechanical properties of organic semiconductors, increase the sunlight absorption effect, improve carrier generation efficiency, lower internal resistance, and stability that can withstand long-term use. Nothing is satisfying yet.

しかしこれらの色素類、或いはポリアセチレン等の有機
導電材料は、そのままでは高分子化や薄膜化できず、例
えば高分子量化する為には、重合性を有する官能基を導
入したり、電解重合という特殊な方法により高分子化或
いは薄膜化したり(特開昭60−28278号公報)、
或いは他の高分子樹脂の中に分散して使うしかなかった
。これらの方法では、分子構造の修飾の困」さや修飾に
よる性能の低下、重合膜の力学的性質や化学的安定性に
劣る、或いは重合の困難さがあった。他の高分子樹脂中
へ分散して使用する方法では、希釈による性能低下、分
散ムラ及び成膜性の低下がある為に、良好な光電変換素
子は得られていない。
However, these dyes or organic conductive materials such as polyacetylene cannot be made into polymers or thin films as they are. For example, in order to increase the molecular weight, it is necessary to introduce polymerizable functional groups or use special electrolytic polymerization. Polymerized or thinned by a method (Japanese Unexamined Patent Publication No. 60-28278),
Alternatively, it had no choice but to be used by dispersing it in other polymer resins. These methods have problems in modifying the molecular structure, deterioration of performance due to modification, poor mechanical properties and chemical stability of the polymerized film, or difficulty in polymerization. In the method of dispersing it in other polymeric resins, a good photoelectric conversion element cannot be obtained because there is a decrease in performance due to dilution, uneven dispersion, and a decrease in film-forming properties.

(発明が解決しようとする問題点) 本発明の目的は化学的、物理的に安定で光電変換機能を
有する薄膜状のキナクリドン重合膜を提供するにあり、
他の目的は工業的容易かつ安価な製造方法を提供するに
ある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a thin quinacridone polymer film that is chemically and physically stable and has a photoelectric conversion function.
Another object is to provide an industrially easy and inexpensive manufacturing method.

(問題点を解決する為の手段) 本発明は、溶剤不溶でかつ光電変換能を有するキナクリ
ドンのプラズマ重合薄膜である。
(Means for Solving the Problems) The present invention is a plasma-polymerized thin film of quinacridone that is insoluble in solvents and has photoelectric conversion ability.

本発明に使用するキナクリドンは一般的に赤色顔料とし
て知られているものであり、例えば0、1. Pigm
ent Red  122.  C,1,Pigmen
tViolet  19として知られている。これらの
キナクリドンは下記一般式で示され、α−2β−9γ−
の結晶系を有する。キナクリドンの誘導体として、ベン
ゼン環の水素原子の少なくとも1つが塩素、臭素等のハ
ロゲンに置換したものも使用可能である。
The quinacridone used in the present invention is generally known as a red pigment, for example, 0, 1. Pigm
ent Red 122. C,1,Pigmen
It is known as tViolet 19. These quinacridones are represented by the following general formula, α-2β-9γ-
It has a crystal system of As derivatives of quinacridone, those in which at least one hydrogen atom of the benzene ring is substituted with a halogen such as chlorine or bromine can also be used.

キナクリドンのモノマー及び通常の方法による蒸着膜の
IR%UV−vxsyt子スペクトルは同一のスペクト
ルを示す。プラズマ重合膜のIRスペクトルではモノマ
ーの主要な吸収ピーク(1625cm  、1583c
m  、1470cm  。
The IR% UV-vxsyt spectra of the quinacridone monomer and the film deposited by the conventional method show the same spectra. The IR spectrum of the plasma polymerized film shows the main absorption peaks of the monomer (1625 cm, 1583 cm
m, 1470 cm.

1848 cm−’ 、  767 am−’  )は
残存するが、全体的に平坦となる。UV−VISg子ス
ペクトルでは、モノマーの2つの吸収ピーク(524n
m。
1848 cm-', 767 am-') remain, but are generally flat. In the UV-VIS particle spectrum, two absorption peaks of the monomer (524n
m.

562nm)がいずれも低波長側ヘシフトしており、薄
膜化する事によりいく分モノマー分子の共役系が短かく
なった事が示される。従って外観も七ツマ−や蒸着膜で
は赤或いは紫色を呈するが。
562 nm) are all shifted to the lower wavelength side, indicating that the conjugated system of the monomer molecules has become somewhat shorter due to the thinner film. Therefore, the appearance also appears red or purple in the case of a seven-pointed or vapor-deposited film.

本発明のプラズマ重合膜ではやや黄味を帯びた膜が得ら
れる。
The plasma polymerized membrane of the present invention provides a slightly yellowish membrane.

頃の形f譜、構造についてはモノマーや蒸着膜が結晶構
造による大きな粒子や島構造を有した不均一な膜しか形
成できないのに対して、プラズマ重合膜では肉眼、光学
頗微鑓のレベルではもちろん、電子@微鏡のレベルでも
均一で比較的平滑な膜であり、両者の違いは明確に区別
できる。
In terms of shape and structure, monomer and vapor-deposited films can only form non-uniform films with large particles and island structures due to crystal structures, whereas plasma polymerized films can only be formed at the level of the naked eye and optical scale. Of course, even at the electron microscopic level, the film is uniform and relatively smooth, and the difference between the two can be clearly distinguished.

膜の厚さはプラズマ重合条件により任意に設定できるが
%通常0.01〜5μm1好ましくは0.05〜1μm
1更に好ましくは0.1〜0.5μmである。
The thickness of the film can be arbitrarily set depending on the plasma polymerization conditions, but it is usually 0.01 to 5 μm, preferably 0.05 to 1 μm.
1, more preferably 0.1 to 0.5 μm.

膜厚が0.01μmより薄ければ、膜の強度や光電変換
能は十分ではないし、一方5μmより厚い場合は膜の不
均一性やヒビ割れが生じ、かつ光電変換能も十分でない
If the film thickness is less than 0.01 μm, the strength and photoelectric conversion ability of the film will not be sufficient, while if it is thicker than 5 μm, non-uniformity and cracking will occur in the film, and the photoelectric conversion ability will not be sufficient.

キナクリドンのプラズマ重合膜はモノマーの少なくとも
一部が他のモノマーと結合している為に、非結晶性の平
滑で硬くかつ溶剤不溶性の膜となると推測される。ここ
で溶剤とは、七ツマ−の溶剤はもちろん一般的な溶剤、
例えばアセトン、メチルエチルケトン、キシレン、トル
エン、クロロホルム、1−クロロナフタレン、  t−
ブチルホルムアミド等をいう。
Since at least a portion of the monomers in the plasma-polymerized film of quinacridone are bonded to other monomers, it is assumed that the film is amorphous, smooth, hard, and insoluble in solvents. Solvent here refers to not only ordinary solvents but also general solvents,
For example, acetone, methyl ethyl ketone, xylene, toluene, chloroform, 1-chloronaphthalene, t-
Refers to butylformamide, etc.

本発明のプラズマ重合膜も、モノマー及びその蒸着膜と
同様に光電変換能を有する。光電変換能の変換効率(η
(3))は、例えば透明でかつ導に性を有するITOガ
ラス上にキナクリドンプラズマ重合膜を形成させ、つい
でプラズマ重合膜上にアルミニウムを蒸着させてMIa
型セルをつくり、ITOとアルミニウムを両極として、
アルミニウム側よりタングステン光を照射し両Wi価に
かかる電圧(Voc :開放端電圧)及び回路を形成し
た時の電流(Jsc :短絡電流)及びToe−vcc
  の形状(ff:フィルファクター)より算出される
The plasma polymerized film of the present invention also has photoelectric conversion ability like the monomer and its vapor-deposited film. Conversion efficiency of photoelectric conversion capacity (η
(3)) For example, a quinacridone plasma-polymerized film is formed on transparent and conductive ITO glass, and then aluminum is vapor-deposited on the plasma-polymerized film to create MIa.
Make a type cell and use ITO and aluminum as both poles.
Voltage applied to both Wi values (Voc: open end voltage), current when a circuit is formed (Jsc: short circuit current) and Toe-vcc when tungsten light is irradiated from the aluminum side
It is calculated from the shape (ff: fill factor).

本発明のキナクリドンプラズマ重合#膜を用いたセルで
は、Jscは通常1nA/Cm以上、好ましくはl Q
 nA/Cm以上、更に好ましくは100nl/Cm以
上であり、これらの値は通常の蒸着膜の1000 nA
/cmには及ばない。これは、プラズマ重合膜と蒸着膜
におけるモノマー構造の維持性(高分子化度)及び分子
の配列(スクッキング)状態によるものである。又VO
Cは通常0,17以上、好ましくは0.2v以上、更に
好ましくは0.5v以上であり、光電変換能の変換効率
η(埒は通常1×10 %以上、好ましくは1×10 
%以上、更に好ましくはIXI O%以上である。
In a cell using the quinacridone plasma polymerized film of the present invention, Jsc is usually 1 nA/Cm or more, preferably l Q
nA/Cm or more, more preferably 100 nl/Cm or more, and these values are higher than 1000 nA of a normal vapor deposited film.
/cm. This is due to the maintainability of the monomer structure (degree of polymerization) and molecular arrangement (scooking) state in the plasma polymerized film and the vapor deposited film. Also VO
C is usually 0.17 or more, preferably 0.2V or more, more preferably 0.5V or more, and the conversion efficiency η of photoelectric conversion ability is usually 1 x 10% or more, preferably 1 x 10
% or more, more preferably IXIO% or more.

次に、本発明のプラズマ重合膜の製法の一例を示して具
体的に説明する。
Next, an example of the method for manufacturing the plasma polymerized membrane of the present invention will be specifically explained.

プラズマ反応器は、第1図に示すような平行平板の内部
電極を有するペルジャー型の反応器である。ITOガラ
スを上部電極上にはりつけ、反応器内部を十分アルゴン
ガスで置換機内圧を10−8〜lO°torrに保ち、
平行平板電極に高周波を印加し低温プラズマを発生させ
る。ついで下部電極の上方においたモノマー容器を加熱
し一定時間キナクリドンを加熱昇華させる。加熱昇華し
たキナクリドンは、ITOガラス板上にプラズマ重合薄
膜として形成される。重合薄膜の膜厚は、プラズマ条件
及びキナクリドンの昇華条件(速度1時間)により調整
できる。プラズマの出力は通常数W〜200W、好まし
くは2〜ioowであり、重合時間も数分以下で十分で
ある。
The plasma reactor is a Pelger type reactor having parallel plate internal electrodes as shown in FIG. Attach ITO glass to the upper electrode, replace the inside of the reactor with sufficient argon gas, and maintain the internal pressure at 10-8 to 10° torr.
High-frequency waves are applied to parallel plate electrodes to generate low-temperature plasma. Next, the monomer container placed above the lower electrode is heated to sublimate the quinacridone for a certain period of time. The heat-sublimated quinacridone is formed as a plasma-polymerized thin film on an ITO glass plate. The thickness of the polymerized thin film can be adjusted by plasma conditions and quinacridone sublimation conditions (rate: 1 hour). The output of the plasma is usually several W to 200 W, preferably 2 to ioow, and a polymerization time of several minutes or less is sufficient.

(本発明の効果) 本発明は、化学的に、又物理的に安定でかつ光電変換能
を有するキナクリドンプラズマ重合膜を他の副材料や添
加物等を用いる事なく、又原料への重合可能な官能基の
導入や微粒子化或いは他のポリマーへの混合といった復
雑でコストのかかる工程も必要とせず、更に均一で平滑
な薄膜が得られるという点で、工業的に極めて有利であ
る。
(Effects of the present invention) The present invention makes it possible to polymerize a quinacridone plasma polymerized film, which is chemically and physically stable and has photoelectric conversion ability, into a raw material without using other auxiliary materials or additives. It is industrially extremely advantageous in that it does not require complicated and costly steps such as introduction of functional groups, microparticle formation, or mixing with other polymers, and can provide a uniform and smooth thin film.

本発明のキナクリドンプラズマ重合膜は赤色簿膜、コー
テイング膜としてのみでなく、導電性材料や充電変換素
子として使用可能である。
The quinacridone plasma polymerized film of the present invention can be used not only as a red book film or a coating film, but also as a conductive material or a charge conversion element.

(実施例) 以下、実施例を示して本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail by showing examples.

実施例 赤色顔料のキナクリドン(γ型)1omg をKBr錠
剤成型機にて成型したディスクをペルジャー型反応器内
に設置した加熱用ヒーター上にのせる。高電導度ITO
ガラス板を10cm径の平行平板電極の上部電極に張り
付ける。ペルジャー内を10torr  以下に脱気し
アルゴンを導入する操作を8回繰り返した後、ペルジャ
ー内の圧力をアルゴンで0.1torrに設定し%18
.56MJ(zの高周波を第1表に示すプラズマ出力に
て印加してアルゴンプラズマを発生させ、次いで加熱用
ヒーターを加熱しキナクリドンを昇華させた。モノマー
供給シャッターにより5秒間キナクリドンモノマーをプ
ラズマ中へ供給し、ITOガラス上へキナクリドンのプ
ラズマ重合膜を形成させた。
EXAMPLE A disk containing 1 omg of red pigment quinacridone (γ type) molded using a KBr tablet molding machine was placed on a heating heater installed in a Pelger type reactor. High conductivity ITO
A glass plate is attached to the upper electrode of a 10 cm diameter parallel plate electrode. After repeating the operation of deaerating the inside of the Pel jar to 10 torr or less and introducing argon eight times, the pressure inside the Pel jar was set to 0.1 torr with argon, and the pressure inside the Pel jar was set to 0.1 torr.
.. A high frequency of 56 MJ (z) was applied at the plasma output shown in Table 1 to generate argon plasma, and then a heating heater was heated to sublimate quinacridone. Quinacridone monomer was supplied into the plasma for 5 seconds by a monomer supply shutter. Then, a plasma polymerized film of quinacridone was formed on ITO glass.

第1表に通常の真空蒸着法で得られた蒸W膜の結果も示
す(Exp  No、 5 )。真空蒸′4帳はモノマ
ーと同じ赤色を示し、爪でこすって容重にはがれ、又硫
酸にも容易に溶解するなど化学的、機械約6こ極めて弱
いものであった。これに対し、本発明のプラズマ重合膜
はやや黄味を帯びているが、5gM1t察でも平滑な膜
であり、又マサツ抵抗性、硫酸不溶性も、蒸着膜よりす
ぐれていた。
Table 1 also shows the results of the evaporated W film obtained by the usual vacuum evaporation method (Exp No. 5). The vacuum-steamed product showed the same red color as the monomer, peeled off when rubbed with a fingernail, and was easily dissolved in sulfuric acid, indicating that it was extremely weak chemically and mechanically. On the other hand, although the plasma polymerized film of the present invention had a slight yellowish tinge, it was a smooth film even when measured at 5 gM1t, and its mass resistance and sulfuric acid insolubility were also superior to that of the vapor-deposited film.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のキナクリドンプラズマ重合膜を製造す
るのに使用したペルジャー反応器であり、高周波電源(
1)、真空排気系15)、冷却装置a1)、及び電極(
3)、 (9)、七ツマ−(6)、モノマー加熱用フィ
ラメント(4)、シャッターttcJbプラズマ重合用
基板+8)を内蔵したプラズマ反応容器(2)等よりな
る。 第2図のムはキナクリドンの真空g 、ff l1fi
、BとCは20W、100Wのプラズマ出力で重合した
時のプラズマ重合膜のIR吸収スペクトルを示す。 第3図のaはキナクリドンの真空蒸着膜、bとCは20
W、100Wのプラズマ出力で重合した時のプラズマ重
合膜の電子スペクトルを示す。 噸珊命         ゞ 第3図 浪畏(nm) 手続補正書(方式) 昭和63年7月19日 昭和62年特許願第 45008号 2、発明の名称 キナクリドンのプラズマ重合薄膜 3、補正をする者 事件との関係  特許出願人 住所 東京都墨田区墨田五丁目17番4号〒534  
大阪市部島区友淵町1丁目5番90号鐘紡株式会社特許
部 電話(06)921−1251 5、補正の対象 明細書の「図面の簡単な説明」の欄 6、補正の内容 (1)明細書第10真下から3行に記載の「第2図のA
は」を「第2図はキナクリドンの各種薄膜のIR吸収ス
ペクトルであり、Aは」と訂正する。 (2)明細書第11頁1行に記載の「第3図のaは」を
「第3図はキナクリドンの各種薄膜の電子スペクトルで
あり、aは」と訂正する。 以上
Figure 1 shows the Pelger reactor used to produce the quinacridone plasma polymerized film of the present invention, and shows a high-frequency power source (
1), vacuum exhaust system 15), cooling device a1), and electrode (
3), (9), a plasma reaction vessel (2) with a built-in seven magnet (6), a monomer heating filament (4), a shutter ttcJb plasma polymerization substrate +8), etc. The mu in Figure 2 is the vacuum g of quinacridone, ff l1fi
, B and C show IR absorption spectra of plasma polymerized films when polymerized at plasma outputs of 20 W and 100 W. In Figure 3, a is a vacuum-deposited film of quinacridone, b and C are 20
2 shows an electron spectrum of a plasma polymerized film when polymerized with a plasma output of 100 W. Kansan Mikoto ゞFigure 3 (nm) Procedural amendment (method) July 19, 1988 Patent application No. 45008 of 1988 2, title of invention Plasma polymerized thin film of quinacridone 3, person making amendment case Relationship with Patent applicant address: 5-17-4 Sumida, Sumida-ku, Tokyo 534
Patent Department, Kanebo Co., Ltd., 1-5-90 Tomobuchi-cho, Bejima-ku, Osaka Tel: (06) 921-1251 5. Column 6, "Brief explanation of drawings" of the specification subject to amendment, Contents of amendment (1) ) “A in Figure 2” written in the 3rd line from the bottom of No. 10 of the specification
``A'' is corrected to ``Figure 2 shows the IR absorption spectra of various thin films of quinacridone, and A is''. (2) "a in Figure 3" written in line 1 of page 11 of the specification is corrected to "Figure 3 shows the electronic spectra of various thin films of quinacridone, and a is". that's all

Claims (4)

【特許請求の範囲】[Claims] (1)溶剤不溶でかつ光電変換能を有するキナクリドン
のプラズマ重合薄膜。
(1) A plasma-polymerized thin film of quinacridone that is solvent-insoluble and has photoelectric conversion ability.
(2)薄膜の表面が平滑である特許請求の範囲第1項記
載の薄膜。
(2) The thin film according to claim 1, wherein the surface of the thin film is smooth.
(3)薄膜が490〜510nmと540〜560nm
とに2つの電子スペクトル吸収を有する特許請求の範囲
第1項記載の薄膜。
(3) Thin film thickness is 490-510nm and 540-560nm
2. A thin film according to claim 1, which has two electronic spectral absorptions.
(4)100mw/cm^2のタングステン光を照射し
た時の光電変換能が少なくとも1×10^−^5%であ
る特許請求の範囲第1項記載の薄膜。
(4) The thin film according to claim 1, which has a photoelectric conversion capacity of at least 1×10^-^5% when irradiated with tungsten light of 100 mw/cm^2.
JP4500887A 1987-02-26 1987-02-26 Plasma-polymerized thin film from quinacridone Pending JPS63308036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4500887A JPS63308036A (en) 1987-02-26 1987-02-26 Plasma-polymerized thin film from quinacridone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4500887A JPS63308036A (en) 1987-02-26 1987-02-26 Plasma-polymerized thin film from quinacridone

Publications (1)

Publication Number Publication Date
JPS63308036A true JPS63308036A (en) 1988-12-15

Family

ID=12707343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4500887A Pending JPS63308036A (en) 1987-02-26 1987-02-26 Plasma-polymerized thin film from quinacridone

Country Status (1)

Country Link
JP (1) JPS63308036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866797A (en) * 2010-07-16 2010-10-20 中国科学院长春光学精密机械与物理研究所 Preparation method of anode screen in field emission display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866797A (en) * 2010-07-16 2010-10-20 中国科学院长春光学精密机械与物理研究所 Preparation method of anode screen in field emission display device

Similar Documents

Publication Publication Date Title
Chen et al. Solvent effect on the hole-conductor-free fully printable perovskite solar cells
Zheng et al. Unconventional route to hairy plasmonic/semiconductor core/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion
Li et al. Merocyanine with hole-transporting ability and efficient defect passivation effect for perovskite solar cells
Qin et al. A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells.
Camaioni et al. The effect of a mild thermal treatment on the performance of poly (3‐alkylthiophene)/Fullerene Solar Cells
RU2472824C2 (en) Highly conductive transparent carbon films as electrode materials
AU2008274270B2 (en) Mixtures for producing photoactive layers for organic solar cells and organic photodetectors
JP5422119B2 (en) Liquid crystal interpenetrating polymer network
Hussain et al. High photosensitivity with enhanced photoelectrical contribution in hybrid nanocomposite flexible UV photodetector
Umeyama et al. Electron-rich Five-membered Ring of Azulene as a Donor Unit in Donor–Acceptor Alternating Copolymers for Polymer Solar Cell Applications
Kim et al. Designs and understanding of small molecule-based non-fullerene acceptors for realizing commercially viable organic photovoltaics
WO2006025433A1 (en) Photoelectric transduction material, photoelectric transduction apparatus and process for producing photoelectric transduction material
Wang et al. An all-in-one memory cell based on a homopolymer with a pyrene side chain and its volatile and nonvolatile resistive switch behaviors
Kocher et al. Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide
US5158619A (en) Photoconductive device comprising polyimide film
Osada et al. Photovoltaic and catalytic activity of plasma-polymerized phthalocyanine films
JPH11339868A (en) Charge transporting material, photoelectric conversion element and light regenerative photo-electro-chemical battery
Pan et al. Side‐Chain Functionalized Polymer Hole‐Transporting Materials with Defect Passivation Effect for Highly Efficient Inverted Quasi‐2D Perovskite Solar Cells
JPS63308036A (en) Plasma-polymerized thin film from quinacridone
Tam et al. Multifunctional Poly (N‐vinylcarbazole)‐Based Block Copolymers and their Nanofabrication and Photosensitizing Properties
Kranthiraja et al. A chlorinated polythiophene-based polymer as a dopant-free hole transport material in perovskite solar cells
JP3269247B2 (en) Organic solar cell and method of manufacturing the same
WO2020153492A1 (en) Photoelectric conversion element, device, and power supply module
Osada et al. A study on the plasma polymerization of some cyano‐containing compounds and their electrical properties
Pacheco et al. Understanding the Performance of a Nanocomposite Based on a Conjugated Azo‐Polymer and Reduced Graphene Oxide with Photoelectrically Switchable Properties by Analyzing the Potential Profile during Photocurrent Generation