JPS63307421A - Light beam scanner - Google Patents

Light beam scanner

Info

Publication number
JPS63307421A
JPS63307421A JP14458887A JP14458887A JPS63307421A JP S63307421 A JPS63307421 A JP S63307421A JP 14458887 A JP14458887 A JP 14458887A JP 14458887 A JP14458887 A JP 14458887A JP S63307421 A JPS63307421 A JP S63307421A
Authority
JP
Japan
Prior art keywords
slit
scanning direction
main scanning
incident
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14458887A
Other languages
Japanese (ja)
Inventor
Takeshi Komurasaki
健 小紫
Hiromi Takada
高田 博巳
Satoshi Yoshioka
諭 吉岡
Nobuo Sakuma
佐久間 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP14458887A priority Critical patent/JPS63307421A/en
Priority to US07/113,668 priority patent/US4943128A/en
Publication of JPS63307421A publication Critical patent/JPS63307421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To always form a uniform spot to improve the quality of image by providing a circular slit which shapes a beam in the main scanning direction and a long slit which is arranged in the main scanning direction and shapes the beam in the subscanning direction. CONSTITUTION:A slit member 38 having a circular slit 38S is arranged in a laser unit 21 on the optical path from a pyramidal mirror, and a slit member 39 having a long slit 39S is arranged before an ftheta lens 25 so that its lengthwise direction coincides with the main scanning direction of an arrow X. The width of the slit 39S is matched to the beam diameter in the subscanning direction of an arrow Y and dimensions in the lengthwise direction correspond to an overall angle of scanning or larger. Though the mirror 24 is rotated, the beam is shaped by the slit 38S to have the same diameter as the main scanning direction of the arrow X and goes to the slit part 39 and is shaped by the long slit 39S, and the spot having a desired diameter is always formed on a photosensitive body to improve the quality of image.

Description

【発明の詳細な説明】 (技術分野) 本発明は光ビーム走査装置に関し、より詳細には、レー
ザープリンタ、ディジタル複写機、ファクシミリ等にお
ける光書込み系に適用しうる光ビーム走査装置に関する
ものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a light beam scanning device, and more particularly to a light beam scanning device that can be applied to optical writing systems in laser printers, digital copying machines, facsimile machines, etc. .

(従来技術) 従来、被走査面(例えば感光体)上に画像形成に必要な
所要スポット径を以てビームを結像させるために、結像
レンズ以前の光路上にビーム整形用のスリットを設けて
おき、該スリット通過後のビームを偏向器の反射面にそ
の法線方向に対して傾けて入射させ、その反射光を入射
ビームとして上記結像レンズに入射させるようにしてい
る光ビーム走査装置が知られている。
(Prior Art) Conventionally, in order to form a beam onto a scanned surface (for example, a photoreceptor) with a required spot diameter necessary for image formation, a beam shaping slit has been provided on the optical path before the imaging lens. An optical beam scanning device is known in which the beam after passing through the slit is incident on a reflecting surface of a deflector at an angle relative to its normal direction, and the reflected light is made incident on the imaging lens as an incident beam. It is being

例えば、第4図、第5図、第9図において光源たる半導
体レーザー32より発散したビームはコリメータレンズ
33により平行光化されてからスリ0ツト34により整
形されて半導体レーザーユニット21より出射される。
For example, in FIGS. 4, 5, and 9, a beam diverged from a semiconductor laser 32 serving as a light source is collimated by a collimator lens 33, shaped by a slit 34, and emitted from the semiconductor laser unit 21. .

そして、このビームは第1ミラー22により、偏向器2
3の反射面を構成する円柱を斜めに裁断した如き反射面
のピラミダルミラー24の略回転軸にそって入射される
Then, this beam is transmitted to the deflector 2 by the first mirror 22.
The light is incident approximately along the axis of rotation of the pyramidal mirror 24, which has a reflecting surface that is formed by cutting a cylinder forming the reflecting surface of No. 3 diagonally.

かかる状態の下でピラミダルミラー24が回転すると、
これに伴ない偏向されてfθレンズ25に進み、等速比
されて第2ミラー26の反射部37にて光軸を曲げられ
、トロイダルレンズ27を通り、感光体ドラム1の外周
面に結像される。
When the pyramidal mirror 24 rotates under such conditions,
Along with this, it is deflected and proceeds to the fθ lens 25, is made into a constant velocity ratio, the optical axis is bent by the reflection part 37 of the second mirror 26, passes through the toroidal lens 27, and is imaged on the outer peripheral surface of the photoreceptor drum 1. be done.

なお、fOレンズ25と第2ミラー26との間に配置さ
れた光ファイバー35は、フォトセンサー36に導かれ
ておりこれらは書出し位置を決定する同期光を取り出す
ためのものである。
Note that an optical fiber 35 placed between the fO lens 25 and the second mirror 26 is guided to a photosensor 36, and is used to extract synchronized light for determining the writing start position.

このような光学系において、偏向器23以前におけるビ
ーム整形に係るスリット34はレーザーユニット21と
一体的に不動部材に固定されており、かかる構成により
以下の問題を生じていた。
In such an optical system, the slit 34 for beam shaping before the deflector 23 is fixed to a fixed member integrally with the laser unit 21, and this configuration has caused the following problems.

第6図に示す如く、スリット34(第9図参照)で整形
された楕円の入射ビームLNが、第1ミラー22により
反射されて、ピラミダルミラー24に入射する訳である
As shown in FIG. 6, the elliptical incident beam LN shaped by the slit 34 (see FIG. 9) is reflected by the first mirror 22 and enters the pyramidal mirror 24.

ここで、第6図に示す如く、ピラミダルミラー24のあ
る回転位置では入射ビームLNの径aは反射後1反射ビ
ームLOの径が主走査方向であるX軸方向に長軸を有す
る径aの楕円のビームとなる。しかし、入射角が法線方
向に対して傾いているためピラミダルミラー24が90
°回転すると第7図に示す如く反射ビームLOの径が主
走査方向と直交する副走査方向たるy軸方向に長軸を有
する径aの楕円ビームとなる。
Here, as shown in FIG. 6, at a certain rotational position of the pyramidal mirror 24, the diameter a of the incident beam LN is the diameter a of one reflected beam LO after reflection, which has its long axis in the X-axis direction, which is the main scanning direction. It becomes an elliptical beam. However, since the incident angle is tilted with respect to the normal direction, the pyramidal mirror 24 is
When rotated by .degree., as shown in FIG. 7, the reflected beam LO becomes an elliptical beam having a diameter a and a major axis in the y-axis direction, which is the sub-scanning direction orthogonal to the main-scanning direction.

勿論、楕円ビームにおいて、長軸方向に直交する短軸方
向についての径も上記座標軸方向についてそれぞれ変化
し、その結果、ピラミダルミラー24が90°回転する
間に偏向ビームは感光体l上で回転し、901回転した
ところで丁度、主走査方向と副走査方向とで長軸と短軸
の位置が逆転してしまう。
Of course, in the elliptical beam, the diameter in the minor axis direction perpendicular to the major axis direction also changes in the coordinate axis direction, and as a result, while the pyramidal mirror 24 rotates 90 degrees, the deflected beam rotates on the photoreceptor l. , 901 rotations, the positions of the major axis and minor axis are reversed between the main scanning direction and the sub-scanning direction.

fθレンズ25やトロイダルレンズ27等の軽微光学系
は9通常、レンズに入射するビームの径により結像径が
決定されるし、又、レンズに入射する入射ビームの径は
、主走査方向、副走査方向で異なるため、上記の如く偏
向ビームの径が変化すると感光体面上の最終スポット径
がばらばらに異なり、画像品質が劣悪となるのである。
In light optical systems such as the f-theta lens 25 and the toroidal lens 27, the imaging diameter is usually determined by the diameter of the beam incident on the lens, and the diameter of the incident beam incident on the lens is Since it differs in the scanning direction, when the diameter of the deflected beam changes as described above, the final spot diameter on the photoreceptor surface varies, resulting in poor image quality.

すなわち、楕円ビームを偏向器の反射面法線方向と有限
のある角度で入射させ、これを偏向させるようなビーム
走査装置において、特に入射角と反射角とが約45°を
なす光学的配置をとる場合には偏向される楕円ビームが
偏向器の回転により。
In other words, in a beam scanning device that makes an elliptical beam incident at a finite angle with respect to the normal direction of the reflecting surface of a deflector and deflects the beam, an optical arrangement in which the angle of incidence and the angle of reflection make about 45 degrees is particularly useful. When taking an elliptical beam, it is deflected by rotation of the deflector.

回転しながら走査され、結像レンズによる被走査面上で
の集光ビームのスポット径が主走査方向。
It is scanned while rotating, and the spot diameter of the focused beam on the scanned surface by the imaging lens is in the main scanning direction.

副走査方向に対して変化し、ひいては画質に悪影響を及
ぼすという問題があったのである。
There was a problem in that it changed in the sub-scanning direction, which in turn had an adverse effect on image quality.

(目  的) 従って1本発明の目的は偏向器の反射面に対する入射角
1反射角の関係は従来と変えることなく。
(Objective) Therefore, one object of the present invention is to maintain the relationship between the angle of incidence and the angle of reflection with respect to the reflecting surface of the deflector without changing from the conventional one.

しかも偏向される楕円ビームについては被走査面上での
スポット径が主走査方向、副走査方向に対して変化する
ことのない光ビーム走査装置を提供することにある。
Moreover, it is an object of the present invention to provide a light beam scanning device in which the spot diameter of a deflected elliptical beam on a surface to be scanned does not change in the main scanning direction and the sub-scanning direction.

(構  成) 本発明は上記目的を達成させるため、結像レンズへの入
射ビームの走査方向である主走査方向でのビーム径を整
形する円形スリットを偏向器以前に配置し、上記主走査
方向と直交する副走査方向でのビーム径を整形する全走
査角以上の開度を有する長形スリットを偏向器と結像レ
ンズの間に主走査方向にそわせて配置したことを特徴と
したものである。
(Structure) In order to achieve the above object, the present invention arranges a circular slit before the deflector to shape the beam diameter in the main scanning direction, which is the scanning direction of the beam incident on the imaging lens, and A long slit with an opening greater than the entire scanning angle is arranged along the main scanning direction between the deflector and the imaging lens to shape the beam diameter in the sub-scanning direction orthogonal to the main scanning direction. It is.

以下1本発明の一実施例に基づいて具体的に説明する。A detailed description will be given below based on one embodiment of the present invention.

第1図に示されるように、fθレンズ25に入射するビ
ーム径の主走査方向Xでの径と同径の円形スリット38
5を有するスリット部材38を偏向器23、詳しくはピ
ラミダルミラー24以前の光軸上に配置する5本例では
スリット部材38をレーザーユニット21内に、従来の
スリット34に代えて配置している。
As shown in FIG. 1, a circular slit 38 having the same diameter as the diameter of the beam incident on the fθ lens 25 in the main scanning direction
In this example, the slit member 38 having 5 is arranged on the optical axis before the deflector 23, specifically the pyramidal mirror 24. In this example, the slit member 38 is arranged inside the laser unit 21 in place of the conventional slit 34.

また、°第1図乃至第3図に示す如く長形スリット39
5の形成されたスリット部材39を、そのスリットの長
手方向を主走査方向Xにそわせて偏向器23とfOレン
ズ25の間に配置している。
In addition, as shown in FIGS. 1 to 3, a long slit 39 is provided.
A slit member 39 having a number 5 formed therein is disposed between the deflector 23 and the fO lens 25 with the longitudinal direction of the slit aligned with the main scanning direction X.

長形スリット395の幅寸法は副走査方向yでの所要ビ
ーム径に合わせて形成されており、長手寸法は、ビーム
の必要走査長を満足する全走査角以上の開度を以て形成
されている。
The width dimension of the elongated slit 395 is formed to match the required beam diameter in the sub-scanning direction y, and the longitudinal dimension is formed with an opening greater than the full scanning angle that satisfies the required scanning length of the beam.

以上の如く構成すれば、主走査方向でのピラミダルミラ
ー出射ビーム径は、ピラミダルミラー24が回転したと
しても、該ミラーへの入射ビームが円形スリット385
で円形に整形されているため。
With the above configuration, the diameter of the beam emitted from the pyramidal mirror in the main scanning direction is such that even if the pyramidal mirror 24 rotates, the beam incident on the mirror will not pass through the circular slit 385.
Because it is shaped into a circle.

その径は変化せずにスリット部材39に向かう。Its diameter remains unchanged toward the slit member 39.

そして、第2図に示す如くスリット部材39へ向かう入
射ビーム40は長形スリット39Sにより副走査方向y
を整形されてfOレンズ25に向かい、その入射ビーム
41は常に等しい主走査方向X、副走査方向yでのビー
ム径を維持し、所望の一定のスポットが感光体ドラム1
上に結像され画像品質を向上させることができる。
As shown in FIG. 2, the incident beam 40 directed toward the slit member 39 is passed through the elongated slit 39S in the sub-scanning direction y.
The incident beam 41 is shaped and directed to the fO lens 25, and the incident beam 41 always maintains the same beam diameter in the main scanning direction
image quality can be improved.

なお、スリット39Sの位置は、光軸上偏向器24とf
Oレンズ25の間であればその位置は任意に定め得るが
、偏向器24に近い方がスリットの主走査方向での幅寸
法も小さくすることができ、取付けの自由度も増す。そ
の反面、感光体lに対する結像位置を保証するための取
付精度は厳しさが要求され、る。従って、上記事業をa
金的に勘案して最適の位置が設定される。
Note that the position of the slit 39S is between the on-axis deflector 24 and f.
The position of the slit can be arbitrarily determined as long as it is between the O lenses 25, but the closer the slit is to the deflector 24, the smaller the width of the slit in the main scanning direction can be, increasing the degree of freedom in attachment. On the other hand, strict mounting accuracy is required to ensure the image forming position with respect to the photoreceptor l. Therefore, the above business is a
The optimal position is set in consideration of financial considerations.

次に1本光明の実施例に好適なレーザープリンタについ
て第8図、第9図により説明する。
Next, a laser printer suitable for a single-beam laser printer will be explained with reference to FIGS. 8 and 9.

第8図において、感光体ドラムlの局面には。In FIG. 8, the aspect of the photoreceptor drum l is as follows.

矢印で示すその回転方向の順に、帯電器2、現像ユニッ
ト3.転写チャージャ4、クリーニングユニット5が配
置されており、帯電器2と現像ユニット3との間の位置
6で感光体ドラム1に書込み光線が入射して露光するよ
うに書込光学ユニット7が設けられている。
Charger 2, developing unit 3. A transfer charger 4 and a cleaning unit 5 are arranged, and a writing optical unit 7 is provided so that a writing beam enters and exposes the photosensitive drum 1 at a position 6 between the charger 2 and the developing unit 3. ing.

この実施例の装置では、帯電器2.光書込み位置6は感
光体ドラム1の下側に配置され、光害込ユニット7は感
光体ドラムt、amユニット3、クリーニングユニット
5の下位に設けられている。
In the device of this embodiment, a charger 2. The optical writing position 6 is arranged below the photoreceptor drum 1, and the light pollution unit 7 is provided below the photoreceptor drum t, the am unit 3, and the cleaning unit 5.

又、転写チャージャ4は感光体ドラムlの上側に配置さ
れている。転写チャージャ4と感光体ドラム1との間の
転写部に転写紙を給紙する給紙カセット8は光書込ユニ
ット7の更に下部に設けられ。
Further, the transfer charger 4 is arranged above the photosensitive drum l. A paper feed cassette 8 for feeding transfer paper to a transfer section between the transfer charger 4 and the photosensitive drum 1 is provided further below the optical writing unit 7.

転写紙はフィードローラ9とこれに圧接するブリクショ
ンパッド10により重送を分離されて1枚ずつ送り出さ
れ、現像ユニット3の側方で大きくUターンし、現像ユ
ニット3の上方に設けられたレジストローラ対11.1
2により感光体ドラム1上に形成された画像と位置が整
合するようにタイミングを合せて転写部に給紙される。
The transfer paper is separated from double feeding by the feed roller 9 and the friction pad 10 that is in pressure contact with it, and is sent out one by one.The transfer paper makes a large U-turn on the side of the developing unit 3, and then passes through the resist provided above the developing unit 3. Roller pair 11.1
2, the paper is fed to the transfer section at the same timing as the image formed on the photosensitive drum 1.

転写後の転写紙径路には定着ユニット13が設けられ、
その排出側には排紙トレイ14が設けられている。
A fixing unit 13 is provided in the transfer paper path after transfer,
A paper discharge tray 14 is provided on the discharge side.

書込光学ユニット7は、第8図乃至第9図に示すように
、レーザーユニット21から発した画像情報信号に応じ
て点滅する光は第1ミラー22で反射し、スキャナモー
タで駆動される偏向器23の軸に一体に取付けられたミ
ラーとしてのピラミダルミラー24に入射し、一定の角
度範囲を繰返し偏向する。偏向光はfθレンズ25によ
り感光体ドラム1上の入射位116で直線上に結像し等
速度で投影点が移動するように補正され、第2ミラー2
6、トロイダルレンズ27を介して感光体ドラム1に入
射し。
As shown in FIGS. 8 to 9, in the writing optical unit 7, light that flashes in response to an image information signal emitted from a laser unit 21 is reflected by a first mirror 22, and is deflected by a scanner motor. The light enters a pyramidal mirror 24, which is a mirror integrally attached to the axis of the device 23, and is repeatedly deflected within a certain angular range. The deflected light is corrected by the fθ lens 25 so that it forms an image on a straight line at the incident position 116 on the photoreceptor drum 1, and the projection point moves at a constant speed.
6. The light enters the photosensitive drum 1 via the toroidal lens 27.

入射光の偏向により主走査が行なわれ、感光体ドラム1
の回転により副走査が行なわれ、画像情報信号に応じた
画像が書込まれ、静電潜像が形成される。書込光学ユニ
ット7の構成要素は装置のペース力t<−280に直接
取付けられている。
Main scanning is performed by deflecting the incident light, and the photoreceptor drum 1
Sub-scanning is performed by the rotation of , an image according to the image information signal is written, and an electrostatic latent image is formed. The components of the writing optical unit 7 are attached directly to the pacing force t<-280 of the device.

感光体ドラム1上に形成された静電潜像は、現像ユニッ
ト3により現像されてトナー像が形され、レジストロー
ラ対11.12により給紙された転写紙に転写チャージ
ャ4の作用により転写される。転写後感光体ドラム1よ
り分離された転写紙は定着着ユニット13により定着さ
れ、排紙トレイ14に排出される。
The electrostatic latent image formed on the photosensitive drum 1 is developed by the developing unit 3 to form a toner image, which is transferred by the action of the transfer charger 4 onto a transfer paper fed by a pair of registration rollers 11 and 12. Ru. After the transfer, the transfer paper separated from the photosensitive drum 1 is fixed by the fixing unit 13 and discharged to the paper discharge tray 14.

一方、転写検感光体ドラム1上に残留したトナーはクリ
ーニングユニット5によりクリーニングされ、次回の作
像に備えられる。
On the other hand, the toner remaining on the transfer detection photoreceptor drum 1 is cleaned by the cleaning unit 5 and prepared for the next image formation.

光ビームを偏向させる手段としては従来1回転多面鏡や
ホロスキャナーが知られている。これら回転多面鏡やホ
ロスキャナーでは、多面鏡やホロディスクが1回転する
間に、光ビームは、複数の鏡面ないしは複数のホログラ
ム格子により、複数回偏向せしめられる。このように1
回転多面鏡やホロスキャナーでは、光ビームの偏向に複
数の鏡面やホログラム格子で関与するところから、所謂
面倒れの問題として知られている問題が発生し。
Conventionally, single-rotation polygon mirrors and holo scanners are known as means for deflecting light beams. In these rotating polygon mirrors and holo scanners, a light beam is deflected multiple times by a plurality of mirror surfaces or a plurality of hologram gratings during one rotation of the polygon mirror or hologram. Like this 1
In rotating polygon mirrors and holo scanners, a problem known as the so-called face tilt problem occurs because multiple mirror surfaces or hologram gratings are involved in the deflection of the light beam.

この面倒れを捕正するために、光学系が複雑化したりす
る問題があった。
In order to correct this surface tilt, there is a problem in that the optical system becomes complicated.

このような問題に鑑みて、回転可能な反射媒体の鏡面を
1回転軸に対して傾け、偏向させるべき光ビームを1回
転軸に沿って入射させ、上記鏡面により反射せしめ1反
射媒体の回転により、反射ビームを360度偏向する偏
向手段が提案されつつある。かかる偏向手段における上
記反射媒体はピラミダルミラーと呼ばれている。
In view of this problem, the mirror surface of a rotatable reflective medium is tilted with respect to the one-rotation axis, and the light beam to be deflected is incident along the one-rotation axis and reflected by the mirror surface. , deflection means for deflecting a reflected beam by 360 degrees are being proposed. The reflecting medium in such a deflecting means is called a pyramidal mirror.

なお、ピラミダルミラーを用いる偏向方式では。In addition, in the deflection method using a pyramidal mirror.

光ビームの偏向に、ただひとつの鏡面が関与するのみで
あるので、前述した面倒れの問題は原理的に解決されて
いる。
Since only one mirror surface is involved in the deflection of the light beam, the above-mentioned surface tilt problem is solved in principle.

(効  果) 本発明によれば、走査ライン上での楕円ビームの回転に
よるビームスポット径の変化が解消され。
(Effects) According to the present invention, changes in beam spot diameter due to rotation of the elliptical beam on the scanning line are eliminated.

被走査面上に均一なビームスポットを結像することがで
き、以て画像品質の向上を図ることができ好都合である
This is advantageous because it is possible to form a uniform beam spot on the surface to be scanned, thereby improving image quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の一実施例を説明した光ビー
ム走査装置の構成図、第4図、第5図はそれぞれ光ビー
ム走査装置の光学系の配置を説明した図、第6図はビラ
′ミダルミラーの任意の回転位置における偏向態様を説
明した図、第7図は同上図の状態よりも90@回転させ
たときの偏向態様を説明した図、第8図は本発明の実施
に好適なレーザープリンタの説明図、第9図はレーザー
ユニットと偏向器の配置を説明した図である。 23・・・・偏向器、24・・・・ピラミダルミラー、
385・・・円形スリット、39S・・・・長形スリッ
ト。 雇2.図
1 to 3 are configuration diagrams of a light beam scanning device explaining one embodiment of the present invention, FIGS. 4 and 5 are diagrams respectively explaining the arrangement of the optical system of the light beam scanning device, and FIG. The figure is a diagram explaining the deflection mode at an arbitrary rotational position of the midal mirror, FIG. 7 is a diagram explaining the deflection mode when rotated by 90 degrees from the state shown in the above figure, and FIG. 8 is a diagram explaining the deflection mode when the mirror is rotated 90@ FIG. 9 is a diagram illustrating the arrangement of a laser unit and a deflector. 23...deflector, 24...pyramidal mirror,
385...Circular slit, 39S...Long slit. Employment 2. figure

Claims (1)

【特許請求の範囲】[Claims] 被走査面上に画像形成に必要な所要スポット径を以てビ
ームを結像させるために、結像レンズ以前の光路上にビ
ーム整形用のスリットを設けておき、該スリット通過後
のビームを偏向器の反射面にその法線方向に対して傾け
て入射させ、その反射光を入射ビームとして上記結像レ
ンズに入射させるようにしている光ビーム走査装置にお
いて、上記結像レンズへの入射ビームの走査方向である
主走査方向でのビーム径を整形する円形スリットを偏向
器以前に配置し、上記主走査方向と直交する副走査方向
でのビーム径を整形する全走査角以上の開度を有する長
形スリットを偏向器と結像レンズの間に主走査方向にそ
わせて配置したことを特徴とする光ビーム走査装置。
In order to image the beam with the required spot diameter necessary for image formation on the scanned surface, a slit for beam shaping is provided on the optical path before the imaging lens, and the beam after passing through the slit is directed to the deflector. In a light beam scanning device in which light is incident on a reflecting surface at an angle with respect to its normal direction, and the reflected light is made incident on the imaging lens as an incident beam, the scanning direction of the incident beam on the imaging lens is A circular slit that shapes the beam diameter in the main scanning direction is arranged before the deflector, and an elongated shape having an opening greater than the full scanning angle that shapes the beam diameter in the sub-scanning direction orthogonal to the main scanning direction. A light beam scanning device characterized in that a slit is arranged between a deflector and an imaging lens along the main scanning direction.
JP14458887A 1986-10-28 1987-06-10 Light beam scanner Pending JPS63307421A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14458887A JPS63307421A (en) 1987-06-10 1987-06-10 Light beam scanner
US07/113,668 US4943128A (en) 1986-10-28 1987-10-28 Light scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14458887A JPS63307421A (en) 1987-06-10 1987-06-10 Light beam scanner

Publications (1)

Publication Number Publication Date
JPS63307421A true JPS63307421A (en) 1988-12-15

Family

ID=15365583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14458887A Pending JPS63307421A (en) 1986-10-28 1987-06-10 Light beam scanner

Country Status (1)

Country Link
JP (1) JPS63307421A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561665A (en) * 1979-06-19 1981-01-09 Nec Corp Main scan rotary optical system for facsimile equipment
JPS56101121A (en) * 1980-01-16 1981-08-13 Fuji Photo Optical Co Ltd Photoscanner
JPS61281214A (en) * 1985-06-06 1986-12-11 Fujitsu Ltd Laser recorder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561665A (en) * 1979-06-19 1981-01-09 Nec Corp Main scan rotary optical system for facsimile equipment
JPS56101121A (en) * 1980-01-16 1981-08-13 Fuji Photo Optical Co Ltd Photoscanner
JPS61281214A (en) * 1985-06-06 1986-12-11 Fujitsu Ltd Laser recorder

Similar Documents

Publication Publication Date Title
JP2001330788A (en) Multibeam scanner, multibeam scanning method, synchronous beam detecting method and image forming device in multibeam scanning
JP4573943B2 (en) Optical scanning optical device and image forming apparatus using the same
KR20000048172A (en) Light-scanning optical system and image-forming apparatus comprising the same
JP3564026B2 (en) Optical scanning device, multi-beam optical scanning device, and image forming apparatus using the same
EP1248135B1 (en) Multibeam scanning optical system and image forming apparatus using the same
JP3740339B2 (en) Optical scanning optical system, multi-beam optical scanning optical system, and image forming apparatus using the same
EP1286198A2 (en) Scanning optical apparatus, image forming apparatus and adjusting method of scanning optical apparatus
JPH0996773A (en) Optical scanner
JP2005292845A (en) Scanning optical system, multibeam scanning optical system, and image forming apparatus using same
JP2535031B2 (en) Optical beam scanning device
JPS63307421A (en) Light beam scanner
JP2571593B2 (en) Light beam scanning device
JP2532096B2 (en) Optical beam scanning device
JPH0519186A (en) Scanning optical device
JPH01131513A (en) Optical beam scanner
JP2571590B2 (en) Light beam scanning device
JPH01210919A (en) Light beam scanner
JP4231156B2 (en) Multiple beam scanning apparatus and image forming apparatus
JP4573944B2 (en) Optical scanning optical device and image forming apparatus using the same
JPS63307419A (en) Light beam scanner
JP3719637B2 (en) Optical beam scanning device
JPH01210918A (en) Light beam scanner
JPS63305320A (en) Optical beam scanner
KR920010837B1 (en) Holography scanner apparatus for laser printer
JP4642182B2 (en) Optical scanning optical device and image forming apparatus using the same