JPS63307271A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS63307271A
JPS63307271A JP14307487A JP14307487A JPS63307271A JP S63307271 A JPS63307271 A JP S63307271A JP 14307487 A JP14307487 A JP 14307487A JP 14307487 A JP14307487 A JP 14307487A JP S63307271 A JPS63307271 A JP S63307271A
Authority
JP
Japan
Prior art keywords
substrate
film
electrode
potential
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14307487A
Other languages
Japanese (ja)
Inventor
Hideaki Shimamura
島村 英昭
Masao Sakata
坂田 正雄
Yuji Yoneoka
米岡 雄二
Michiyoshi Kawahito
川人 道善
Hide Kobayashi
秀 小林
Tsuneaki Kamei
亀井 常彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14307487A priority Critical patent/JPS63307271A/en
Publication of JPS63307271A publication Critical patent/JPS63307271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase the amount of film to be formed in through holes, by impressing D.C. electric power on a substrate electrode, providing an electrically insulating shielding plate to the vicinity of the above substrate electrode, and further heating a substrate in a sputtering device. CONSTITUTION:In a planar magnetron-type sputtering device, a shielding plate 100 is located between a target electrode 102 and a substrate electrode 105 so that its opening 110 opens onto the part, to be coated with film, of a substrate 106 to be the object of film formation at a position in the close vicinity of the substrate electrode 105 at the time of film formation. Further, the shielding plate 100 is electrically insulated (float potential) or grounded via a D.C. constant-voltage power source 111 capable of impressing negative potential. In the state of the above construction, a D.C. electric power is impressed on the target electrode 102 and a D.C. bias voltage is impressed on the substrate electrode 105, and then sputtering film formation is carried out while applying heating to the substrate 106 by means of a quartz lamp heater 109. By this method, through holes can be filled up with film without forming voids, and superior sputtering film formation can be carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造装置に係り、特に半導体装置
に於ける配線膜を形成するためのスバッ。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device manufacturing apparatus, and particularly to a substrate for forming wiring films in semiconductor devices.

夕装置に関する。Regarding the evening equipment.

〔従来の技術〕[Conventional technology]

半導体装置の製造プロセスに於いて、特に配線。 In the manufacturing process of semiconductor devices, especially wiring.

膜の形成手法としては現在プレーナマグネトロン−1型
のスパッタ装置が主流を成している。元来、ス。
Planar magnetron-1 type sputtering equipment is currently the mainstream method for forming films. Originally, Su.

バッタ法では第2図中段に示すごとく成膜粒子 620
0がオオむね余弦則(CO8−LAW)(7)分布2o
2゜に従ってターゲット表面201から広い立体角に分
In the grasshopper method, the film forming particles are 620 as shown in the middle row of Figure 2.
0 is the great cosine law (CO8-LAW) (7) Distribution 2o
2° from the target surface 201 to a wide solid angle.

布して飛び出しているので、基板へ飛来する成膜、、。Since the film is protruding from the cloth, the film is deposited onto the substrate.

粒子の入射角度はランダムである。この場合、約。The angle of incidence of particles is random. In this case, approx.

2μmルールまでは、成膜粒子がランダムなことが基板
上に存在する凹凸(段差)部での成膜物の被覆特性(カ
バレッヂ)を満足させていた。
Up to the 2 μm rule, the randomness of the deposited particles satisfied the coverage of the deposited material on the uneven (step) portions existing on the substrate.

ところがVLS Iの高集積化に伴い最小加工寸法が1
μm領域に突入すると成膜粒子がランダムなことが逆に
スルーホール302の段差の上端部303に於て成膜物
のオーバーハング204を形成し、これがスルーホール
開口部を狭くするというシャドウィング効果のためにス
ルーホール内部への成膜量が平担部205での成膜量に
比べて小さくなり力・バレツヂが悪くなる。さらにオー
バーハングが大。
However, with the increasing integration of VLSI, the minimum processing size is 1
When entering the μm region, the randomness of the deposited particles conversely forms an overhang 204 of the deposited material at the upper end 303 of the step of the through hole 302, which causes a shadowing effect that narrows the opening of the through hole. Therefore, the amount of film deposited inside the through hole is smaller than the amount of film deposited on the flat portion 205, resulting in poor force and deflection. Furthermore, the overhang is large.

き(なるとスルーホール開口部を塞ぎスルーホー。When the through-hole opens, the through-hole is closed.

ル内部にボイドが残る。このため半導体の長期に。voids remain inside the tube. For this reason, in the long term of semiconductors.

亘る信頼性を向上する上でスルーホール内部の成膜量を
増加し、スルーホール内部を成膜材料で埋。
In order to improve reliability over time, we increased the amount of film deposited inside the through hole and filled the inside of the through hole with a film forming material.

め込む成膜手法が必要となる。A film-forming method that incorporates this is required.

こうしたカバレツヂを向上させる手法としては、。Here are some ways to improve your coverage.

CVD法やスルーホール自身をテーパー形状とす。The CVD method and the through hole itself are made into a tapered shape.

る等があるが、CVD法ではAA−Cu−8i等の合金
7.。
However, in the CVD method, alloys such as AA-Cu-8i 7. .

を組成をコントロールしながら成膜することが非。It is possible to form a film while controlling the composition.

常に困難であり、スルーホールのテーパー付ケバ。Always difficult and through-hole tapered fluff.

工程数が増加しプロセスが複雑になる等の問題があるた
めに現行の製造プロセスには適用が難しい。
It is difficult to apply to current manufacturing processes because of problems such as an increase in the number of steps and a complicated process.

これに対してバイアススパッタ法はプロセスとの互換性
やこれまでの実績から有望視されている。
On the other hand, the bias sputtering method is seen as promising due to its compatibility with the process and past results.

ところが、従来では層間絶縁膜の平担化を目的とし、基
板電極に高周波電力(RF電力)を投入する方法が主流
であり、この場合、基板電極の構造が複雑であったり、
カバレツヂを向上させるため、3 。
However, in the past, the mainstream method was to apply high frequency power (RF power) to the substrate electrode for the purpose of flattening the interlayer insulating film, but in this case, the structure of the substrate electrode was complicated,
3. To improve coverage.

にRF電力を大きくするとデバイス特性を変動さ・せる
等の問題がある。そこでスルーホール内を成・膜材料で
埋め込むことができ、加えて簡便で且つ・デバイス特性
を変動させないスパッタ装置の開発・が望まれている。
However, if the RF power is increased, there are problems such as fluctuations in device characteristics. Therefore, it is desired to develop a sputtering apparatus that can fill the inside of the through hole with a film material, is simple, and does not change the device characteristics.

なお、この種装置に関連するもうのとしては、例えば特
開昭55−58371号公報が挙。
An example of a device related to this type of device is JP-A-55-58371.

げられる。can be lost.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術ではスルーホール内部への成膜量。 In the above conventional technology, the amount of film deposited inside the through hole.

が少ないことが微小スルーホールを介した上下層、1、
配線の接続信頼性を不十分にしている問題があっ。
1.
There is a problem with insufficient wiring connection reliability.

た。Ta.

本発明の目的は、簡便な構造の基板電極を具備。An object of the present invention is to provide a substrate electrode with a simple structure.

し、デバイス特性を変動させずにスルーホール内。inside the through-hole without changing the device characteristics.

部への成膜量を増大させうるスパッタ装置を提供1、す
ることにある。
An object of the present invention is to provide a sputtering apparatus that can increase the amount of film deposited on a certain area.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、スパッタ装置において、基板電極に直流電
力を印加し、該基板電極の近傍に電気的に絶縁する(フ
ロート電位)か、プラズマ電位よ・4 ・ り負の電位を印加したシールド板を設け、さらに・該基
板を加熱する手段を有することにより達成さ・れる。
The above purpose is to apply direct current power to a substrate electrode in a sputtering device, and either to electrically insulate the substrate electrode (float potential) or to install a shield plate to which a potential more negative than the plasma potential is applied. This is achieved by providing and further having means for heating the substrate.

〔作用〕[Effect]

上記のスパッタ装置は、基板電極に直流電力を一印加す
るので基板電極をアース電位と絶縁させる・だけでよく
、電極構造が簡便である。
In the above-mentioned sputtering apparatus, since one DC power is applied to the substrate electrode, it is only necessary to insulate the substrate electrode from the ground potential, and the electrode structure is simple.

しかし、第4図に示すように基板電極九印加す。However, as shown in FIG. 4, the substrate electrode 9 is applied.

る電圧(基板バイアス電圧であり、以下バイアス。voltage (substrate bias voltage, hereinafter referred to as bias).

電圧と略する)を負方向に太き(すると成膜した1、。Voltage (abbreviated as "voltage") increases in the negative direction (then the film is deposited 1).

膜中に放電空間中に導入するガス(通常Arガスが。A gas (usually Ar gas) is introduced into the discharge space during the film.

一般的であるので以下Arとする)の負イオンが吸、蔵
する。このAr吸蔵量が0.5(wt%)を超えると膜
上。
Because it is common, it absorbs and stores negative ions (hereinafter referred to as Ar). If the amount of Ar storage exceeds 0.5 (wt%), it will be on the film.

面にボイドやふくれが発生し、そうなると導電膜。Voids and bulges occur on the surface, which causes the conductive film.

とじて使用することができない。従って、バイア1−ス
ミ圧は−150(Vより負方向に大きくすることができ
ない。
It cannot be closed and used. Therefore, the via 1-sumi pressure cannot be made greater than -150 (V) in the negative direction.

一方で直流電力により基板電極において放電な生ぜしめ
れば、基板電極に投入する電力〔基板電力とする〕は数
(W/d)である。しかし放電電圧が数(KV)必要で
あり、上記バイアス電圧限界。
On the other hand, if a discharge is caused in the substrate electrode by DC power, the power input to the substrate electrode (referred to as substrate power) is several (W/d). However, a discharge voltage of several kilovolts (KV) is required, which is the bias voltage limit mentioned above.

(−150(V’l’]を越えており、使用することが
できな。
(It exceeds -150 (V'l') and cannot be used.

い。stomach.

そこで、本発明では、基板電極は負の電位(バ。Therefore, in the present invention, the substrate electrode has a negative potential (bar).

イアスミ圧)を保持するのみとし、ターゲット電極によ
り発生する放電空間中の、基板及び基板電。
The substrate and the substrate voltage in the discharge space generated by the target electrode.

極の近傍のプラズマ密度で決まる量のArイオンを。The amount of Ar ions determined by the plasma density near the pole.

前記負電位で加速しイオシ衝撃を与えることによ。By accelerating at the negative potential and applying sulfur bombardment.

す、成膜材料をマイグレートさせて基板上のスルー。Migrate the film-forming material and deposit it on the substrate.

ホール内部へ埋め込むことを原理とする。従って、1.
1上記バイアス電圧限界〔例えば、−150(V)1の
範囲。
The principle is to embed it inside the hole. Therefore, 1.
1 The above bias voltage limit [for example, -150 (V) 1 range.

内で、できるだけ深いバイアス電圧を印加し、最。Apply the bias voltage as deep as possible within the maximum range.

大阪の基板電力を投入する。Inject power from Osaka's circuit board.

また通常のスパッタ装置では、上記シールド板は真空処
理室内に固定するのでアース電位である。
Further, in a normal sputtering apparatus, the shield plate is fixed in the vacuum processing chamber and is therefore at ground potential.

しかし上記シールド板がアース電位では基板電力は0.
75 (W/ffl )程度しかとることができず、こ
れではスルーホールを埋め込むことはできない。そこで
上記シールド板を電気的に絶縁する(フロート電位)か
、プラズマ電位より負の電位とするこ2Cノ とで基板電力の増加を図る。
However, when the shield plate is at ground potential, the board power is 0.
75 (W/ffl), which makes it impossible to embed through holes. Therefore, the substrate power is increased by electrically insulating the shield plate (float potential) or by setting it to a potential more negative than the plasma potential.

即ち、上記シールド板がアース電位の時は該シー・ルド
板は放電のアノードの一部の働きをし、電子・が大量に
流れ込むので基板電極の近傍での電子音・度もそれに応
じて多(、逆にArイオン密度は小さ−い。これに対し
て該シールド板を電気的に絶縁す・る(フロート電位)
か、プラズマ電位より負の電。
That is, when the shield plate is at ground potential, the shield plate acts as a part of the anode for discharge, and a large amount of electrons flows in, so the electronic sound intensity near the substrate electrode increases accordingly. (On the contrary, the Ar ion density is small.In contrast, the shield plate is electrically insulated (float potential)
Or a charge more negative than the plasma potential.

位とすると、放電電流としての電子は上記アノ−。When it is assumed that the electrons as the discharge current are the above-mentioned anode.

ド及び真空処理室内壁を通ってアースに流れる。。It flows to ground through the ground and the inner wall of the vacuum processing chamber. .

従って、シールド板には放電中のArイオンと電子とが
シールド板の電位をプラズマ電位(フロート。
Therefore, the Ar ions and electrons in the discharge on the shield plate change the potential of the shield plate to a plasma potential (float).

電位)か、上記負の電位と等しくするよりに拡散。potential) or equal to the negative potential above.

してくるので、基板電極近傍に拡散してくるArイ。As a result, Ar diffuses near the substrate electrode.

オン密度が相対的に増加することになる。例えば、。The on density will increase relatively. for example,.

シールド板の電位をフロート電位とすると、基板電力は
倍の1.5 (W/d )程度になる。
If the potential of the shield plate is set to a float potential, the substrate power will be doubled to about 1.5 (W/d).

但し、Arイオンによるイオン衝撃は堆積した膜の表面
数層のみの原子の運動をエキサイトするので、堆積した
膜のバルクとしての運動をエキサイトするために、膜の
温度な略300℃に外部から加、7 。
However, since ion bombardment by Ar ions excites the motion of atoms in only a few layers on the surface of the deposited film, in order to excite the motion of the bulk of the deposited film, external application to the film temperature of approximately 300°C is necessary. , 7.

熱する必要がある。即ち、第2図下段に示すよう・に、
外部加熱109とイオン衝撃210とにより膜中・の原
子のモビリティを高め、イオン211の持つ運・動エネ
ルギーにより成膜材料を上記スルーホール・302内部
へマイグレート212させることで埋め込゛む。
It needs to be heated. That is, as shown in the lower part of Figure 2,
The mobility of atoms in the film is increased by external heating 109 and ion bombardment 210, and the film-forming material is migrated 212 into the through-hole 302 by the kinetic energy of the ions 211, thereby embedding it.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面により説明する。。 An embodiment of the present invention will be described below with reference to the drawings. .

第1図は、本発明によるスパッタ装置の一実施。FIG. 1 shows one implementation of a sputtering apparatus according to the present invention.

例の基本構成を示している。Arガス導入口107と1
、。
The basic configuration of the example is shown. Ar gas inlet 107 and 1
,.

排気口108とを有する真空処理室101内に距離55
゜−隔てて静止対向するターゲット電極102と基板。
A distance 55 is provided in the vacuum processing chamber 101 having an exhaust port 108.
The target electrode 102 and the substrate stand still and face each other with a distance between them.

電極105とを具備するプレーナマグネトロン型の。A planar magnetron type comprising an electrode 105.

スパッタ装置において、例えばターゲット電極1o2゜
上にスパッタターゲットとして厚さ10 (朋)の高純
一度Al板103(以下ターゲットとする)を固定し。
In a sputtering apparatus, for example, a high purity Al plate 103 (hereinafter referred to as target) with a thickness of 10 mm is fixed as a sputter target on a target electrode 1o2.

一方の基板電極105上に配線膜を形成しようとする例
えば直径i o o (mm)の成膜対象基板106(
以下基板とする)を固定し、Arガス導入口107から
Arガスを200secm導入し、排気口108から所
望の排気・ 8 ・ を行って真空処理室101内を例えば0.5(Pa)程
度の・雰囲気を保って、アノード104を接地し、ター
ゲラ・ト電極102に例えば8(KW)程度の直流電力
を直・流電源113により印加し、更に基板電極105
に ・−125(V)程度の直流バイアス電圧を直流定
電圧電源−112により印加し、ターゲット電極102
と基板電・極105との間の空間の基板電極105側′
に近接して・基板106に対応した位置に例えば開口径
115 (mm)の・開口110を有するシールド板1
00を配設し、該シー。
For example, a film formation target substrate 106 (with a diameter of i o o (mm)) on which a wiring film is to be formed on one substrate electrode 105 (
(hereinafter referred to as a substrate) is fixed, Ar gas is introduced for 200 seconds from the Ar gas inlet 107, and the desired exhaust gas is performed from the exhaust port 108 to create a vacuum inside the vacuum processing chamber 101 at a pressure of, for example, about 0.5 (Pa). - While maintaining the atmosphere, the anode 104 is grounded, and DC power of, for example, about 8 (KW) is applied to the target electrode 102 by the DC power source 113, and then the substrate electrode 105 is
- Apply a DC bias voltage of about -125 (V) from a DC constant voltage power supply -112 to the target electrode 102.
and the substrate electrode 105 side of the space between the substrate electrode/electrode 105'
A shield plate 1 having an opening 110 with an opening diameter of 115 (mm), for example, at a position corresponding to the substrate 106 in proximity to the substrate 106.
00 and the sea.

ルド板100は電気的に絶縁する(フロート電位)・か
、あるいは負の電位を印加することのできる直。
The field plate 100 is either electrically insulating (float potential) or a direct current to which a negative potential can be applied.

流室電圧電源111を介して接地し、基板106の被。It is grounded through the flow chamber voltage power supply 111 and covered with the substrate 106.

成膜領域の反対側から石英ランプヒータ109(以下ヒ
ータとする)により該基板106を加熱しなか。
The substrate 106 is not heated by a quartz lamp heater 109 (hereinafter referred to as a heater) from the opposite side of the film forming area.

らスパッタ成膜を行う。Perform sputtering film formation.

このようにしてスパッタ成膜を行うと基板106上では
AJ膜の堆積と、堆積したAl膜のマイグレーシ璽ンと
が同時に行われ、そのため第3図(al〜(clに示す
断面模式図のようにAA膜301の堆積が進行し、先ず
第3図(alに示すようにスルーホール302□の段差
部303に形成されている急峻なAJ膜301の・段差
304がなだらかに埋められ、その上に更にス・ルーホ
ール302を埋めるように堆積が進み、第3・図(b)
次いで第3図(c)に示すようにスルーホール302・
内にボイドを形成すること無しにAl膜301を埋め込
むことができる(なお図中305は下層配線膜、・30
6は層間絶縁膜である)。
When sputtering film formation is performed in this manner, the deposition of the AJ film and the migration of the deposited Al film are performed simultaneously on the substrate 106. The deposition of the AA film 301 progresses, and first, as shown in FIG. The deposition further progresses to fill the through hole 302, as shown in Figure 3 (b).
Next, as shown in FIG. 3(c), the through hole 302.
It is possible to embed the Al film 301 without forming voids inside (in the figure, 305 is the lower wiring film, 30
6 is an interlayer insulating film).

次に、基板流入電流特性、 vthシフト(Δvth 
>・特性及び埋め込み性について説明する。
Next, the substrate inflow current characteristics, vth shift (Δvth
>・Explain the characteristics and embeddability.

第5図は、基板バイアス電圧を変化させた時の1.。FIG. 5 shows 1. when changing the substrate bias voltage. .

基板流入電流特性を示す。横軸はバイアス電圧間。This shows the substrate inflow current characteristics. The horizontal axis is the bias voltage.

で、縦軸は基板流入電流(3)で基板から流れだす方。The vertical axis is the substrate inflow current (3) that flows out of the substrate.

向の電流を正とする。(ターゲット印加電力は8、(K
W))。kイアスミ圧を負方向に増加させるこ。
The current in the direction is positive. (Target applied power is 8, (K
W)). k Increase the Iasumi pressure in the negative direction.

とにより、基板流入電流は飽和傾向を示し、飽和電流値
が正方向であり、基板からアースに向けて電流が流れだ
していることから、基板に流れ込む荷電粒子は主にAr
イオンである。
Therefore, the current flowing into the substrate shows a saturation tendency, the saturation current value is in the positive direction, and the current starts flowing from the substrate toward the ground, so the charged particles flowing into the substrate are mainly Ar.
It is an ion.

例えばバイアス電圧が−125(■では、シールド板1
00の電位がアース電位の時の基板流入電流501が6
30(mA) (0,76(W/cIft)、但し基板
電極面積をシー・ルド板の開口面積(104(m))と
する)で、シールド・板の電位をフロート電位とする本
発明による基板・流入電流500においては1200(
mA) (1,44(W/7)と・略2倍に増加する。
For example, if the bias voltage is -125 (■, shield plate 1
When the potential of 00 is ground potential, the substrate inflow current 501 is 6
30 (mA) (0.76 (W/cIft), however, the substrate electrode area is the opening area of the shield plate (104 (m))), and the potential of the shield plate is a float potential according to the present invention. When the substrate/inflow current is 500, it is 1200 (
mA) (1,44 (W/7), which increases approximately twice as much.

次に、シールド板に負の電位を印加した場合の・基板流
入電流特性について示す。第6図は、例え・ばバイアス
電圧を−125(V)一定とし、シールド板100・に
印加した負の電圧に対する基板流入電流特性を・示す。
Next, the substrate inflow current characteristics when a negative potential is applied to the shield plate will be described. FIG. 6 shows, for example, the substrate inflow current characteristics with respect to the negative voltage applied to the shield plate 100, with the bias voltage constant at -125 (V).

シールド板をフロート電位(〜−25M)とし。Set the shield plate to a float potential (~-25M).

た場合の基板流入電流600は1200(mA)であり
、−50゜〜−200(V)の範囲で負方向に増加して
も基板流入室。
In this case, the substrate inflow current 600 is 1200 (mA), and even if it increases in the negative direction in the range of -50° to -200 (V), the substrate inflow current 600 is 1200 (mA).

流601は略1250(mA)でほぼ横ばいである。従
って、。
The current 601 is approximately 1250 (mA) and is almost flat. Therefore,.

シールド板に負の大きな電位を印加するとシール。Seals when a large negative potential is applied to the shield plate.

ド板がスパッタされ異物を発するのと放電が不安定にな
るので、シールド板に印加する電位はフロート電位か、
それより数〜数10関だけ負の電位である。
The shield plate will sputter and emit foreign matter, and the discharge will become unstable.
The potential is several to several tens of functions more negative than that.

第7図に、基板電力が0.76 (W/7)と1.44
(W/d)の条件において、スルーホール寸法カ1.0
〜、1.5μm(深さ1.1μm)のスルーホールに対
しAl膜をス・バッタ成膜した場合の埋め込み性につい
て示す。・○は埋め込み、△はマイグレーション効果は
ある・が埋め込めず、×はボイドが形成することを示す
。・基板電力が0.76(W/m )の場合は、スルー
ホール寸法が1.5μmでは埋め込めるが、スルーホー
ル寸法が・小さくなるに従い埋め込み性が悪(なるのに
対し。
Figure 7 shows that the board power is 0.76 (W/7) and 1.44.
Under the condition of (W/d), the through hole dimension is 1.0
The embedding property when an Al film is sputter-deposited into a 1.5 μm (depth 1.1 μm) through hole is shown below.・○ indicates embedding, △ indicates that there is a migration effect, ・ indicates that embedding is not possible, and × indicates that voids are formed. - When the substrate power is 0.76 (W/m2), a through-hole with a size of 1.5 μm can be filled, but as the through-hole size becomes smaller, the embeddability becomes worse.

て、本発明による基板電力が1.44 (Wlct& 
)の場合は、・スルーホール寸法が1.0〜1.5μm
においてスルーホー。
Therefore, the substrate power according to the present invention is 1.44 (Wlct&
), the through hole size is 1.0 to 1.5 μm
Through-ho.

ル内を埋め込める。              1.
You can embed the contents within the file. 1.
.

次に1本発明により(基板電力1.44(W/m) )
 、 。
Next, according to the present invention (substrate power 1.44 (W/m))
, .

スルーホール寸法が1.5μm(深さ1.1μrn)の
スルーホー。
A through hole with a through hole dimension of 1.5 μm (depth 1.1 μrn).

ルを有するトランジスタにAl膜をスパッタ成膜し。An Al film is sputtered onto a transistor having a gate electrode.

た場合のΔvth特性について示す。The Δvth characteristics in the case of

第8図は、種々の実効ゲート長(Leff)に対するΔ
vth特性を示す。基板にRF定電力 1.5(KW)
 )を印加する従来型RFスパッタ成膜の#th702
は、基板電力を印加しないスパッタ成膜のΔVth 7
00フト量が略2桁大きいのに対し、本発明によるス・
 12・ バッタ成膜のΔVth 701はreferenceと
略等しい特・性を示し、デバイス特性の変動が無い。
FIG. 8 shows Δ for various effective gate lengths (Leff).
Indicates vth characteristics. RF constant power to the board 1.5 (KW)
) #th702 of conventional RF sputter deposition applying
is ΔVth of sputter film formation without applying substrate power 7
00ft is approximately two orders of magnitude larger, whereas the
12. ΔVth 701 of the batter film formation exhibits characteristics that are approximately the same as the reference, and there is no change in device characteristics.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微小スルーホールへの段差部・復時性
の良好なスパッタ成膜が可能であり、半導体装置の多層
配線プロセスにおける微小スルーホー・ルを介したト下
層配線の接続信頼性を大幅に向上できる。
According to the present invention, it is possible to form a film by sputtering with good reproducibility on stepped portions in minute through holes, and it is possible to improve the connection reliability of lower layer wiring through minute through holes in the multilayer interconnection process of semiconductor devices. It can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるスパッタ装置の一実施例の基本構
成を示す断面模式図、第2図は本発明の。 基本原理を示す成膜断面模式図、第3図は第1図。 下段の成膜過程を示す模式図、第4図は第1図の。 基板バイアス電圧−アルゴン吸蔵量特性図、第5゜図は
第1図の基板バイナス電圧−基板流入電流特。 性図、第6図は第1図のシールド板電圧−基板流入電流
特性図、第7図は第1図の成膜埋込み性説明図、第8図
は第1図の成膜Δvth特性図でちる。 100・・・シールド板、101・・・真空容器、10
2・・・ターゲット電極、103・・・ターゲット、1
04・・・アノード、    105・・・基板電極、
106・・・基板、      107・・・Arガス
導入口、 ・108・・・排気口、     109・
・・石英ランプヒータ、・110・・・開口、 111 、112・・・直流定電圧電源、113・・・
直流電源。 15゜ 年 + 図 妻」又バイアス電、圧−(V) 第 5 図 基板バイアス室’、L(V、) も Z (支) o        −7ob      −200シー
兄に版の■ツ丑(Vつ 第 7 図 第8 図 乙eH−91宗〕
FIG. 1 is a schematic cross-sectional view showing the basic configuration of an embodiment of a sputtering apparatus according to the present invention, and FIG. 2 is a schematic cross-sectional view showing the basic configuration of an embodiment of a sputtering apparatus according to the present invention. A schematic cross-sectional view of film formation showing the basic principle, FIG. 3 is similar to FIG. 1. The lower schematic diagram showing the film formation process, FIG. 4, is the same as FIG. 1. Figure 5 shows the substrate bias voltage vs. argon storage amount characteristic diagram of Figure 1. Figure 6 is the shield plate voltage vs. substrate inflow current characteristic diagram in Figure 1, Figure 7 is the film formation embedding property diagram in Figure 1, and Figure 8 is the film formation Δvth characteristic diagram in Figure 1. Chiru. 100... Shield plate, 101... Vacuum container, 10
2...Target electrode, 103...Target, 1
04... Anode, 105... Substrate electrode,
106... Substrate, 107... Ar gas inlet, 108... Exhaust port, 109...
...Quartz lamp heater, 110...Opening, 111, 112...DC constant voltage power supply, 113...
DC power supply. 15゜year + Figure 5 Bias voltage, voltage - (V) Fig. 5 Substrate bias chamber', L (V,) also Z (branch) o -7ob -200 Fig. 7 Fig. 8 EH-91 sect]

Claims (1)

【特許請求の範囲】 1、ターゲットを固定するターゲット電極と該ターゲツ
ト電極と略対設する基板電極と、直流電力を前記基板電
極に印加する手段と、前記ターゲツト電極とターゲット
の浸食領域以外の前記ターゲットの外周部分とを覆いア
ース電位とするか又は正の電位とするアノードと、前記
基板電極に固定された成膜対象基板を加熱する手段と、
前記ターゲット電極と前記基板電極との間に位置し、該
基板電極側に近接して成膜時に前記成膜対象基板上の被
成膜部分が前記ターゲットに対して開口している開口部
を有するシールド板と、前記ターゲットに直流電力を直
流電源により印加してターゲット材料をスパッタし前記
成膜対象基板上に配線膜を成膜するスパッタ装置におい
て、 前記シールド板にフロート電位又は、プラズマ電位より
負の電位を印加する手段とを有するスパツタ装置。 2、前記シールド板に電気的に絶縁する(フロート電位
)か、プラズマ電位より負の電位を印加することを特徴
とする特許請求の範囲第1項記載のスパツタ装置。 3、前記シールド板は、成膜時に前記基板電極に固定さ
れた基板上の被成膜部が前記空間に向けて開口すること
を特徴とする特許請求の範囲第1項記載のスパツタ装置
。 4、前記アノードに電気的に接地する(アース電位)か
、正の電位を印加することを特徴とする特許請求の範囲
第1項記載のスパッタ装置。 5、少なくとも前記基板上に堆積した膜か、該基板が前
記基板電極に電気的に接続することを特徴とする特許請
求の範囲第1項記載のスパッタ装置。
[Scope of Claims] 1. A target electrode for fixing a target, a substrate electrode substantially opposite to the target electrode, means for applying DC power to the substrate electrode, an anode that covers the outer periphery of the target and sets it to a ground potential or a positive potential, and means for heating a substrate to be film-formed fixed to the substrate electrode;
An opening is located between the target electrode and the substrate electrode, and is close to the substrate electrode, and has an opening in which a portion of the substrate to be film-formed on the film-forming target substrate is opened to the target during film formation. In a sputtering apparatus that sputters a target material by applying DC power to the shield plate and the target using a DC power source to form a wiring film on the substrate to be film-formed, the shield plate is provided with a float potential or a plasma potential that is more negative than and means for applying a potential of. 2. The sputtering apparatus according to claim 1, wherein the shield plate is electrically insulated (float potential) or a potential more negative than the plasma potential is applied. 3. The sputtering apparatus according to claim 1, wherein the shield plate has a film-formed portion on the substrate fixed to the substrate electrode opened toward the space during film formation. 4. The sputtering apparatus according to claim 1, wherein the anode is electrically grounded (earth potential) or a positive potential is applied. 5. The sputtering apparatus according to claim 1, wherein at least a film deposited on the substrate or the substrate is electrically connected to the substrate electrode.
JP14307487A 1987-06-10 1987-06-10 Sputtering device Pending JPS63307271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14307487A JPS63307271A (en) 1987-06-10 1987-06-10 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14307487A JPS63307271A (en) 1987-06-10 1987-06-10 Sputtering device

Publications (1)

Publication Number Publication Date
JPS63307271A true JPS63307271A (en) 1988-12-14

Family

ID=15330311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14307487A Pending JPS63307271A (en) 1987-06-10 1987-06-10 Sputtering device

Country Status (1)

Country Link
JP (1) JPS63307271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202008A (en) * 1990-03-02 1993-04-13 Applied Materials, Inc. Method for preparing a shield to reduce particles in a physical vapor deposition chamber
US5391275A (en) * 1990-03-02 1995-02-21 Applied Materials, Inc. Method for preparing a shield to reduce particles in a physical vapor deposition chamber
JP2002220663A (en) * 2001-01-29 2002-08-09 Anelva Corp Magnetron sputtering equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202008A (en) * 1990-03-02 1993-04-13 Applied Materials, Inc. Method for preparing a shield to reduce particles in a physical vapor deposition chamber
US5391275A (en) * 1990-03-02 1995-02-21 Applied Materials, Inc. Method for preparing a shield to reduce particles in a physical vapor deposition chamber
JP2002220663A (en) * 2001-01-29 2002-08-09 Anelva Corp Magnetron sputtering equipment
JP4623837B2 (en) * 2001-01-29 2011-02-02 キヤノンアネルバ株式会社 Magnetron sputtering equipment

Similar Documents

Publication Publication Date Title
US4046660A (en) Sputter coating with charged particle flux control
JP4344019B2 (en) Ionized sputtering method
US8835296B2 (en) Electronic component manufacturing method including step of embedding metal film
US5916820A (en) Thin film forming method and apparatus
US6451179B1 (en) Method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma
US6220204B1 (en) Film deposition method for forming copper film
JPS63307271A (en) Sputtering device
KR980011764A (en) Method and apparatus for providing front high density plasma deposition
JP4164154B2 (en) Ionization sputtering equipment
JPH02175864A (en) Thin-film forming device and formation of thin film by using this device
JP3727693B2 (en) TiN film manufacturing method
JP2001164360A (en) Dc sputtering system
JP2781165B2 (en) Sputtering equipment
US3630871A (en) Cathodic sputtering method
JPH06158301A (en) Sputtering device
JPH03215664A (en) Thin film forming device
JPS6017070A (en) Method and device for forming thin film
JPH0250957A (en) Sputtering device
JPH04329637A (en) Manufacture of insulating film
JPS61117829A (en) Formation of contact electrode
CN107369614A (en) The preparation method of metal film plating method, thin film transistor (TFT) and array base palte
JPS61198636A (en) Thin film former
JPH01270320A (en) Device for deposition of insulating thin film
JPH02148722A (en) Manufacture of semiconductor integrated circuit device
JPS63169378A (en) Sputtering method