JPS63307240A - High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production - Google Patents

High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production

Info

Publication number
JPS63307240A
JPS63307240A JP14122187A JP14122187A JPS63307240A JP S63307240 A JPS63307240 A JP S63307240A JP 14122187 A JP14122187 A JP 14122187A JP 14122187 A JP14122187 A JP 14122187A JP S63307240 A JPS63307240 A JP S63307240A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy powder
alloy
forged member
green compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14122187A
Other languages
Japanese (ja)
Other versions
JP2856251B2 (en
Inventor
Toru Kono
河野 通
Masato Otsuki
真人 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62141221A priority Critical patent/JP2856251B2/en
Publication of JPS63307240A publication Critical patent/JPS63307240A/en
Application granted granted Critical
Publication of JP2856251B2 publication Critical patent/JP2856251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce the titled member by subjecting the Al alloy powder having the specific compsn. including Si, Cu and Mg to green compacting, forging the same directly under the melting point, thereafter quenching said powders and furthermore subjecting the same to a heat treatment. CONSTITUTION:The Al-Si alloy powder contg., by weight, 30-50% Si, 1-5% Cu, 0.5-5% Mg and the balance Al with inevitable impurities is produced by a quenching solidifying method. Said alloy powder is subjected to green compacting, hot forging at about 450-520 deg.C directly under the melting point and thereafter quenching. In this way, high density is provided to said green compact; primary phase Si therein is fined; and shaping is applied to the green compact. Said green compact is thereafter subjected to a precipitation hardening heat treatment to form a structure where primary phase Si having 2-15mum average grain size and precipitated intermetallic compounds having <=1mum average grain size are uniformly dispersed into a matrix. The high strength wear resistant Al-Si alloy forged member having about 14-12X10<-6>/ deg.C thermal expansion coefficient is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鉄の熱膨張係数(12X 1 o−6/d
eg)と同等の低い熱膨張係数(14〜12 X 10
  /deg )並びに高強度を有し、かつ耐摩耗性に
もすぐれ、特にこれらの特性が要求される各種のエンジ
ン部品やコンプレッサ部品などとして適用されるM−S
i系合金鍛造部材およびその製造法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to the thermal expansion coefficient of iron (12X 1 o-6/d
Low coefficient of thermal expansion (14-12 x 10
/deg), high strength, and excellent wear resistance, and is used as various engine parts and compressor parts that especially require these characteristics.
The present invention relates to an i-based alloy forged member and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、上記の各種部品の製造には、低熱膨張係数および
耐摩耗性が要求されることから、これらの特性を備えた
、Si:30〜50重量%(以下、%は重量%を示す)
を含有し、さらに所要の合金成分を含有したM−Si系
合金が用いられている。
Conventionally, manufacturing of the various parts mentioned above requires a low coefficient of thermal expansion and wear resistance.
An M-Si alloy containing the following and further containing required alloy components is used.

これらの従来M−Si系合金部材は、通常、原料粉末と
して、Si扮末と、所定の組成を有するM合金粉末を用
い、これらを所定の割合に配合し、混合し、圧粉体に成
形した後、約300〜500℃の温度で熱間押出し加工
し、押出し加工後、直ちに急冷の溶体化処理を施すこと
によって製造されている。
These conventional M-Si alloy members usually use Si powder and M alloy powder having a predetermined composition as raw material powders, and these are blended in a predetermined ratio, mixed, and formed into a green compact. After that, it is manufactured by hot extrusion processing at a temperature of about 300 to 500°C, and immediately after the extrusion processing, a rapid cooling solution treatment is performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、近年、機関の葛性能化および軽量化に対する要
求が強まりつつあり、これに伴ってこれらの構造部材に
対する高強度化が強く望まれているが、上記の従来M−
Si系合金押出部材は十分満足する高強度を具備しない
ために、これ(二対口することができないのが現状であ
る。
However, in recent years, there has been a growing demand for improved engine performance and weight reduction, and along with this, there has been a strong desire for higher strength for these structural members.
Currently, Si-based alloy extruded members do not have a sufficiently high strength, so it is currently impossible to make them in two pairs.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、上記の
熱膨張係数が低く、かつすぐれた耐摩耗性を有するSi
:30〜50%含有のAe −Si系合金に着目し、こ
れのもつすぐれた特性を損なうことなく、高強度化をは
かるべく研究を行なつこ結果、原料粉末として、 Si:30−50%、   Cu:1〜5%、Mg:0
.5〜5%、 を含有し、残りがAlと不可避不純物からなる組成を有
する急冷凝固M−Si系合金粉末を用い、これより圧粉
体を成形し、この圧粉体を、前記M −Si系合金粉末
の融点直下、望ましくは450〜520℃の範囲内の温
度で熱間鍛造を施し、熱間鍛造後急冷して、高密度化と
初晶S1の微細化、並びに形状付与を行ない、引続いて
析出強化熱処理を施すこと(二よって製造されたM−S
i系合金鍛造部材は、素地中(二、平均粒径:2〜15
fimの初晶Siと、同0.1μm以下の析出金属間化
合物が均一に分散した組織をもつよう(二なり、この熱
間鍛造(二より微細化した初晶Siと、析出強化熱処理
C二より析出した一段と微細な金属間化合物によって、
低熱膨張係数およびすぐれた耐摩耗性を具備した状態で
、高強度を有するようになるという知見を得たのである
Therefore, from the above-mentioned viewpoints, the present inventors developed Si, which has a low coefficient of thermal expansion and excellent wear resistance.
We focused on Ae-Si alloys containing 30-50% Si and conducted research to increase their strength without sacrificing their excellent properties. Cu: 1-5%, Mg: 0
.. A green compact is formed from the rapidly solidified M-Si alloy powder having a composition of 5 to 5% of Hot forging is carried out at a temperature just below the melting point of the alloy powder, preferably within the range of 450 to 520°C, and after hot forging, it is rapidly cooled to increase the density, refine the primary crystal S1, and give it a shape, Subsequently, precipitation strengthening heat treatment is applied (the M-S produced by
The i-series alloy forged parts are made of
fim primary crystal Si and precipitated intermetallic compounds of 0.1 μm or less have a uniformly dispersed structure (2). Due to the finer intermetallic compounds precipitated,
They found that it has high strength while having a low coefficient of thermal expansion and excellent wear resistance.

この発明は、上記知見にもとづいてなされたものであっ
て、 Si:30〜50%、  Cu:1〜5%、Mg : 
0.5〜5%、 を含有し、残りがAlと不可避不純物からなる組成、並
びに素地中に、平均粒径:2〜15pmの初晶Siと、
同0.1 p m以下の析出金属間化合物が均一に分散
した組織を有する低熱膨張係数を有する高強度耐摩耗性
M−Si系合金鍛造部材、および、Si:30〜50%
、  Cu:1〜5%、Mg:0.5〜5%、 を含有し、残りがAlと不可避不純物からなる組成を有
する急冷凝固1’J−Si系合金粉末より成形した圧粉
体に、このAl1−Si系合金粉末の融点直下、望まし
くは450〜520℃の範囲内の温度で熱間鍛造を施し
、急冷して、高密度化と初晶Siの微細化、並びに形状
付与を行ない、引続いて析出強化熱処理を施すことによ
って、低熱膨張係数を有する高強度耐摩耗性M−Si系
合金鍛造部材を製造する方法、 に特徴を有するものである。
This invention was made based on the above findings, and includes: Si: 30-50%, Cu: 1-5%, Mg:
0.5 to 5%, with the remainder consisting of Al and unavoidable impurities, and primary crystal Si with an average grain size of 2 to 15 pm in the matrix,
A high-strength wear-resistant M-Si alloy forged member having a low thermal expansion coefficient and a structure in which precipitated intermetallic compounds of 0.1 pm or less are uniformly dispersed, and Si: 30 to 50%.
, Cu: 1 to 5%, Mg: 0.5 to 5%, and the remainder is Al and unavoidable impurities. Hot forging is performed at a temperature just below the melting point of this Al1-Si alloy powder, preferably within a range of 450 to 520 ° C., followed by rapid cooling to increase the density, refine the primary crystal Si, and give it a shape, The present invention is characterized by a method for manufacturing a high-strength, wear-resistant M-Si alloy forged member having a low coefficient of thermal expansion by subsequently performing precipitation strengthening heat treatment.

つぎに、この発明の鍛造部材および原料粉末の組成を上
記の通り(二限定した理由を説明する。
Next, the reason why the compositions of the forged member and raw material powder of the present invention are limited to two as described above will be explained.

(al  5i Si成分には、熱膨張係数を低め、かつ耐摩耗性を向上
させる作用があるが、その含有量が30%未満では前記
作用に所望の効果が得られず、一方その含有量が50%
を越えると熱間鍛造が困難となるこ、とから、その含有
量を30〜50%と定めた。
(The al 5i Si component has the effect of lowering the coefficient of thermal expansion and improving wear resistance, but if its content is less than 30%, the desired effect cannot be obtained; 50%
Since hot forging becomes difficult if the content exceeds 30% to 50%.

なお、36〜45%の含有が望ましい。Note that the content is preferably 36 to 45%.

Φ)  CuおよびMg これらの成分には、いずれも熱処理時に素地中に微細な
Mg2Si+Cu2Alなどの金属間化合物として析出
し、熱間鍛造により初晶Siが微細化されることと合ま
って、強度を著しく向上させる作用があるが、その含有
量がCu : 1%未満およびMg:0.5%未満では
前記作用に所望の効果が得られず、一方Cu : 5%
およびMg : 5%を越えて含有させてもより一層の
向上効果は現われず、経済性を考慮して、その含有量を
Cu:1〜5%、Mg : 0.5−5 %と定めた。
Φ) Cu and Mg Both of these components precipitate as fine intermetallic compounds such as Mg2Si+Cu2Al in the base material during heat treatment, and together with the refinement of primary crystal Si by hot forging, they increase strength. However, if the content of Cu is less than 1% and Mg is less than 0.5%, the desired effect cannot be obtained; on the other hand, Cu: 5%
And Mg: Even if the content exceeds 5%, no further improvement effect appears, so in consideration of economic efficiency, the content was determined to be Cu: 1 to 5% and Mg: 0.5 to 5%. .

なお、上記のように、この発明の鍛造部材においては、
初晶Siの平均粒径を2〜15/Jmとする必要がある
のであって、これはその平均粒径が2μm未満では、所
望の低熱膨張係数および耐摩耗性を確保することができ
ず、一方その平均粒径が15μmを越えると、強度、靭
性、および加工性が低下するようになるという理由によ
るものであり、かつこの平均粒径は熱間鍛造における温
度、加工率、および回数などによって自由に調製するこ
とができる。また、平均粒径:0.111m以下の金属
間化合物は、熱間鍛造後急冷の溶体化処理についで、析
出強化熱処理を施すことによって、必然的に形成される
ものである。
In addition, as mentioned above, in the forged member of this invention,
It is necessary to set the average grain size of primary Si to 2 to 15/Jm, because if the average grain size is less than 2 μm, the desired low coefficient of thermal expansion and wear resistance cannot be secured. On the other hand, if the average grain size exceeds 15 μm, strength, toughness, and workability will decrease, and this average grain size will vary depending on the temperature, working rate, number of times, etc. during hot forging. Can be prepared freely. Further, the intermetallic compound having an average grain size of 0.111 m or less is inevitably formed by performing precipitation strengthening heat treatment following hot forging and rapid cooling solution treatment.

さらに、この発明の鍛造部材は、溶解時のるつぼなどか
らの混入により、不可避不純物としてFeやNiなどの
成分を含有する場合があるが、その含有量が全体で2%
以下であれば、何ら影響を及ぼすものではないので、そ
の含有が許容される。
Furthermore, the forged member of the present invention may contain components such as Fe and Ni as unavoidable impurities due to contamination from the crucible during melting, but the total content is 2%.
If it is below, it will not have any influence and its inclusion is permitted.

〔実施例〕〔Example〕

つぎに、この発明の鍛造部材およびその製造法を実施例
により具体的に説明する。
Next, the forged member of the present invention and its manufacturing method will be specifically explained using examples.

通常のるつぼ炉を用い、各種のM合金溶湯を調製し、こ
れを空気アトマイズ法により102〜b表に示される成
分組成、並びC−100〜+350meshの粒度をも
ったAl1−Si系合金粉末を成形し、この急冷凝固M
−Si系合金粉末より5 ton / alの圧力で1
0 rran X 23 mm X 55 mmの寸法
をもった圧粉体を成形し、ついでこれらの圧粉体に対し
て、大気中、前記A/!−Si系合金粉末の融点直下の
温度である500℃に60分間加熱保持した後、3 t
on/dの荷重で一次熱間鍛造を施して、高密度化と初
晶Siの微細化をはかると共に、その寸法を11rta
n X 16 ran X 57 mとし、引続いて再
び大気中、温度:500℃に15分間保持後、同じ< 
31on/cIHの荷重にて2次熱間鍛造を行なって、
14聴X12mmX60mmの寸法に形状付与した後、
直ちに水冷の溶体化処理を施し、最終的に温度=170
℃l二6時間保持の析出強化熱処理を行なうことによっ
て本発明法1〜9を実施し、実質的に上記の急冷凝固M
−Si系合金粉末と同一の成分組成をもった本発明鍛造
部材をそれぞれ製造した。
Using an ordinary crucible furnace, prepare various M alloy molten metals, and use the air atomization method to produce Al1-Si alloy powders having the composition shown in Table 102-b and the particle size of C-100 to +350 mesh. This rapid solidification M
-1 at a pressure of 5 ton/al from Si-based alloy powder
Green compacts with dimensions of 0 rran x 23 mm x 55 mm are formed, and then these green compacts are subjected to the above-mentioned A/! in air. - After heating and holding for 60 minutes at 500°C, which is a temperature just below the melting point of Si-based alloy powder, 3 t
Primary hot forging was performed under a load of on/d to increase the density and refine the primary crystal Si, and the dimensions were reduced to 11rta.
n x 16 ran
Performing secondary hot forging under a load of 31 on/cIH,
After adding the shape to the dimensions of 14 mm x 12 mm x 60 mm,
Immediately subjected to water cooling solution treatment, finally temperature = 170
Methods 1 to 9 of the present invention are carried out by carrying out precipitation strengthening heat treatment held at ℃ 1 for 26 hours, and substantially the above-mentioned rapid solidification M
-Forged members of the present invention having the same composition as the Si-based alloy powder were manufactured.

ついで、この本発明鍛造部材について、金属顕微鏡によ
り初晶S1および金属間化合物の平均粒径を測定すると
共に、熱膨張係数を測定し、さらに引張試験および摩耗
試験を行なった。
Next, regarding this forged member of the present invention, the average particle size of the primary crystal S1 and the intermetallic compound was measured using a metallurgical microscope, the coefficient of thermal expansion was measured, and a tensile test and an abrasion test were conducted.

なお、熱膨張係数は、直径=5咽×長さ:15請の試片
を用い、20〜150℃間の値を測定し、また引張試験
には、平行部(二おける寸法が、直径:51+++++
×長さ:20咽の試片を用い、さらに摩耗試験は、大越
式試験機を用い、相手材:Fe12、最終荷重:2Kg
、摺動速度: 3.3 rl /sec、摩耗距離:1
00mの条件で乾式で行ない、比摩耗量を測定した。こ
れらの測定結果を第1表に示した。
The coefficient of thermal expansion was measured at a value between 20 and 150°C using a specimen with a diameter of 5 mm and a length of 15 mm; 51++++++
×Length: Using a 20mm test piece, further abrasion test was performed using an Okoshi type testing machine, mating material: Fe12, final load: 2Kg
, sliding speed: 3.3 rl/sec, wear distance: 1
The test was carried out in a dry manner under the conditions of 00 m, and the specific wear amount was measured. The results of these measurements are shown in Table 1.

また、第1表には、比較の目的で、従来法(二よって製
造されたSi:40.3%含有のM−Si系合金押出部
材の同一条件での測定結果を示した。
Furthermore, for the purpose of comparison, Table 1 shows the measurement results of an M-Si alloy extruded member containing 40.3% Si manufactured by the conventional method (2) under the same conditions.

〔発明の効果〕〔Effect of the invention〕

第1表(1示される結果から、本発明法1〜9によって
製造された本発明鍛造部材は、いずれも従来法によって
製造されたM−Si系合金押出部材に比して、初晶Si
の平均粒径が細かく、したがって一段と高い強度を有し
、かつ前記M−Si系合金押出部材と同等の低い熱膨張
係数およびすぐれた耐摩耗性を有することが明らかであ
る。
From the results shown in Table 1 (1), it can be seen that the forged members of the present invention manufactured by methods 1 to 9 of the present invention have a higher primary crystal Si content than the M-Si alloy extruded members manufactured by the conventional method.
It is clear that the average particle size of the M-Si alloy extruded member is finer, and therefore has higher strength, as well as a low coefficient of thermal expansion and excellent wear resistance equivalent to the M-Si alloy extruded member.

上述のように、この発明の方法によれば、従来IJ−S
i系合金押出部材と同等の低熱膨張係数および耐摩耗性
を有し、これより一段とすぐれた強度を有するM−Si
系合金鍛造部材を製造することができ、したがってこの
M−Si系合金鍛造部材によれば、各種機関の高性能化
および軽量化に大いに寄与するなど工業上有用な効果が
もたらされるのである。
As described above, according to the method of the present invention, conventional IJ-S
M-Si has a low coefficient of thermal expansion and wear resistance equivalent to that of i-based alloy extruded members, but has superior strength.
Therefore, this M-Si alloy forged member brings about industrially useful effects such as greatly contributing to higher performance and weight reduction of various engines.

Claims (2)

【特許請求の範囲】[Claims] (1)Si:30〜50%、Cu:1〜5%、Mg:0
.5〜5%、 を含有し、残りがAlと不可避不純物からなる組成(以
上重量%)、並びに素地中に、平均粒径:2〜15μm
の初晶Siと、同0.1μm以下の析出金属間化合物が
均一に分散した組織を有することを特徴とする低熱膨張
係数を有する高強度耐摩耗性Al−Si系合金鍛造部材
(1) Si: 30-50%, Cu: 1-5%, Mg: 0
.. 5 to 5%, with the remainder consisting of Al and unavoidable impurities (wt%), and an average particle size of 2 to 15 μm in the base material.
A high-strength, wear-resistant Al-Si based alloy forged member having a low coefficient of thermal expansion, characterized by having a structure in which primary crystal Si of 0.1 μm or less and precipitated intermetallic compounds of 0.1 μm or less are uniformly dispersed.
(2)Si:30〜50%、Cu:1〜5%、Mg:0
.5〜5%、 を含有し、残りがAlと不可避不純物からなる組成(以
上重量%)を有する急冷凝固Al−Si系合金粉末より
成形した圧粉体に、このAl−Si系合金粉末の融点直
下の温度で熱間鍛造を施し、急冷して、高密度化と初晶
Siの微細化、並びに形状付与を行ない、引続いて析出
強化熱処理を施すことを特徴とする低熱膨張係数を有す
る高強度耐摩耗性Al−Si系合金鍛造部材の製造法。
(2) Si: 30-50%, Cu: 1-5%, Mg: 0
.. The melting point of this Al-Si alloy powder is molded into a green compact formed from a rapidly solidified Al-Si alloy powder having a composition (wt%) containing 5 to 5% of High-quality steel with a low coefficient of thermal expansion, which is characterized by hot forging at a temperature just below that, followed by rapid cooling to increase the density, refine the primary Si crystals, and give it a shape, followed by precipitation strengthening heat treatment. A method for manufacturing a strong and wear-resistant Al-Si alloy forged member.
JP62141221A 1987-06-05 1987-06-05 High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same Expired - Lifetime JP2856251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141221A JP2856251B2 (en) 1987-06-05 1987-06-05 High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141221A JP2856251B2 (en) 1987-06-05 1987-06-05 High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63307240A true JPS63307240A (en) 1988-12-14
JP2856251B2 JP2856251B2 (en) 1999-02-10

Family

ID=15286942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141221A Expired - Lifetime JP2856251B2 (en) 1987-06-05 1987-06-05 High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same

Country Status (1)

Country Link
JP (1) JP2856251B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185956A (en) * 1989-01-12 1990-07-20 Nissan Motor Co Ltd Solution heat treatment for aluminum-type hot forged product
JPH0551683A (en) * 1991-07-22 1993-03-02 Toyo Alum Kk Hypereutectic al-si powder metallurgical alloy with high strength
US10385622B2 (en) * 2014-09-18 2019-08-20 Halliburton Energy Services, Inc. Precipitation hardened matrix drill bit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS61238947A (en) * 1985-04-16 1986-10-24 Sumitomo Light Metal Ind Ltd Manufacture of al-si alloy blank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
JPS61238947A (en) * 1985-04-16 1986-10-24 Sumitomo Light Metal Ind Ltd Manufacture of al-si alloy blank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185956A (en) * 1989-01-12 1990-07-20 Nissan Motor Co Ltd Solution heat treatment for aluminum-type hot forged product
JPH0551683A (en) * 1991-07-22 1993-03-02 Toyo Alum Kk Hypereutectic al-si powder metallurgical alloy with high strength
US10385622B2 (en) * 2014-09-18 2019-08-20 Halliburton Energy Services, Inc. Precipitation hardened matrix drill bit

Also Published As

Publication number Publication date
JP2856251B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
CN112063883B (en) Aluminum bronze and preparation method thereof
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JPS62112748A (en) Aluminum forging alloy
CN112391562B (en) Aluminum alloy and preparation method thereof
JP4764094B2 (en) Heat-resistant Al-based alloy
CN110218917B (en) Alloy aluminum bar containing rare earth elements and preparation process thereof
CN111020303A (en) 4XXX series aluminum alloy and preparation method thereof
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JPS6342344A (en) Al alloy for powder metallurgy excellent in high temperature strength characteristic
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0617550B2 (en) Method for producing aluminum alloy materials with improved fatigue strength, especially bar stock
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPH0457738B2 (en)
JPS63307240A (en) High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production
JPS6318034A (en) Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JP2711296B2 (en) Heat resistant aluminum alloy
US3544394A (en) Aluminum-copper-magnesium-zinc powder metallurgy alloys
JPH02194142A (en) Al-base alloy powder for sintering
EP0137180B1 (en) Heat-resisting aluminium alloy
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JPH0557346B2 (en)
JPH0379738A (en) High strength al alloy material
KR102572624B1 (en) High elongation die casting alloy composition for non-heat treatment