JPS63305185A - Working medium mixture - Google Patents

Working medium mixture

Info

Publication number
JPS63305185A
JPS63305185A JP62140029A JP14002987A JPS63305185A JP S63305185 A JPS63305185 A JP S63305185A JP 62140029 A JP62140029 A JP 62140029A JP 14002987 A JP14002987 A JP 14002987A JP S63305185 A JPS63305185 A JP S63305185A
Authority
JP
Japan
Prior art keywords
working medium
medium mixture
tetrafluoroethane
mixture
dichlorotrifluoroethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62140029A
Other languages
Japanese (ja)
Other versions
JP2507437B2 (en
Inventor
Makoto Segami
瀬上 信
Toru Kamimura
徹 上村
Masato Fukushima
正人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62140029A priority Critical patent/JP2507437B2/en
Publication of JPS63305185A publication Critical patent/JPS63305185A/en
Application granted granted Critical
Publication of JP2507437B2 publication Critical patent/JP2507437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To provide the title mixture which exhibits excellent refrigerating and heating efficiency, and which comprises a dichlorotrifluoroethane and a tetrafluoroethane. CONSTITUTION:A dichlorotrifluoroethane (e.g., 1,1-dichloro-2,2,2-trifluoroethane) is mixed with a tetrafluoroethane (e.g., 1,1,1,2-tetrafluoroethane) in a molar ratio of 50:50-99:1 to prepare a working medium mixture. Optionally added to 100pts.wt. working medium mixture is about 1pt.wt. heat stabilizer (e.g., dimethyl phosphite).

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、冷凍機、ヒートポンプ等に使用し得る新規な
作動媒体混合物に関する。 [従来技術] 空調、冷凍および冷蔵機器(冷凍サイクル・ヒートポン
プサイクル)、廃熱回収発電(ランキンサイクル)、熱
交換機器(ヒートパイプ)等が実用化ないし試験開発さ
れている。 これらの機器に用いる作動媒体には、水をはじめプロパ
ンやブタン等の炭化水素類、トリクロロモノフルオロメ
タン(R−11) ヤ、  1.2−ジクロロテトラフ
ルオロエタン(R−114)等のフロン類、又はアンモ
ニア等が知られている。 [発明の目的] フロン類は毒性が少なく、非可燃性で化学的にも安定で
あり、沸点の異なる各種フロンが容易に入手できること
から、作動媒体としての評価研究が活発に行なわれてい
る0本発明者等は、熱回収効率(特に、冷凍庫、冷蔵庫
、冷暖房機器、給湯機器あるいは廃熱回収を目的とした
ヒートポンプなど)の高いフロン類の探索を進めた結果
、ジクロロトリフルオロエタンとテトラフルオロエタン
とを必須成分とする作動媒体混合物が有効であることを
見い出すことができた0本発明は、このような作動媒体
混合物を新規に提供するものである。 [発明の構成] 本発明における、ジクロaトリフルオaエタンには、1
.1−ジクロロ−2,2,2−)リフルオロエタン(R
−123)、 1.2−ジクロロ−1,2,2−トリフ
ルオロエタン(R−123a)そしテ+ 1.1−ジク
ロロ−1,2,2−)リフルオロエタン(R−123b
)の3種の異性体が又、テトラフルオロエタンには1,
1,2.2−テトラフルオロエタン(R−134)と1
.1,1.2−テトラ7 ルオロエタy (R−134
a)の2種の異性体が知られているが、それぞれの異性
体は互いに物性が類似しているため、これらを単独で用
いてもよく、また、これらの混合物を用いてもよい、以
下の説明においてはR−123とR−134aを混合使
用する例を示す。 以下、本発明の作動媒体を用いた冷凍サイクルシステム
のフローシートを示す第1図に従って本発明の詳細な説
明する。第1図の1は圧縮機、2は凝縮器、 3.3′
は負荷流体用配管、4は減圧装置、5は蒸発器、6,8
′は熱源流体用配管を示す。 第1図に示す冷凍サイクルシステムにおいて作動媒体は
圧縮@1で圧縮された後秦縮器2に導かれ、該凝縮器z
中で管3より導入される負荷流体により冷却されて凝縮
する。一方、負荷流体は凝縮器2中で逆に加熱され管3
′を経て負荷加熱に供される。つぎに凝縮した作動媒体
は減圧袋m4により減圧された後蒸発器5に導かれ、該
蒸発器5中で管6より導入され管6′から排出される熱
源流体により加熱された後、再び圧Fi111に吸引さ
れ上記のサイクルを繰り返す、一方、熱源流体は蒸発器
5中で逆に冷却され、管6′を経て冷却に供される。 第2図及び第3図は第1図に示す冷凍サイクルシステム
における作動媒体のサイクルを圧力−エンタルピー線図
上に記入したものである0作動媒体の飽和蒸気を断熱圧
縮した場合、湿り状態になるものを第2図に、乾き状態
になるものを第3図に示す。 第1図の圧縮機による作動媒体の変化は第2図及び第3
図の符号8から9あるいは13から14の変化に、凝縮
器による作動媒体の変化は3→10→11→あるいは1
4→15→18→17の変化に、減圧装置による作動媒
体の変化は11から12あるいは17から18の変化に
、蒸発器による作動媒体の変化は12から8あるいは1
8から13の変化にそれぞれ対応する。 本発明の作動媒体を用いた第1図の冷凍サイクルシステ
ムの運転条件として蒸発器における作動媒体の蒸発路り
温度(符号7あるいは13の温度、以下、蒸発温度とい
う)と凝縮器における作動媒体の凝縮始めの温度(符号
9あるいは15の温度、以下、凝縮温度という)を設定
した。第1表から第2表に本発明の作動媒体を用いた上
記の冷凍サイクルシステムにおける成績係数、圧縮機単
位kw当りの冷凍能力および作動媒体の循環量を、比較
例とともに記す。 表から理解されるようにR−123とR−134aとの
混合モル比が約50:5G〜99:lの範囲となる本発
明の作動媒体を用いた冷凍サイクルの成績係数および冷
凍能力はR−123およびR−134aをそれぞれ単独
で用いた場合に比べ改善されており、現在、一般に用い
られているトリクロロフルオロメタン(R−11)、ジ
クロロジフルオロメタン(R−12)と比べても大きく
改善されている。 本発明の作動媒体混合物は低温〜中温、高温分野の、空
調、冷凍および冷蔵を目的とした冷凍サイクルに応用す
る場合に特に有効であるが、ランキンサイクル用あるい
は、その他各種の熱回収技術用の作動媒体として使用す
ることもできる0本発明の作動媒体混合物は熱安定性が
優れており、通常の使用条件においては安定剤を必要と
しないが、苛酷な使用条件のため熱安定性の向上が必要
な場合には、ジメチルホスファイト、ジイソプロピルホ
スファイト、ジフェニルホスファイト等のホスファイト
系化合物、又はチオホスファイト系化合物、あるいはト
リフエノキシホスフィンサルファイド、トリメチルホス
フィンサルファイド等のホスフィンサルファイド系化合
物、その他の安定剤を作動媒体1(10重量部に対し、
1重量部前後の少量添加すればよい。 [発明の効果] 本発明の作動媒体混合物は、冷凍サイクル効率すなわち
冷凍、加熱効率に優れ、混合前の単独成分に比し、大幅
な改善が認められる。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a novel working medium mixture that can be used in refrigerators, heat pumps, etc. [Prior Art] Air conditioning, refrigeration and refrigeration equipment (refrigeration cycle/heat pump cycle), waste heat recovery power generation (Rankine cycle), heat exchange equipment (heat pipe), etc. have been put into practical use or tested and developed. Working media used in these devices include water, hydrocarbons such as propane and butane, and fluorocarbons such as trichloromonofluoromethane (R-11) and 1,2-dichlorotetrafluoroethane (R-114). , ammonia, etc. are known. [Objective of the Invention] Fluorocarbons have low toxicity, are non-flammable, and are chemically stable, and various kinds of fluorocarbons with different boiling points are easily available, so research and evaluation of them as working media has been actively conducted. As a result of our search for fluorocarbons with high heat recovery efficiency (particularly for freezers, refrigerators, air-conditioning equipment, hot water equipment, and heat pumps for the purpose of waste heat recovery), we discovered that dichlorotrifluoroethane and tetrafluorocarbon It has been found that a working medium mixture containing ethane as an essential component is effective.The present invention provides a novel working medium mixture of this kind. [Structure of the invention] In the present invention, dichloro-a-trifluoro-a-ethane contains 1
.. 1-dichloro-2,2,2-)lifluoroethane (R
-123), 1,2-dichloro-1,2,2-trifluoroethane (R-123a) and 1,1-dichloro-1,2,2-)trifluoroethane (R-123b
), and tetrafluoroethane has 1,
1,2,2-tetrafluoroethane (R-134) and 1
.. 1,1.2-tetra7 fluoroethay (R-134
Two types of isomers of a) are known, but since each isomer has similar physical properties, they may be used alone or a mixture of these may be used. In the description, an example is shown in which R-123 and R-134a are used in combination. Hereinafter, the present invention will be described in detail with reference to FIG. 1, which shows a flow sheet of a refrigeration cycle system using the working medium of the present invention. 1 in Figure 1 is a compressor, 2 is a condenser, 3.3'
is a load fluid pipe, 4 is a pressure reducing device, 5 is an evaporator, 6, 8
′ indicates piping for heat source fluid. In the refrigeration cycle system shown in FIG.
Inside, it is cooled and condensed by the load fluid introduced from the pipe 3. Meanwhile, the load fluid is heated inversely in the condenser 2 and the tube 3
' and then subjected to load heating. Next, the condensed working medium is depressurized by the vacuum bag m4 and then led to the evaporator 5. In the evaporator 5, it is heated by the heat source fluid introduced from the pipe 6 and discharged from the pipe 6', and then the pressure is reduced again. The heat source fluid is sucked into the Fi 111 and repeats the above cycle, while the heat source fluid is reversely cooled in the evaporator 5 and sent through the tube 6' for cooling. Figures 2 and 3 are pressure-enthalpy diagrams showing the cycle of the working medium in the refrigeration cycle system shown in Figure 1.0 When the saturated vapor of the working medium is adiabatically compressed, it becomes wet. Figure 2 shows the product, and Figure 3 shows the product in a dry state. Changes in the working medium caused by the compressor in Figure 1 are shown in Figures 2 and 3.
In the change from 8 to 9 or 13 to 14 in the figure, the change in working medium due to the condenser is 3 → 10 → 11 → or 1
The change in working medium due to the pressure reducing device is from 11 to 12 or from 17 to 18, and the change in working medium due to the evaporator is from 12 to 8 or 1.
This corresponds to the change from 8 to 13, respectively. The operating conditions of the refrigeration cycle system shown in FIG. 1 using the working medium of the present invention are the evaporation path temperature of the working medium in the evaporator (temperature 7 or 13, hereinafter referred to as evaporation temperature) and the temperature of the working medium in the condenser. The temperature at the beginning of condensation (temperature number 9 or 15, hereinafter referred to as condensation temperature) was set. Tables 1 to 2 show the coefficient of performance, refrigeration capacity per unit kW of compressor, and circulating amount of working medium in the above-mentioned refrigeration cycle system using the working fluid of the present invention, along with comparative examples. As can be understood from the table, the coefficient of performance and refrigeration capacity of the refrigeration cycle using the working medium of the present invention in which the mixing molar ratio of R-123 and R-134a is in the range of approximately 50:5G to 99:1 are R -123 and R-134a are improved compared to when used alone, and are also significantly improved compared to currently commonly used trichlorofluoromethane (R-11) and dichlorodifluoromethane (R-12). has been done. The working medium mixture of the present invention is particularly effective when applied to refrigeration cycles for air conditioning, refrigeration, and refrigeration in the low-to-medium-temperature and high-temperature fields, but also for Rankine cycles and various other heat recovery technologies. The working medium mixture of the present invention has excellent thermal stability and does not require stabilizers under normal conditions of use, but under severe conditions of use it is difficult to improve thermal stability. If necessary, phosphite compounds such as dimethyl phosphite, diisopropyl phosphite, diphenyl phosphite, thiophosphite compounds, phosphine sulfide compounds such as triphenoxyphosphine sulfide, trimethylphosphine sulfide, etc. Add stabilizer to working medium 1 (10 parts by weight,
A small amount of about 1 part by weight may be added. [Effects of the Invention] The working medium mixture of the present invention has excellent refrigeration cycle efficiency, that is, freezing and heating efficiency, and is significantly improved compared to the individual components before mixing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を説明するための冷凍サイク
ルのフローシート、第2図および第3図はR−123/
 R−134a混合系を冷媒として用いたサイクルを圧
力−エンタルピー線図に記入した図である。
FIG. 1 is a flow sheet of a refrigeration cycle for explaining one embodiment of the present invention, and FIGS. 2 and 3 are R-123/
It is a pressure-enthalpy diagram showing a cycle using an R-134a mixed system as a refrigerant.

Claims (1)

【特許請求の範囲】 1、ジクロロトリフルオロエタンとテトラフルオロエタ
ンを必須成分とすることを特徴とする作動媒体混合物。 2、ジクロロトリフルオロエタンとテトラフルオロエタ
ンとの混合モル比が50:50〜99:1である特許請
求の範囲第1項記載の作動媒体混合物。
[Scope of Claims] 1. A working medium mixture characterized by containing dichlorotrifluoroethane and tetrafluoroethane as essential components. 2. The working medium mixture according to claim 1, wherein the mixing molar ratio of dichlorotrifluoroethane and tetrafluoroethane is 50:50 to 99:1.
JP62140029A 1987-06-05 1987-06-05 Working medium mixture Expired - Lifetime JP2507437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140029A JP2507437B2 (en) 1987-06-05 1987-06-05 Working medium mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140029A JP2507437B2 (en) 1987-06-05 1987-06-05 Working medium mixture

Publications (2)

Publication Number Publication Date
JPS63305185A true JPS63305185A (en) 1988-12-13
JP2507437B2 JP2507437B2 (en) 1996-06-12

Family

ID=15259298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140029A Expired - Lifetime JP2507437B2 (en) 1987-06-05 1987-06-05 Working medium mixture

Country Status (1)

Country Link
JP (1) JP2507437B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419255A (en) * 1987-07-14 1989-01-23 Technol Res Assoc Super Heat P Heat pump
US4983312A (en) * 1987-09-21 1991-01-08 Daikin Industries, Ltd. Refrigerants
US5035823A (en) * 1987-09-21 1991-07-30 Daikin Industries, Ltd. Refrigerant compositions of 1,11-trifluoroethane
WO1995004872A1 (en) * 1993-08-09 1995-02-16 Livien Domien Ven Vapor force engine
BE1007435A3 (en) * 1993-08-09 1995-06-13 Ven Livien Domien Evaporation pressure construction
CN1313559C (en) * 2005-12-09 2007-05-02 天津大学 Ternary mixed working medium for intermediate-high-temperature heat pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419255A (en) * 1987-07-14 1989-01-23 Technol Res Assoc Super Heat P Heat pump
US4983312A (en) * 1987-09-21 1991-01-08 Daikin Industries, Ltd. Refrigerants
US5035823A (en) * 1987-09-21 1991-07-30 Daikin Industries, Ltd. Refrigerant compositions of 1,11-trifluoroethane
WO1995004872A1 (en) * 1993-08-09 1995-02-16 Livien Domien Ven Vapor force engine
BE1007435A3 (en) * 1993-08-09 1995-06-13 Ven Livien Domien Evaporation pressure construction
US5724814A (en) * 1993-08-09 1998-03-10 Ven; Livien D. Vapor force engine
CN1313559C (en) * 2005-12-09 2007-05-02 天津大学 Ternary mixed working medium for intermediate-high-temperature heat pump

Also Published As

Publication number Publication date
JP2507437B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
JP2576161B2 (en) Working medium mixture
JP2841451B2 (en) Working medium
US5092138A (en) Refrigeration system
JPH01108292A (en) Refrigerant
JP2576162B2 (en) Working medium mixture
JPS63308085A (en) Operation medium mixture
JPS63308084A (en) Operation medium mixture
KR20210081431A (en) Systems and methods for providing low GWP non-flammable refrigerants, and refrigeration
JPS63305185A (en) Working medium mixture
JPH01153786A (en) Working medium mixture
JPH0192286A (en) Working medium mixture
US20090049856A1 (en) Working fluid of a blend of 1,1,1,3,3-pentafluoropane, 1,1,1,2,3,3-hexafluoropropane, and 1,1,1,2-tetrafluoroethane and method and apparatus for using
Kharat et al. Experimental study of alternative refrigerants to replace R134a in a domestic refrigerator
JP2841430B2 (en) Working medium mixture
JPH01141982A (en) Working medium mixture
JP2536560B2 (en) Working medium mixture
JPS63305186A (en) Working medium mixture
JPH01139677A (en) Working medium mixture
JPH01139683A (en) Working medium mixture
JPS63305187A (en) Working medium mixture
JP2536545B2 (en) Working medium mixture
JPH01168785A (en) Working medium mixture
JPH0655940B2 (en) Mixed refrigerant
JPH01139684A (en) Working medium mixture
JPH01139676A (en) Working medium mixture