JPS63304646A - Formation of superconductor thin film pattern - Google Patents

Formation of superconductor thin film pattern

Info

Publication number
JPS63304646A
JPS63304646A JP62139714A JP13971487A JPS63304646A JP S63304646 A JPS63304646 A JP S63304646A JP 62139714 A JP62139714 A JP 62139714A JP 13971487 A JP13971487 A JP 13971487A JP S63304646 A JPS63304646 A JP S63304646A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide powder
substrate
film
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139714A
Other languages
Japanese (ja)
Inventor
Shoji Yadori
章二 宿利
Yasuo Wada
恭雄 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62139714A priority Critical patent/JPS63304646A/en
Priority to DE3810494A priority patent/DE3810494C2/en
Publication of JPS63304646A publication Critical patent/JPS63304646A/en
Priority to US07/863,530 priority patent/US5266815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To facilitate the application of a high temperature superconductor thin film to a semiconductor integrated circuit, by a method wherein, after an organic solvent containing metal oxide powder is spread on a substrate, the metal oxide powder film is formed by drying the substrate, and the metal oxide powder film is worked upon a desired pattern form, and then sintered. CONSTITUTION:After an organic solvent containing metal oxide powder is spread in a desired thickness on the whole surface of a substrate 1, and a metal oxide powder coating film 2 is formed, the organic solvent and water in the coating film are evaporated and made dense by heating the substrate 1, and a metal oxide powder film 3 is formed. Next, by a lithography processing method, a metal oxide powder film pattern 4 having a desired pattern shape is formed. Then the substrate is heated at a high temperature, and the metal oxide powder film pattern 4 is sintered to form a superconductor thin film pattern 5. Thereby, the formation of a superconductor thin film pattern having a desired pattern size on the substrate 1 is easily enabled.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、超電導体薄膜の加工方法に係り、特に微細パ
ターンの形成に好適な高温超電導体薄膜パターンの形成
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for processing a superconductor thin film, and particularly to a method for forming a high temperature superconductor thin film pattern suitable for forming fine patterns.

[従来の技術] 従来、焼結体から成る高温超電導体の薄膜を基板上に形
成する方法は、62年4月24日付日刊工業新聞に記載
されているように、蒸着法、スパッタ法、あるいは金属
有機酸塩を混合した有機溶媒の塗布とその焼結による方
法が試みられている。
[Prior Art] Conventionally, methods for forming a thin film of a high-temperature superconductor made of a sintered body on a substrate include vapor deposition, sputtering, or Attempts have been made to apply an organic solvent mixed with a metal organic acid salt and sinter it.

さらに、上記の高温超電導体薄膜を所望の形状に加工す
るには、イオンスパッタエッチ法や王水を用いた湿式エ
ッチ法が用いられている。
Furthermore, in order to process the above-mentioned high-temperature superconductor thin film into a desired shape, an ion sputter etching method or a wet etching method using aqua regia is used.

[発明が解決しようとする問題点] 上記の従来補相による焼結体から成る高温超電導体薄膜
パターンの形成方法は、パターン寸法の微細化あるいは
、通常の半導体プロセス技術との互換性の点について考
慮されておらず、高温超電導体薄膜を半導体集積回路へ
適用する上で問題となるものである。すなわち、上記の
高温超電導体薄膜を基板上の全面に形成した後に、所望
のパターン形成を行なう場合において、イオンスパッタ
エッチ法を用いた場合には、マスク材料とのエツチング
選択比が小さいためにマスク材料を厚くする必要があり
、さらに下地基板表面への損傷が大きい等の問題がある
。また、湿式法による場合には、焼結体のエツチング率
が低いために長時間を要すること、および、虚結体が粒
径1μm程度の多結晶体であることに起因して微細パタ
ーンの形成が困難であるという問題がある。
[Problems to be Solved by the Invention] The method for forming a high-temperature superconductor thin film pattern made of a sintered body using conventional complementary methods described above has problems in terms of miniaturization of pattern dimensions and compatibility with normal semiconductor process technology. This has not been taken into consideration, and this poses a problem when applying high-temperature superconductor thin films to semiconductor integrated circuits. In other words, when forming the desired pattern after forming the high temperature superconductor thin film on the entire surface of the substrate, if ion sputter etching is used, the etching selectivity with respect to the mask material is small, so the mask is There are other problems, such as the need for thicker materials and greater damage to the surface of the underlying substrate. In addition, when using the wet method, the etching rate of the sintered body is low, so it takes a long time, and the imaginary body is a polycrystalline body with a grain size of about 1 μm, resulting in the formation of fine patterns. The problem is that it is difficult.

本発明の目的は、上記問題点を解消し、焼結体から成る
高温超電導体薄膜の微細パターンを容易に形成する方法
を提供し、半導体集積回路への高温超電導体薄膜の適用
を容易にすることにある。
An object of the present invention is to solve the above-mentioned problems and provide a method for easily forming fine patterns of high-temperature superconductor thin films made of sintered bodies, thereby facilitating the application of high-temperature superconductor thin films to semiconductor integrated circuits. There is a particular thing.

[問題点を解決するための手段] 上記目的は、基板上へ金属酸化物の粉体を含有する有機
溶媒を塗布して、上記基板を乾燥させて金属酸化物粉体
膜を形成し、上記金属酸化物粉体膜を所望のパターン形
状に加工した後に焼結する工程とすることによって達成
される。
[Means for Solving the Problems] The above object is to apply an organic solvent containing metal oxide powder onto a substrate, dry the substrate to form a metal oxide powder film, and This is achieved by processing the metal oxide powder film into a desired pattern shape and then sintering it.

[作用コ すなわち、本発明の超電導体薄膜パターンの形成方法に
おいては、第1図(a)に示すように、基板1上の全面
に金属酸化物の粉体を含有する有機溶媒を所望の厚さに
塗布して金属酸化物粉体塗布膜2を形成後、第1図(b
)に示すように、上記基板1を加熱して上記塗布膜中の
有機溶媒および水を蒸発させて緻密化し、金属酸化物粉
体膜3を形成した後、第1図(c)に示したように、リ
ソグラフィ加工法によって所望のパターン形状を有する
金属酸化物粉体膜パターン4を形成し、その後、第1図
(d)に示したように、上記基板1を高温に加熱して、
上記金属酸化物粉体膜パターン4を焼結させることによ
り、超電導体薄膜パターン5を形成する。
[In other words, in the method for forming a superconductor thin film pattern of the present invention, as shown in FIG. After forming the metal oxide powder coating film 2 by applying the powder to the metal oxide powder, as shown in FIG.
), the substrate 1 is heated to evaporate and densify the organic solvent and water in the coating film to form a metal oxide powder film 3, and then the metal oxide powder film 3 is formed as shown in FIG. 1(c). As shown in FIG. 1(d), a metal oxide powder film pattern 4 having a desired pattern shape is formed by a lithography process, and then, as shown in FIG. 1(d), the substrate 1 is heated to a high temperature.
By sintering the metal oxide powder film pattern 4, a superconductor thin film pattern 5 is formed.

上記の工程において、金属酸化物粉体を含有する有機溶
媒を塗布する工程は、従来の半導体素子製造工程で膜の
塗布に用いられているものであり、また、上記金属酸化
物粉体塗布膜2を緻密するための加熱工程は、上記従来
のホトレジスト膜を硬化させるに用いられている加熱工
程と同様の温度範囲で十分であり、さらに、上記金属酸
化物粉体膜パターン4の形成工程は、通常の半導体素子
製造工程で用いられるホトリソグラフィ加工によれば最
小寸法0.3μm、電子線リソグラフィ加工法によれば
最小寸法0.1μm以下の微細なパターン寸法が実現で
きるものである。すなわち、上記の本発明の超電導体薄
膜パターンの形成方法においては、金属酸化物粉体膜を
高温度で焼結させる前に、パターン形成を行なうことと
することによって、基板上に所望のパターン寸法を有す
る超電導体薄膜パターンを容易に形成することが可能と
なった。
In the above process, the process of applying an organic solvent containing metal oxide powder is the one used for coating a film in the conventional semiconductor device manufacturing process, The heating process for densifying the metal oxide powder film pattern 4 is sufficient in the same temperature range as the heating process used to harden the conventional photoresist film. A fine pattern with a minimum dimension of 0.3 .mu.m can be realized by photolithography used in a normal semiconductor device manufacturing process, and a minimum dimension of 0.1 .mu.m or less can be achieved by electron beam lithography. That is, in the method for forming a superconductor thin film pattern of the present invention described above, by forming the pattern before sintering the metal oxide powder film at high temperature, a desired pattern size can be formed on the substrate. It has now become possible to easily form a superconductor thin film pattern with

従って、本発明は、超電導体薄膜を半導体基板上に形成
し、半導体集積回路を構成する場合の技術的効果は非常
に大きい。
Therefore, the present invention has a very large technical effect when forming a superconductor thin film on a semiconductor substrate to construct a semiconductor integrated circuit.

[実施例] 以下、本発明の一実施例を第2図により説明する。第2
図は、本発明を、および配線領域が超電導体から成る電
界効果トランジスタの製造に適用した場合の製造工程を
示しており、順を追って各工程ごとに説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIG. Second
The figure shows manufacturing steps when the present invention is applied to manufacturing a field effect transistor whose wiring region is made of a superconductor, and each step will be explained in order.

第2図(a)は、P型、(100)面、抵抗率10Ωc
mの(Si)基板1上の、電界効果トランジスタの形成
されるべき領域に、乾燥酸素雰囲気中、1000℃と、
20分間の熱酸化法により、厚さ20nmのゲート酸化
膜6を形成した後、所定量のイツトリウム(Y 203
 ) 、炭酸バリウム(BaCO3)+および酸化銅(
Cub)の粉体を混合したシクロヘキサノン(Cs H
1o○)溶媒を回転塗布し、厚さ1μmの金属酸化物粉
体塗布膜2を形成した状態を示している。
Figure 2 (a) is P type, (100) plane, resistivity 10Ωc.
m (Si) substrate 1 in a region where a field effect transistor is to be formed at 1000° C. in a dry oxygen atmosphere,
After forming a gate oxide film 6 with a thickness of 20 nm by a thermal oxidation method for 20 minutes, a predetermined amount of yttrium (Y 203
), barium carbonate (BaCO3)+ and copper oxide (
Cyclohexanone (Cs H
1o○) Solvent is spin-coated to form a metal oxide powder coating film 2 with a thickness of 1 μm.

次に、第2図(b)に示したように、上記金属酸化物粉
体塗布膜2を酸素雰囲気中で200’l:。
Next, as shown in FIG. 2(b), the metal oxide powder coating film 2 was coated in an oxygen atmosphere for 200 minutes.

10分間のベーキングを行った後、ホトリソグラフィ加
工と室温の王水による20分間の湿式エツチングによっ
て、パターン寸法2μmに加工し、酸素雰囲気中、95
0℃、3時間の焼結を行って超電導ゲート7を形成し、
さらに、上記超電導ゲート7をマスクとして、加工エネ
ルギ30keVのヒ素(A s )イオンを打込み量3
 X 1015c m−2打込んで高濃度不純物層8を
形成した。
After baking for 10 minutes, a pattern size of 2 μm was processed by photolithography and wet etching with aqua regia at room temperature for 20 minutes, and then etched at 95°C in an oxygen atmosphere.
A superconducting gate 7 is formed by sintering at 0° C. for 3 hours,
Furthermore, using the superconducting gate 7 as a mask, arsenic (A s ) ions are implanted at a processing energy of 30 keV in an amount of 3.
A high concentration impurity layer 8 was formed by implanting X 1015 cm-2.

次に第2図(c)に示したように、上記超電導ゲート7
の側壁部に気相化学成長法により堆積し、ドライエツチ
ングにより酸化膜9を形成した後、第2図(a)に示し
た金属酸化物粉体塗布膜2の形成と同様の手法により、
厚さ1μmの金属酸化物粉体塗布膜2を形成した。さら
に、ホトリソグラフィ加工と王水による湿式エツチング
によって、第2図(d)に示すように、金属酸化物粉体
膜パターン4を形成した。
Next, as shown in FIG. 2(c), the superconducting gate 7
After forming an oxide film 9 on the side wall of the metal oxide powder by vapor phase chemical growth and dry etching, the metal oxide powder coating film 2 is formed using the same method as that of forming the metal oxide powder coating film 2 shown in FIG. 2(a).
A metal oxide powder coating film 2 having a thickness of 1 μm was formed. Furthermore, a metal oxide powder film pattern 4 was formed by photolithography and wet etching using aqua regia, as shown in FIG. 2(d).

さらに、第2図(e)に示すように、上記金属酸化物粉
体パターン4を、酸素雰囲気中、800°C93時間の
焼結を行って超電導電極10を形成した後、層間絶縁膜
11を形成し、ホトリソグラフィ加工によりコンタクト
穴あけを行った。
Further, as shown in FIG. 2(e), the metal oxide powder pattern 4 is sintered at 800° C. for 93 hours in an oxygen atmosphere to form a superconducting electrode 10, and then an interlayer insulating film 11 is formed. A contact hole was formed using photolithography.

最後に、第2図(f)に示したように、第2図(b)に
示した超電導ゲート7の形成と同様の手法、すなわち、
金属酸化物粉体塗布膜の形成とそのホトリソグラフィ加
工によるパターン形成、および、酸素雰囲気中、800
℃、3時間の焼結によって、線幅2μmの超電導配線1
2を形成し、電界効果トランジスタを完成した。
Finally, as shown in FIG. 2(f), a method similar to that of forming the superconducting gate 7 shown in FIG. 2(b), that is,
Formation of a metal oxide powder coating film, pattern formation by photolithography processing, and 800°C in an oxygen atmosphere.
By sintering at ℃ for 3 hours, superconducting wiring 1 with a line width of 2 μm
2 was formed, and a field effect transistor was completed.

上記の製造工程で完成した電界効果トランジスタの電気
特性を測定したところ、室温(23℃)において正常な
トランジスタ特性を示し、各超電導体パターンが断線す
ることなく形成されていることが確認できた。さらに、
上記トランジスタを液体窒素温度(77K)に冷却した
ところ、各超電導体パターンが超電導状態にはいったた
め、室温で測定した結果に比較すると、配線抵抗は約1
/10倍に減少し、トランジスタのスイッチング速度も
ほぼ10倍に高速化することが分った。
When the electrical characteristics of the field effect transistor completed through the above manufacturing process were measured, it was confirmed that it exhibited normal transistor characteristics at room temperature (23° C.), and that each superconductor pattern was formed without disconnection. moreover,
When the above transistor was cooled to liquid nitrogen temperature (77K), each superconductor pattern entered a superconducting state, so compared to the results measured at room temperature, the wiring resistance was approximately 1
It was found that the switching speed of the transistor was also increased by approximately 10 times.

以上の本実施例に述べたように、本発明によれば、焼結
体から成る高温超電導体薄膜の微細パターンの形成をシ
リコン基板上の電界効果トランジスタの製造工程中に容
易に導入することが可能となった。従って、本発明の超
電導体薄膜パターンの形成方法は、焼結体から成る高温
超電導体薄膜を半導体集積回路へ応用する上で、その技
術的効果が非常に高く、工業的に重要な技術となるもの
である。
As described in the above embodiment, according to the present invention, it is possible to easily introduce the formation of a fine pattern of a high temperature superconductor thin film made of a sintered body into the manufacturing process of a field effect transistor on a silicon substrate. It has become possible. Therefore, the method for forming a superconductor thin film pattern of the present invention has a very high technical effect when applying a high temperature superconductor thin film made of a sintered body to a semiconductor integrated circuit, and is an industrially important technology. It is something.

尚、本実施例では、Si基板上に電界効果トランジスタ
を製造する場合を例にとって述べたが、他の化合物半導
体基板、例えば、ガリウム・ヒ素(GaAs)+インジ
ウム・アンチモン(InSb)。
In this embodiment, a case has been described in which a field effect transistor is manufactured on a Si substrate, but other compound semiconductor substrates such as gallium arsenide (GaAs) + indium antimony (InSb) may be used.

インジウム・リン(InP)等へ応用する場合にも同様
の効果のあることは言うまでもない。また、本実施例で
の金属酸化物粉体塗布膜2の加工には R− 湿式エツチングを用いたが、例えば塩素あるいは弗素系
のを用いたドライエツチングも利用できる。
It goes without saying that similar effects can be obtained when applied to indium phosphide (InP) and the like. Furthermore, although R-wet etching was used to process the metal oxide powder coating film 2 in this embodiment, dry etching using, for example, chlorine or fluorine may also be used.

[発明の効果] 本発明によれば、焼結体から成る高温超電導体薄膜の微
細パターンを半導体基板上に容易に形成できるため、上
記超電導体薄膜を半導体集積回路へ容易に応用すること
が可能となり、半導体集積回路の高性能化が実現できる
技術的効果がある。
[Effects of the Invention] According to the present invention, a fine pattern of a high-temperature superconductor thin film made of a sintered body can be easily formed on a semiconductor substrate, so the superconductor thin film can be easily applied to a semiconductor integrated circuit. This has the technical effect of making it possible to improve the performance of semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)から第1図(d)は、本発明の詳細な説明
するための工程を示す断面図であり、第2図(a)から
第2図(f)は、本発明の一実施例を説明するための各
工程における素子断面図である。 1・基板、2・・金属酸化物粉体塗布膜、3・・金属酸
化物粉体膜、4・・・金属酸化物粉体膜パターン、5・
・超電導体薄膜パターン、6・・ゲート酸化膜、7・・
超電導ゲート、8 ・高濃度不純物層、9−酸化膜、1
0・・・超電導電極、11・・・層間MAR膜、12・
・・超電導配線。 第 1 図 茶 2 ニ
FIG. 1(a) to FIG. 1(d) are cross-sectional views showing steps for explaining the present invention in detail, and FIG. 2(a) to FIG. FIG. 3 is a cross-sectional view of an element in each step for explaining an example. 1. Substrate, 2. Metal oxide powder coating film, 3. Metal oxide powder film, 4. Metal oxide powder film pattern, 5.
・Superconductor thin film pattern, 6... Gate oxide film, 7...
Superconducting gate, 8 ・High concentration impurity layer, 9-Oxide film, 1
0...Superconducting electrode, 11...Interlayer MAR film, 12.
...Superconducting wiring. 1st diagram 2 d

Claims (1)

【特許請求の範囲】[Claims] 1、基板上へ、金属酸化物の粉体を混合した有機溶媒を
塗布しする工程と、上記基板を乾燥して金属酸化物粉体
膜を形成する工程と、上記金属酸化物粉体膜を所望のパ
ターン形状に加工した後、焼損する工程とを含むことを
特徴とする超電導体薄膜パターンの形成方法。
1. A step of applying an organic solvent mixed with metal oxide powder onto the substrate, a step of drying the substrate to form a metal oxide powder film, and a step of forming the metal oxide powder film on the substrate. 1. A method for forming a superconductor thin film pattern, the method comprising the step of processing into a desired pattern shape and then burning it out.
JP62139714A 1987-03-27 1987-06-05 Formation of superconductor thin film pattern Pending JPS63304646A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62139714A JPS63304646A (en) 1987-06-05 1987-06-05 Formation of superconductor thin film pattern
DE3810494A DE3810494C2 (en) 1987-03-27 1988-03-28 Integrated semiconductor circuit device with superconducting layer
US07/863,530 US5266815A (en) 1987-03-27 1992-04-06 Semiconductor integrated circuit device having superconductive layer and isolation member with nitride isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139714A JPS63304646A (en) 1987-06-05 1987-06-05 Formation of superconductor thin film pattern

Publications (1)

Publication Number Publication Date
JPS63304646A true JPS63304646A (en) 1988-12-12

Family

ID=15251708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139714A Pending JPS63304646A (en) 1987-03-27 1987-06-05 Formation of superconductor thin film pattern

Country Status (1)

Country Link
JP (1) JPS63304646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419783A (en) * 1987-06-26 1989-01-23 Hewlett Packard Yokogawa Manufacture of superconductor film
JPS6486578A (en) * 1987-06-26 1989-03-31 Nec Corp Method for forming pattern
KR100878234B1 (en) * 2002-07-08 2009-01-13 삼성전자주식회사 A method of forming a reflection layer pattern and a method of fabricating TFT array panel by using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419783A (en) * 1987-06-26 1989-01-23 Hewlett Packard Yokogawa Manufacture of superconductor film
JPS6486578A (en) * 1987-06-26 1989-03-31 Nec Corp Method for forming pattern
KR100878234B1 (en) * 2002-07-08 2009-01-13 삼성전자주식회사 A method of forming a reflection layer pattern and a method of fabricating TFT array panel by using the same

Similar Documents

Publication Publication Date Title
JP2002509647A (en) Method for producing a thin film of barium strontium titanate
US5266815A (en) Semiconductor integrated circuit device having superconductive layer and isolation member with nitride isolation
JPS6074465A (en) Polycrystalline silicon resistor
KR970005156B1 (en) Method of patterning superconducting oxide thin films
JP3382588B2 (en) Use of ion implantation to create normal layers during superconducting-normal-superconducting Josephson junctions
JPS63304646A (en) Formation of superconductor thin film pattern
JPS63291436A (en) Manufacture of semiconductor device
JPH0473296B2 (en)
US5739059A (en) Method of forming a semiconductor device having high and low resistance polysilicon
JP3425422B2 (en) Superconducting element manufacturing method
JPS627165A (en) Manufacture of semiconductor device
JPS633436A (en) Manufacture of semiconductor device
JPS63300538A (en) Formation of wirings
Shenai Structural and electrical properties of furnace and rapid thermally annealed LPCVD WSi/sub 2/films on single-crystal, polycrystalline, and amorphous silicon substrates
JPH04287382A (en) Mask material for forming oxide thin film, forming method for pattern of oxide thin film using same, and manufacture of superconducting element
JPH01120866A (en) Semiconductor device
JP2630616B2 (en) Method for manufacturing semiconductor device
JPH01161731A (en) Superconducting wiring and forming method thereof
JPH03153076A (en) Semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH0263154A (en) Manufacture of semiconductor device
JPH0567066B2 (en)
JPH0254583A (en) Mis type semiconductor integrated circuit device
JPS6298780A (en) Manufacture of self-aligning gaas digital integrated circuit
JPS6190470A (en) Manufacture of compound semiconductor device