JPS63303662A - Production of rapid cooled multilayered strip - Google Patents

Production of rapid cooled multilayered strip

Info

Publication number
JPS63303662A
JPS63303662A JP13990487A JP13990487A JPS63303662A JP S63303662 A JPS63303662 A JP S63303662A JP 13990487 A JP13990487 A JP 13990487A JP 13990487 A JP13990487 A JP 13990487A JP S63303662 A JPS63303662 A JP S63303662A
Authority
JP
Japan
Prior art keywords
roll
diameter
ribbon
rolls
diameter roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13990487A
Other languages
Japanese (ja)
Inventor
Kohei Tatsumi
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13990487A priority Critical patent/JPS63303662A/en
Publication of JPS63303662A publication Critical patent/JPS63303662A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To continue production of a multilayered strip by rapidly cooling and solidifying molten metal in a heat resistant vessel with a rotating small diameter roll, rolling in gap between the above roll and a synchronously rotating large diameter roll and next joining with new forming strip. CONSTITUTION:The small diameter roll 3 rotating at high speed is arranged below the heat resistant vessel 1 of silica tube, etc., and the large diameter roll 4 roundly contacting with the roll 3 and synchronously rotating is arranged. The molten metal in a vessel 1 is spouted and rapidly cooled on the small diameter roll 3 by pressure of inert gas from a nozzle 2 to form a first layer 5 of the strip. The first layer 5 is rolled under pressurizing in the gap between the small diameter roll 3 and the large diameter roll 4 and carried along the inside of the large diameter roll 4. Next, newly a second layer is formed on the first layer 5 and joined. By this method, the rapidly cooled multilayered strip is continuously produced through the rolls 3, 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、同一または異種の金属及び合金(以下金属と
いう)の積層体からなる多層急冷薄帯の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a multilayer quenched ribbon consisting of a laminate of the same or different metals and alloys (hereinafter referred to as metals).

(従来の技術) 近年、構造材料、機能材料に必要とされる特性は、ます
ます高度化される傾向にあり、高機能化、高強度化の方
法の一つとして、材料の複合化が注目されている。一方
溶融急冷法により製造される薄帯は、非晶質体、結晶体
とを問わず、電気的、機械的、磁気的特性などの面から
注目されており、このような薄帯の多層化、異種材料薄
帯の複合化が可能となれば、さらに高機能化することが
期待できる。
(Conventional technology) In recent years, the properties required for structural and functional materials have tended to become more and more sophisticated, and compounding of materials is attracting attention as a way to increase functionality and strength. has been done. On the other hand, ribbons produced by the melt quenching method, regardless of whether they are amorphous or crystalline, are attracting attention due to their electrical, mechanical, and magnetic properties. If it becomes possible to combine ribbons of different materials, we can expect even higher functionality.

従来より、薄帯の積層化、異種材料の複合化の方法とし
て、加熱、加圧によるはり合わせ、クラッド法、或いは
、爆発圧接法が試みられている。
BACKGROUND ART Conventionally, as a method for laminating thin ribbons and compositing different materials, attempts have been made to bond them together by heating and pressurizing, a cladding method, and an explosive pressure welding method.

ところが、加熱過程をともなう方法は、原子の再配列を
もたらし、溶融急冷により得られた特徴ある性質(たと
えば、高強度、高靭性、耐食性)が損なわれることが多
い。またいずれの方法も薄帯化、積層化の過程が不連続
である上、工程が複雑である。
However, methods that involve a heating process often result in rearrangement of atoms, and the characteristic properties obtained by melt-quenching (eg, high strength, high toughness, corrosion resistance) are lost. Furthermore, in both methods, the process of forming thin strips and laminating them is discontinuous, and the steps are complicated.

多層急冷薄帯の連続的製造方法としては、特開昭57−
177860に記載されているように、一つの回転ロー
ル上部にロール面と平行に複数のノズルを設けた装置が
知られているが、積層数は回転ロールに対向して設置で
きるノズル数に制約される。
As a continuous manufacturing method of multi-layer quenched ribbon, Japanese Patent Application Laid-Open No. 1987-
177860, a device in which a plurality of nozzles are provided above one rotating roll in parallel with the roll surface is known, but the number of laminated layers is limited by the number of nozzles that can be installed facing the rotating roll. Ru.

また溶融金属をロール面上ではなく、直前に形成された
薄帯上に噴射することから、多層化にともない薄帯の加
熱を招く場合がある。
Furthermore, since the molten metal is injected not onto the roll surface but onto the ribbon formed just before, the ribbon may be heated due to multilayering.

また実願昭52−126068に記載されているように
、双ロール急冷法において各ロール上部にノズルを設置
し各ロールで製造される薄帯をロール間で通過させ、加
圧し、接合する方法が考案されているが、積層化がノズ
ル数およびロール数に制限される問題点がある。
In addition, as described in Japanese Utility Model Application No. 52-126068, in the twin-roll quenching method, a nozzle is installed on the top of each roll, and the ribbon produced by each roll is passed between the rolls, pressurized, and joined. However, there is a problem that the lamination is limited by the number of nozzles and the number of rolls.

(発明が解決しようとする問題点) 本発明は上記の点を鑑みて成されたもので、溶融急冷法
によって製造される同種、または異種の薄帯を高温に再
加熱することなく、製造直後に連続的に接合多層化する
ことを目的とする多層急冷薄帯の製造方法である。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned points. This is a method for manufacturing a multilayer quenched ribbon, the purpose of which is to continuously bond and form multiple layers.

(問題点を解決するための手段) 本発明は、原料金属を、耐熱容器内で加熱溶融し、耐熱
容器下部に設けたノズル部から溶融金属を噴出させ、ノ
ズル下部に配置された高速で回転する小径ロール上で、
溶融金属を急冷固化させて、連続薄帯となし、次にその
薄帯を回転小径ロール外周部に沿って搬送し、小径ロー
ルと、小径ロールに内接し、かつその周速に同期して回
転する大径回転ロール間で、加圧あるいは圧延した後、
大径円筒ロール内周部に沿って搬送し、小径、大径円筒
ロール間で、新たに形成される薄帯と接合することによ
って、連続的に急冷金属の積層体を得ることを特徴とす
る多層急冷薄帯の製造方法である。
(Means for Solving the Problems) The present invention heats and melts raw metal in a heat-resistant container, spouts the molten metal from a nozzle provided at the bottom of the heat-resistant container, and rotates at high speed through a nozzle located at the bottom of the nozzle. on a small diameter roll,
The molten metal is rapidly cooled and solidified to form a continuous ribbon, and then the ribbon is conveyed along the outer periphery of a rotating small-diameter roll so that it is inscribed in the small-diameter roll and rotates in synchronization with the circumferential speed of the small-diameter roll. After being pressed or rolled between large diameter rotating rolls,
It is characterized by continuously obtaining a quenched metal laminate by conveying it along the inner periphery of a large diameter cylindrical roll and joining it with a newly formed thin strip between a small diameter cylindrical roll and a large diameter cylindrical roll. This is a method for producing a multilayer quenched ribbon.

つまり本発明では、上記の如き製造方法により、小径ロ
ール上で連続して製造される金属薄帯(例えば、非晶質
金属ではFe −P −C、Fe −Si −B、Fe
−Cr−P系合金等また結晶質金属ではFe −5i、
 Fe −C,Al−Li、 Al−Ti系合金等)を
、小径、大径円筒ロール間で接合し、大径円筒ロール内
周部に任意の積層数を有する積層体を製造する事を可能
とするものである。またそれぞれにノズル部を有する複
数の小径ロールを同一の大径円筒ロールに内接させ、各
々のノズルから異種金属を噴出し、各小径ロール上で薄
帯化させ、接合することにより、大径円筒ロール内周部
に異種金属積層薄帯を製造することも可能である。
In other words, in the present invention, the metal ribbon (for example, Fe-P-C, Fe-Si-B, Fe-P-C, Fe-Si-B, Fe-
-Cr-P alloys and other crystalline metals include Fe-5i,
Fe-C, Al-Li, Al-Ti alloys, etc.) can be joined between small diameter and large diameter cylindrical rolls to produce a laminate with an arbitrary number of layers on the inner circumference of the large diameter cylindrical roll. That is. In addition, multiple small-diameter rolls each having a nozzle part are inscribed in the same large-diameter cylindrical roll, and dissimilar metals are ejected from each nozzle, formed into thin strips on each small-diameter roll, and joined together. It is also possible to produce a laminated ribbon of different metals on the inner circumference of the cylindrical roll.

さらに本発明においては、薄帯の性質を左右する急冷固
化の条件、すなわちロールの回転速度、ノズル形状、ノ
ズルとロールの間隔などを積層化過程と独立に選定する
ことが可能である。又薄帯の接合は、溶融固化により表
面が形成された後、極めて短時間(即ち大径円筒ロール
の回転数を、n  r、p、m、とすると17 n分)
で行われるため、表面の酸素吸着、酸化による接合性低
下をまねくことなく、良好な接合が極めて容易に行われ
る。
Furthermore, in the present invention, it is possible to select the rapid solidification conditions that affect the properties of the ribbon, such as the rotational speed of the rolls, the shape of the nozzles, the distance between the nozzles and the rolls, etc., independently of the lamination process. In addition, the joining of the ribbons takes a very short time after the surfaces are formed by melting and solidification (i.e., 17 n minutes if the rotational speed of the large diameter cylindrical roll is n r, p, m).
Therefore, good bonding can be achieved extremely easily without deteriorating bonding properties due to surface oxygen adsorption or oxidation.

また大径円筒ロール内を不活性ガスで置換するなど、溶
融固化、接合の過程の雰囲気制御も比較的に容易に行え
る。
In addition, atmosphere control during the melting and solidification and bonding processes can be performed relatively easily, such as by replacing the inside of the large-diameter cylindrical roll with an inert gas.

以下図面を参照して本発明の方法を詳細に説明する。The method of the present invention will be explained in detail below with reference to the drawings.

第1図において、高周波溶解などにより溶解された、原
料金属を収容するための耐熱容器1(例えば石英管)が
設けられ、その耐熱容器1の下端に、ノズル2が形成さ
れ、ノズル2の下方に小径ロール3が設けられている。
In FIG. 1, a heat-resistant container 1 (for example, a quartz tube) is provided to accommodate raw metal melted by high-frequency melting or the like, and a nozzle 2 is formed at the lower end of the heat-resistant container 1. A small diameter roll 3 is provided.

大径円筒ロール4は小径ロール3に内接しており、小径
ロールと同一方向に同期して回転する。耐熱容器で溶融
された溶融金属は、不活性ガスの圧力により、ノズル2
を通して小径ロール3上に噴出される。噴出された溶融
金属は、高速回転する小径ロール3と接触し−て急冷さ
れることにより、金属薄帯第1層5が形成される。続い
て、金属薄帯第1層は小径ロール3に沿って搬送され、
小径ロール3と小径ロールに内接し回転する大径円筒ロ
ール4の間で加圧または圧延された後、大径円筒ロール
内側に沿って搬送される。
The large diameter cylindrical roll 4 is inscribed in the small diameter roll 3 and rotates in the same direction and synchronously with the small diameter roll. The molten metal melted in the heat-resistant container is moved through the nozzle 2 by the pressure of the inert gas.
The liquid is ejected onto the small diameter roll 3 through. The ejected molten metal contacts the small-diameter roll 3 rotating at high speed and is rapidly cooled, thereby forming the first layer 5 of the metal ribbon. Subsequently, the first layer of metal ribbon is conveyed along the small diameter roll 3,
After being pressurized or rolled between the small-diameter roll 3 and the large-diameter cylindrical roll 4 that is inscribed in the small-diameter roll and rotates, it is conveyed along the inside of the large-diameter cylindrical roll.

次に、第2図に示す如く、急冷薄帯第1層が小径ロール
3と大径円筒ロール4の間を通過する際に、連続して小
径ロール上で製造される薄帯第2層6と接合される。こ
のようにして積層化の繰り返しにより、任意の積層数か
らなる、多層薄帯が大径円筒ロール内周に沿って製造さ
れる。
Next, as shown in FIG. 2, when the first layer of the quenched ribbon passes between the small diameter roll 3 and the large diameter cylindrical roll 4, the second layer 6 of the ribbon is continuously produced on the small diameter roll. It is joined with. By repeating the lamination in this manner, a multilayer ribbon having an arbitrary number of layers is manufactured along the inner periphery of the large diameter cylindrical roll.

なお、ここでは大径円筒ロール4、小径ロール3の間隙
は、薄帯の積層化にともない変化できる構造とする。大
径円筒ロール内側の周速と小径ロール周速は、同一の必
要があるが、大径円筒ロールの回転数Nは、N=nr/
(s+r)となるよう制御される。ここでnは、小径ロ
ール回転数、Sは小径ロール・大径円筒ロール回転軸距
離、rは小径ロール半径である。また大径円筒ロールと
小径ロールの押し付は圧力は、大径円筒ロールと小径ロ
ールの弾性限界内であり、かつ得られる薄帯の表面性状
及び薄帯の接合性を勘案して単位幅当り荷重1にg/r
srm以上とする必要がある。圧力が1にg/mm以下
の押し付は圧力では長手方向に平行に接合不良部を生し
る場合がある。
Note that the gap between the large-diameter cylindrical roll 4 and the small-diameter roll 3 is designed to be able to change as the ribbons are laminated. The circumferential speed inside the large-diameter cylindrical roll and the circumferential speed of the small-diameter roll must be the same, but the rotation speed N of the large-diameter cylindrical roll is N=nr/
(s+r). Here, n is the small diameter roll rotation speed, S is the small diameter roll/large diameter cylindrical roll rotation axis distance, and r is the small diameter roll radius. In addition, the pressing pressure between the large-diameter cylindrical roll and the small-diameter roll is within the elastic limit of the large-diameter cylindrical roll and the small-diameter roll, and the pressure is per unit width, taking into account the surface properties of the obtained ribbon and the bondability of the ribbon. g/r for load 1
It is necessary to set it to srm or more. Pressing at a pressure of 1 g/mm or less may result in defective joints parallel to the longitudinal direction.

次に異種金属多層薄帯を製造する場合については、例え
ば第3図に示す如く構成されている。第3図に於て、高
周波溶解などにより溶解された2種類の溶解原料Aおよ
びBをそれぞれ収容するための耐熱容器(例えば石英管
) IAおよびIBが設けられ、それらの耐熱容器の下
端にそれぞれノズル2A、2Bが形成されている。また
ノズル2A、2Bの下方にそれぞれ小径ロール3^、3
Bが設けられている。大径円筒ロール4は小径ロール3
A、3Bに内接し、小径ロールと同一方向に回転する。
Next, in the case of producing a multilayer ribbon of different metals, the structure is, for example, as shown in FIG. 3. In FIG. 3, heat-resistant containers (for example, quartz tubes) IA and IB are provided to respectively accommodate two types of melted raw materials A and B melted by high-frequency melting or the like, and the lower ends of these heat-resistant containers are respectively Nozzles 2A and 2B are formed. Also, small diameter rolls 3^ and 3 are placed below the nozzles 2A and 2B, respectively.
B is provided. The large diameter cylindrical roll 4 is the small diameter roll 3
It is inscribed in A and 3B and rotates in the same direction as the small diameter roll.

耐熱容器で溶融された金属は不活性ガスの圧力により、
ノズル2A、 2Bを通して、小径ロール3A、 3B
上にそれぞれ噴出される。噴出された溶融金属は同一速
度で高速回転するロール3A、3Bと接触して急冷され
ることにより、へ金属薄帯第1層5A及びB金属薄帯第
2層5Bが形成される。続いて、A、B金属薄帯第1層
は、それぞれの小径ロール3A、3Bに沿って回転し、
小径ロール3A、 3Bと大径円筒ロール4との間で加
圧または圧延された後、大径円筒ロールに沿って回転す
る。へ金属薄帯第1層5Aは大径円筒ロール4と小径ロ
ール3Bの間でB金属薄帯第1層5Bと接合される。以
下同様にして、小径ロール3A、3Bと大径円筒ロール
の間でそれぞれ積層化が繰り返されA、B金属からなる
多層薄帯が製造される。
Metal melted in a heat-resistant container is heated by the pressure of an inert gas.
Small diameter rolls 3A, 3B are passed through nozzles 2A, 2B.
Each is squirted on top. The ejected molten metal contacts the rolls 3A and 3B rotating at the same high speed and is rapidly cooled, thereby forming a first layer 5A of metal ribbon and a second layer 5B of B metal ribbon. Subsequently, the first layers of metal ribbons A and B are rotated along their respective small diameter rolls 3A and 3B,
After being pressed or rolled between the small diameter rolls 3A, 3B and the large diameter cylindrical roll 4, it is rotated along the large diameter cylindrical roll. The first layer of metal ribbon 5A is joined to the first layer of B metal ribbon 5B between the large diameter cylindrical roll 4 and the small diameter roll 3B. Thereafter, lamination is repeated between the small-diameter rolls 3A, 3B and the large-diameter cylindrical roll, respectively, in the same manner to produce a multilayer ribbon made of metals A and B.

(実施例) つぎに本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

実施例1 第1図に示す方法にて多層急冷金属薄帯を作成した。す
なわちあらかじめ高周波溶解により作成したFe −1
重量%C合金30gを収容する耐熱容器を小径ロール(
鉄台金製)上部に設置し、またノズル2(ノズル形状は
、10m1IIx O,5mm )と小径ロール3との
間隙は0.3mmとなるよう設置した。高周波コイルを
用いて合金を溶解した後、0.2kg/cm2のアルゴ
ンガス圧にてロール上に1550℃の溶融金属を噴出し
、700rpmで回転する小径ロール3(直径4001
!IQ+ )により急冷させ、大径円筒ロール(直径8
00mm )内側に積層させた結果、幅10mm、一層
の厚み30μmのリボン状多層薄帯(5層)が得られた
。この合金の縦断面を鏡面研磨して光学顕微鏡観察を行
ったところ、多層化による金属組織の変化は認められず
また接合部の剥離や空洞は観察されなかった。
Example 1 A multilayer rapidly solidified metal ribbon was produced by the method shown in FIG. In other words, Fe −1 prepared in advance by high-frequency melting
A heat-resistant container containing 30 g of wt% C alloy was rolled into a small diameter roll (
(made of iron base metal), and the gap between the nozzle 2 (nozzle shape: 10 m 1 II x O, 5 mm) and the small diameter roll 3 was 0.3 mm. After melting the alloy using a high-frequency coil, the molten metal at 1550°C is spouted onto the roll with an argon gas pressure of 0.2kg/cm2, and a small diameter roll 3 (diameter 400mm) rotating at 700rpm is
! IQ
As a result of laminating the layers on the inside (5 layers), a ribbon-like multilayer thin strip (5 layers) with a width of 10 mm and a thickness of one layer of 30 μm was obtained. When a longitudinal section of this alloy was mirror-polished and observed under an optical microscope, no change in the metal structure due to multilayering was observed, and no peeling or cavities at the joints were observed.

実施例2 第3図に示す方法により、異種金属積層薄帯を製造する
場合について示す。Fe75Si+oB +s金合金F
e8op 18c s合金とをそれぞれ30gを耐熱容
器IA、 IBに収容し、高周波コイルを用いて合金を
溶解し、それぞれの溶融金属をノズル2A、2B(ノズ
ル形状は5Bm X 0.5mm )より0.2kg/
cm”のアルゴンガス圧にて小径ロール3A、 3B上
に噴出した。そのときの溶融金属の温度は、Fe、6S
i、。BIS合金の場合1200℃、FeaoP Is
c S合金の場合1180℃で、また小径ロール3A、
3Bの回転数はいずれも1200rpmである。この様
にして小径ロールで急冷され、作成される各々の薄帯を
大径円筒ロール内側に積層させることにより、幅5II
Im、一層の厚み約25μmの2種類の非晶質合金から
なる多層急冷薄帯が製造できる。
Example 2 A case will be described in which a laminated ribbon of different metals is manufactured by the method shown in FIG. Fe75Si+oB +s gold alloy F
30 g of e8op 18c s alloy was placed in heat-resistant containers IA and IB, and the alloys were melted using a high-frequency coil, and each molten metal was poured through nozzles 2A and 2B (nozzle shape: 5 Bm x 0.5 mm) at 0.00 g. 2kg/
cm'' of argon gas pressure onto the small diameter rolls 3A and 3B.The temperature of the molten metal at that time was Fe, 6S.
i. 1200℃ for BIS alloy, FeaoP Is
c In the case of S alloy, at 1180°C, and with a small diameter roll 3A,
The rotation speed of 3B is 1200 rpm. By stacking each of the thin strips thus created by quenching with a small-diameter roll inside a large-diameter cylindrical roll, a width of 5II
Im, a multilayer quenched ribbon consisting of two types of amorphous alloys with a thickness of about 25 μm per layer can be produced.

(発明の効果) 以上説明したように本発明は、優れた材料特性を有する
同種または異種金属の急冷薄帯を連続工程にて接合を行
い多層化することを可能とするもので、その効果は大き
い。
(Effects of the Invention) As explained above, the present invention makes it possible to join quenched ribbons of the same or different metals with excellent material properties in a continuous process to form a multilayer structure. big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における急冷薄帯第1層が製造される過
程を示す模式図、第2図は急冷薄帯第1層と第2層が接
合されている状態を示す模式図、第3図は異種金属の多
層薄帯が製造される過程を示す模式図である。 1・・・耐熱容器、2・・・ノズル、3・・・小径ロー
ル、4・・・大径円筒ロール、5・・・薄体第1層、6
・・・薄体第2層。
FIG. 1 is a schematic diagram showing the process of manufacturing the first layer of the quenched ribbon in the present invention, FIG. 2 is a schematic diagram showing the state in which the first and second layers of the quenched ribbon are joined, and FIG. The figure is a schematic diagram showing the process of manufacturing a multilayer ribbon of different metals. DESCRIPTION OF SYMBOLS 1... Heat-resistant container, 2... Nozzle, 3... Small diameter roll, 4... Large diameter cylindrical roll, 5... Thin first layer, 6
...thin second layer.

Claims (2)

【特許請求の範囲】[Claims] (1)原料金属を、1個もしくは複数の耐熱容器内で加
熱溶融し、耐熱容器下部に設けたノズル部から溶融金属
を噴出させ、ノズル下部に配置された高速で回転する1
個もしくは複数の小径ロール上で、溶融金属を急冷固化
させて、連続的薄帯となし、次にその薄帯を回転小径ロ
ール外周部に沿って搬送し、小径ロールと、小径ロール
に内接し、かつその周速に同期して回転する大径回転ロ
ール間で、加圧あるいは圧延した後、大径円筒ロール内
周部に沿って搬送し、小径、大径円筒ロール間で、新た
に形成される薄帯と接合することによって、連続的に急
冷金属の積層体を得ることを特徴とする多層急冷薄帯の
製造方法。
(1) Raw metal is heated and melted in one or more heat-resistant containers, and the molten metal is jetted out from a nozzle provided at the bottom of the heat-resistant container, which rotates at high speed.
The molten metal is rapidly cooled and solidified to form a continuous ribbon on one or more small diameter rolls, and then the ribbon is conveyed along the outer periphery of the rotating small diameter rolls and inscribed in the small diameter roll. , and after being pressurized or rolled between large-diameter rotating rolls that rotate in synchronization with the circumferential speed of the rolls, the material is conveyed along the inner circumference of the large-diameter cylindrical rolls, and then re-formed between small-diameter and large-diameter cylindrical rolls. 1. A method for manufacturing a multilayer quenched ribbon, characterized in that a laminate of quenched metal is continuously obtained by joining the quenched metal ribbon.
(2)大径円筒ロールと小径ロールを回転軸方向に一定
速度で摺動させつつ溶融金属を急冷固化させる特許請求
の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the molten metal is rapidly cooled and solidified while sliding the large-diameter cylindrical roll and the small-diameter roll at a constant speed in the direction of the rotating shaft.
JP13990487A 1987-06-05 1987-06-05 Production of rapid cooled multilayered strip Pending JPS63303662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13990487A JPS63303662A (en) 1987-06-05 1987-06-05 Production of rapid cooled multilayered strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13990487A JPS63303662A (en) 1987-06-05 1987-06-05 Production of rapid cooled multilayered strip

Publications (1)

Publication Number Publication Date
JPS63303662A true JPS63303662A (en) 1988-12-12

Family

ID=15256331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13990487A Pending JPS63303662A (en) 1987-06-05 1987-06-05 Production of rapid cooled multilayered strip

Country Status (1)

Country Link
JP (1) JPS63303662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143455A (en) * 2010-01-15 2011-07-28 Toyota Motor Corp Method and device of manufacturing magnet material
JP2012204757A (en) * 2011-03-28 2012-10-22 Komatsu Ltd Method and device for manufacturing stacked body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143455A (en) * 2010-01-15 2011-07-28 Toyota Motor Corp Method and device of manufacturing magnet material
JP2012204757A (en) * 2011-03-28 2012-10-22 Komatsu Ltd Method and device for manufacturing stacked body

Similar Documents

Publication Publication Date Title
JP2021527569A (en) Production equipment and methods for manufacturing metal composite plates in a short process
CN112338389B (en) Laminated strip-shaped self-brazing solder for aluminum copper brazing and preparation method thereof
EP0090973B1 (en) Process for producing multi-layered alloys
JPS63303662A (en) Production of rapid cooled multilayered strip
US4428416A (en) Method of manufacturing a multi-layer amorphous alloy
CN112281017B (en) Preparation method of Au-20Sn foil
JPH02295646A (en) Production of clad plate
JPH04138846A (en) Production of quench solidified clad foil from different molten bodies
JPH11320073A (en) Production of two-layered nickel-base alloy clad steel sheet by casting method
JPS63313651A (en) Production of composite material
JPS5818998Y2 (en) Multilayer amorphous alloy manufacturing equipment
JPS586603Y2 (en) Complex amorphous metal manufacturing equipment
JPH01154886A (en) Manufacture of al clad steel plate
JP2706934B2 (en) Surface coating method
JPH01246718A (en) Manufacture of oxide superconductive material tape
KR101433359B1 (en) A fabricating apparatus of sheet-type al-cu hybrid materials
JPS586602Y2 (en) Multilayer amorphous alloy manufacturing equipment
JPH08267179A (en) Continuous production of composite metallic material
JPS59110492A (en) Laminate of brazing material for simultaneous carburizing and brazing and its production
JPS6316844A (en) Apparatus for producing bellows
JPH04138845A (en) Production of quench solidified clad foil from different kinds of molten bodies
JP2009202172A (en) Method for producing metal glass alloy plate
JPS6159819B2 (en)
JPS6182996A (en) Production of composite brazing filler metal
KR20200075433A (en) Method of manufacturing clad steel sheet using continuous casting