JPS63303402A - Device for controlling circular arcuate locus of multi-axis servo mechanism - Google Patents

Device for controlling circular arcuate locus of multi-axis servo mechanism

Info

Publication number
JPS63303402A
JPS63303402A JP13890687A JP13890687A JPS63303402A JP S63303402 A JPS63303402 A JP S63303402A JP 13890687 A JP13890687 A JP 13890687A JP 13890687 A JP13890687 A JP 13890687A JP S63303402 A JPS63303402 A JP S63303402A
Authority
JP
Japan
Prior art keywords
axis
controller
command
calculated
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13890687A
Other languages
Japanese (ja)
Other versions
JP2515549B2 (en
Inventor
Yasushi Miura
靖 三浦
Tatsuya Nakajima
達也 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62138906A priority Critical patent/JP2515549B2/en
Publication of JPS63303402A publication Critical patent/JPS63303402A/en
Application granted granted Critical
Publication of JP2515549B2 publication Critical patent/JP2515549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To improve the accuracy of the circular locus of a multi-axis servomechanism, by supplying an aimed angular velocity omega0 obtained by differentiating an aimed value theta0 of a central angle after the angular velocity is multiplied by a feed-forward gain Kf. CONSTITUTION:The position (x) of a table 5 in the X-axis direction detected by a pulse generator 7X is fetched by a feed-forward controller 14Y of Y-axis and the position (y) of the table 5 in the Y-axis direction detected by another pulse generator 7Y is fetched by a feed-forward controller 14X of X-axis. The controllers 14X and 14Y respectively calculate uX=-Kf.omega0Y and uY=Kf.omega0X from the inputted values (x) and (y) and send the calculated results to adders 15X and 15Y. The adder 15X adds the speed command value of x-axis component calculated by a position controller 1X to the uX calculated by the controller 14X and the adder 15Y adds the speed command value of the y-axis component calculated by a position controller 1Y to the uY calculated by the controller 14Y. After the above-mentioned addition, the controllers 14X and 14Y output a speed command value which makes the deviations of the circular arcuate locus of a multi-axis servomechanism in the X-axis and Y-axis components zero.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は、例えばNC工作機械、レーザ加工機などの
多軸サーボ機構の円弧軌跡制御装置、特に軌跡精度の向
上化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an arc trajectory control device for a multi-axis servo mechanism such as an NC machine tool or a laser processing machine, and particularly to improvement of trajectory accuracy.

[従来の技術〕 N″C工作機、NCレーザ加工機など多軸サーボ機構に
おいて、良好な加工精度を得るためには、各送り駆動軸
の軌跡制御における軌跡誤差を極力小さくすることが必
要とされる。
[Conventional technology] In order to obtain good machining accuracy in multi-axis servo mechanisms such as N''C machine tools and NC laser processing machines, it is necessary to minimize trajectory errors in trajectory control of each feed drive axis. be done.

第6図は従来のX軸、Y軸2軸サーボ機構の制御装置を
示すブロック図であり、図においてLX。
FIG. 6 is a block diagram showing a conventional control device for a two-axis X-axis and Y-axis servo mechanism, with LX in the figure.

IYは各々X軸、Y軸の位置制御装置、2X、2Yは各
々X軸駆動モータ3XとY軸駆動モータ3Yを駆動・制
御する速度制御増幅器、4X、4Yは各々テーブル5を
X軸方向とY軸方向に移動する送りねじである。
IY is a position control device for the X-axis and Y-axis, 2X and 2Y are speed control amplifiers that drive and control the X-axis drive motor 3X and Y-axis drive motor 3Y, respectively, and 4X and 4Y are respectively for moving the table 5 in the X-axis direction. This is a feed screw that moves in the Y-axis direction.

6X、6Yは各々X軸駆動モータ3XとY軸駆動モータ
3Yの回転速度を検出するタコジェネレータ、7X、7
Yは各々テーブル5のX軸方向及びY軸方向の位置を検
出するパルスジェネレータ、8.9は加算器である。
6X and 6Y are tacho generators that detect the rotational speeds of the X-axis drive motor 3X and Y-axis drive motor 3Y, respectively; 7X and 7
Y is a pulse generator that detects the position of the table 5 in the X-axis direction and the Y-axis direction, respectively, and 8.9 is an adder.

上記のように構成した2軸サ一ボ機構においては、NC
装置(不図示)からX軸の位置指令XrとY軸の位置指
令y とを加算器8を介して位置制御装置IX、IYに
送り、位置制御装置IX。
In the two-axis sabot mechanism configured as above, the NC
An X-axis position command Xr and a Y-axis position command y are sent from a device (not shown) to position control devices IX and IY via an adder 8.

IYでは各位置指令x  、y  に基いてX軸の速r 度指令大 とY軸の速度指令9 を算出し、加算r 器9を介して速度制御増幅器2X、2Yに送る。In IY, the speed r of the X axis is determined based on each position command x, y. Calculate the degree command large and the Y-axis speed command 9, add r 9 to speed control amplifiers 2X and 2Y.

速度制御増幅器2X、2Yは所定の速、2指令大 。Speed control amplifiers 2X and 2Y have a predetermined speed and 2 large commands.

夕 に基いてX軸駆動モータ3XとY軸駆動モーr 夕3Yを各々駆動しテーブル5の位置を制御する。Based on the X-axis drive motor 3X and Y-axis drive motor r The position of the table 5 is controlled by driving the 3Y and 3Y respectively.

この際タコジェネレータ6X、6YでX軸駆動姿−夕3
XとY軸駆動モータ3Yの回転速度を検出し、パルスジ
ェネレータ7X、7Yでテーブル5のX軸方向とY軸方
向の応答位置x、yを検出してフィードバックしている
At this time, X-axis drive with tacho generators 6X and 6Y - Evening 3
The rotational speeds of the X- and Y-axis drive motors 3Y are detected, and the response positions x and y of the table 5 in the X- and Y-axis directions are detected and fed back using pulse generators 7X and 7Y.

[発明か解決しようとする問題点] 上記のように構成した多軸サーボ機構における制御は、
各軸ごとに時間をパラメータとして独立に制御を行なっ
ているため、円弧軌跡の高速送り駆動などの場合には各
駆動軸のサーボ特性が同一であっても、応答の時間遅れ
により第7図に示すように点Aを円弧中心とした指令円
弧軌跡11に対して実際の応答軌跡12は小さくなり誤
差13が生じ、良好な加工精度が得られないという問題
点があった。
[Problem to be solved by the invention] Control in the multi-axis servo mechanism configured as described above is as follows:
Since each axis is controlled independently using time as a parameter, even if the servo characteristics of each drive axis are the same, in the case of high-speed feed drive of circular loci, etc., due to the response time delay, the As shown, the actual response trajectory 12 becomes smaller with respect to the command arc trajectory 11 with point A as the center of the arc, resulting in an error 13, resulting in a problem in that good machining accuracy cannot be obtained.

かかる問題点を解決するために、特開昭60−2312
07号に多軸サーホ系の指令発生方式が開示されている
。上記公報に開示されている方式は、2軸以上の多軸サ
ーボ機構において主たる軸の位置指令と速度指令は時間
をパラメータとして発生し、従たる軸の位置指令と速度
指令は主たる軸の状態をパラメータとして発生するよう
にしている。
In order to solve such problems, Japanese Patent Application Laid-Open No. 60-2312
No. 07 discloses a command generation method for a multi-axis surf system. In the method disclosed in the above publication, in a multi-axis servo mechanism with two or more axes, the position command and speed command of the main axis are generated using time as a parameter, and the position command and speed command of the secondary axes are generated based on the state of the main axis. I am trying to generate it as a parameter.

しかし、この多軸サーボ機構の指令発生方式においては
、従たる軸の位置、速度を主たる軸の位置の関数値とし
て求めて記憶しておくため、制御装置に膨大な記憶容量
を必要とする問題点がある。
However, in this command generation method for multi-axis servomechanisms, the position and speed of the secondary axes are determined and stored as function values of the position of the main axis, which requires a huge amount of storage capacity in the control device. There is a point.

この発明はかかる問題点を解決するためになされたもの
であり、簡単な構成で軌跡精度の向上を図ることができ
る多軸サーボ機構の円弧軌跡制御装置を提案することを
目的とするものである。
This invention was made to solve such problems, and the object is to propose a circular trajectory control device for a multi-axis servo mechanism that can improve trajectory accuracy with a simple configuration. .

[問題点を解決するための手段] この発明に係る多軸サーボ機構の円弧軌跡制御装置は、
多軸サーボ機構の各軸ごとに時間をパラメータとして独
立に制御するとともに、各軸ごとに円弧中心角速度の目
標値を用いたフィードフォワード制御を付加したことを
特徴とする。
[Means for solving the problems] The arc trajectory control device for a multi-axis servo mechanism according to the present invention has the following features:
It is characterized in that each axis of the multi-axis servo mechanism is independently controlled using time as a parameter, and feedforward control using a target value of the arc center angular velocity is added for each axis.

[作用] この発明においては、円弧中心角速度の目標値を用い円
弧軌跡の速度指令を修正することにより、各駆動軸の応
答の時間遅れにより生じる円弧軌跡の軌跡誤差を減少さ
せる。
[Operation] In the present invention, by correcting the speed command of the circular trajectory using the target value of the circular arc center angular velocity, the trajectory error of the circular trajectory caused by the time delay in response of each drive axis is reduced.

[実施例コ まず、この発明の詳細な説明するにあたり、この発明の
多軸サーボ機構の円弧軌跡制御の原理を説明を簡単にす
るために第1図に示すようにX軸とY軸とからなる2軸
サ一ボ機構に基いて説明する。
[Example] First, in giving a detailed explanation of this invention, in order to simplify the explanation of the principle of circular trajectory control of the multi-axis servo mechanism of this invention, we will explain it from the X-axis and Y-axis as shown in FIG. The explanation will be based on a two-axis servo mechanism.

第1図において、11は指令軌跡であり、指令軌跡11
は座環原点0を中心とした半径roの円弧である。12
は指令軌跡11に基く応答軌跡である。いま、第1図に
示すように指令軌跡11上の指令位置P(x、y)の半
径方向がX軸方向となす(l   r   r 角、すなわち中心角をθ。とじ、応答軌跡12上の応答
位置P (x、y)の半径を「、中心角をθとし、指令
位置P。と応答位置Pの中心角偏差θ0−θをΔθとす
ると指令位置P。と応答位置PのX軸。
In FIG. 1, 11 is a command locus, and the command locus 11
is a circular arc with radius ro centered on the origin 0 of the seat ring. 12
is a response locus based on the command locus 11. Now, as shown in FIG. 1, the radial direction of the command position P (x, y) on the command locus 11 is the Let the radius of the response position P (x, y) be ``, the central angle be θ, and the center angle deviation θ0-θ between the command position P and the response position P be Δθ, then the X axis of the command position P and the response position P.

Y軸に対する座標値は次式で表わされる。The coordinate value for the Y axis is expressed by the following equation.

x=rcosθ  ・・・−・・・(1)r     
 0     0 y  寓 rSir1θ    ・・・・・・・・・(
2)r      OO X 票r (OSθ       ・・・・・・・・・
(3)y−rstoθ       ・・・・・・・・
・(4)さて、例えば第6図に示す従来の制御装置に使
用している位置制御装置IX、IYとして一般に用いら
れているものは比例制御装置であり、その比例ゲインを
K とすると、この比例制御装置から出力される応答位
置P (x、y)におけるX軸方向の速度指令直交 と
Y軸方向の速度指令値9 はr           
                 1次式で表わされ
る。
x=rcosθ...-(1)r
0 0 y rSir1θ ・・・・・・・・・(
2) r OO X vote r (OSθ ・・・・・・・・・
(3) y-rstoθ ・・・・・・・・・
・(4) Now, for example, the position control devices IX and IY used in the conventional control device shown in Fig. 6 are generally proportional control devices, and if their proportional gain is K, then this The speed command value 9 in the X-axis direction and the speed command value 9 in the Y-axis direction at the response position P (x, y) output from the proportional control device are r
It is expressed by a linear equation.

大 −K  (x  −x)  ・・・・・・(5)r
      p      r 夕、−Kp (y、−y)  ・・・・・・(6)応答
位置p (x、y)における半径方向の指令速度f−r
ef’は上記直交座標系で表わした速度指令直交1.夕
、の極座標系への変換を考慮すると次式%式% この(7)式に上記(1)弐〜(6)式を代入して変形
すると ’ref −−(x *Kp(x、 −x) +yφK
p (y、−y))r −K((rcosθcosθo+roS!rIθ願θo
)−r)−K((rocos(θ0−θ)−r)=Kp
(rocosΔθ−r) ここで(OS八へ−1−−(八〇)2の近似式を用いる
と、半径方向の指令速度t  は次式で表わさre「 れる。
Large −K (x −x) ・・・・・・(5)r
p r , -Kp (y, -y) ...... (6) Commanded speed f-r in the radial direction at the response position p (x, y)
ef' is the speed command orthogonal 1. expressed in the above-mentioned orthogonal coordinate system. Taking into account the conversion of y to the polar coordinate system, the following formula% Formula% Substituting formulas (1) to (6) above into formula (7) and transforming it, 'ref −-(x *Kp(x, − x) +yφK
p (y, -y)) r - K ((r cos θ cos θo + roS! r I θ request θo
)-r)-K((rocos(θ0-θ)-r)=Kp
(rocosΔθ−r) Here, using the approximation formula of (OS8−1−(80)2), the command speed t in the radial direction is expressed by the following formula.

・・・・・・・・・(8) この(8)式を考慮して半径方向に関する制御系のブロ
ック線図を考えると第2図に示すものとなる。すなわち
、半径方向に関する制御系は一定値である指令値r。の
系に対して −K  r  (Δθ)2/2の外乱が加わる形となO る。このため応答値rは指令値r。に対して偏差をもつ
ことになり、この偏差が軌跡誤差となる。
(8) When a block diagram of the control system in the radial direction is considered in consideration of this equation (8), it is shown in FIG. 2. That is, the control system in the radial direction has a command value r that is a constant value. A disturbance of -K r (Δθ)2/2 is added to the system O. Therefore, the response value r is the command value r. This deviation becomes the trajectory error.

一方、中心角方向の指令速度θ  は次式で表ef わされる。On the other hand, the command speed θ in the center angle direction is expressed by the following formula. I will be forgotten.

’ref’=、(−大一θ+9.(oSθ)−(9)こ
の(9)式に上記(1)弐〜(6)式を代入して変形す
ると 1)、。f−W (−に、 (x、 −x) s′Ln
θ+にり (yr Y)(oSθ)「に −”sinΔθ、 ここで廟Δθ−Δθの近似式を用い、ro/r−1と近
似すると、中心角方向の指令速度υrefは次式で表わ
される。
'ref'=, (-Daichi θ+9.(oSθ)-(9) When transformed by substituting the above equations (1) to (6) into equation (9), we get 1). f-W (-to, (x, -x) s'Ln
θ+Ni (yr Y) (oSθ) "Ni-" sin Δθ, Here, using the approximation formula of Δθ-Δθ and approximating it to ro/r-1, the command speed υref in the central angular direction is expressed by the following formula. .

θ  −K Δθ ・・・・・・・・・(10)ref
’   p この(10)式を考慮して中心角に関する制御系のブロ
ック線図を考えると第3図に示すものとなる。
θ −K Δθ ・・・・・・・・・(10) ref
'p If we consider this equation (10) and consider the block diagram of the control system regarding the central angle, we will get the one shown in FIG.

すなわち中心角に関する制御系は一般に定速度目標値で
ある目標値θ。に対して1次の制御系である。したがっ
て角速度目標値をω 2時間をtと口 するとθ。−ω。tで表わされる定速度目標値に対して
は次式で示す中心角誤差の定常値Δθstが発生する。
In other words, the control system regarding the center angle generally has a target value θ which is a constant speed target value. It is a first-order control system for Therefore, if the angular velocity target value is ω and 2 hours is t, then θ. -ω. For a constant speed target value represented by t, a steady value Δθst of the center angle error occurs as shown by the following equation.

この中心角誤差Δθ によって第2図に示した外t 乱が発生して軌跡誤差が生じる。By this center angle error Δθ, the outer t shown in FIG. Disturbances occur and trajectory errors occur.

上記第3図に示した制御系に対して定常速度偏差を低減
する方法として、目標値の微分をフィードフォワードで
加える方法がある。この方法を適用すると、中心角の目
標値θ0の微分である角速度目標値ω にフィードフォ
ワードゲインKrを乗算して目標角速度の増分として加
えてやることになる。すなわち中心角方向の指令速度θ
refに対して次式 %式%(12) で表わされるUθを加えてやることにより、中心角誤差
を低減することができ、その結果軌跡誤差も減少するこ
とができる。
As a method for reducing the steady-state speed deviation in the control system shown in FIG. 3, there is a method of adding a differential of the target value in a feedforward manner. When this method is applied, the angular velocity target value ω, which is the differential of the central angle target value θ0, is multiplied by the feedforward gain Kr and added as an increment to the target angular velocity. In other words, the command speed θ in the center angle direction
By adding Uθ expressed by the following equation % (12) to ref, the center angle error can be reduced, and as a result, the trajectory error can also be reduced.

ここで(12)式で表わしたU。を極座標系から直交座
標系へ変換して中心角方向成分からX軸成分のU とY
軸成分のU に変換すると次式となる。
Here, U expressed by equation (12). Convert from the polar coordinate system to the orthogonal coordinate system, and from the central angle direction component to the X-axis component U and Y
When converted to the axis component U, the following equation is obtained.

y u−−K  ・ω y ・・・・・・・・・・・・(1
3)x    f’   O u  ””Kr ”  o    ・・・・・・・・・
・・・(14)したがって、第6図に示した従来例の速
度指令鎖交 、夕 に対して、それぞれ(13)式、 
 (14)式r に示したu  、u  を加えてやれば軌跡精度の向y 上を図ることができる。
y u−−K ・ω y ・・・・・・・・・・・・(1
3) x f' O u ””Kr” o ・・・・・・・・・
...(14) Therefore, for the speed command linkage and y of the conventional example shown in Fig. 6, equations (13),
By adding u and u shown in equation (14) r, it is possible to improve trajectory accuracy y.

すなわち、X輔及びY軸の速度指令鎖交、5>を次式で
決定する。
That is, the speed command linkage of the X and Y axes, 5>, is determined by the following equation.

’k  −K   (x  −x)−に、−0「pr ・・・・・・・・・(15) 少−K (y −y)十Kr・ωo−xp      
 r ・・・・・・・・・(16) (15)式、 (1B)式において各々右辺第2項が円
弧中心角速度の目標値を用いたフィードフォワード制御
を表わす。
'k -K (x -x)-, -0'pr ...... (15) Small -K (y -y) 10Kr・ωo-xp
r (16) In equations (15) and (1B), the second term on the right side represents feedforward control using the target value of the arc center angular velocity.

第4図は以上説明した多軸サーボ機構の円弧軌跡制御の
原理に基づくこの発明の一実施例を示すブロック図であ
り第4図においてIX〜9は上記第6図に示した従来例
と全く同じものである。
FIG. 4 is a block diagram showing an embodiment of the present invention based on the principle of circular trajectory control of a multi-axis servo mechanism explained above. In FIG. 4, IX to 9 are completely different from the conventional example shown in FIG. It's the same thing.

14λは上記(13)式に基づく演算処理を行なうフィ
ードフォワード制御装置、14Yは上記(14)式に基
つく演算処理を行なうフィードフォワード制御装置、1
5X 、 15Yは加算器である。
14λ is a feedforward control device that performs calculation processing based on the above equation (13), 14Y is a feedforward control device that performs calculation processing based on the above equation (14), 1
5X and 15Y are adders.

上記のように構成されたサーボ機構の円弧軌跡+1;I
I H装置においては、パルスジェネレータ7Xで検出
した駆動中のテーブル5のX軸方向位置XがYf[l]
のフィードフォワード制御位置14Yに取りこまれ、パ
ルスジェネレータ7Yで検出したテーブル5のY軸方向
位置yがX軸のフィードフォーワード制御装置14Xに
取りこまれる。各フィードフォワード制御装置14X 
、 14Yは入力された値に基づき(13)式、 (1
4)式に示した演算処理が行なわれ、演算結果u  、
u  を各加算器15X 、 15Yに送らy れる。加算器15Xでは位置制御装置IXでX軸方向の
位置指令X と応答位置Xに基いて算出したX軸方向の
速度指令文 とフィードフォワード制御装置14Xで演
算した演算値U とを加算し、加算器15Yは位置制御
装置IYでY軸方向の位置指令y と応答位置yに基い
て算出したY軸方向の速度指令9 とフィードフォワー
ド制御装置14Yで演算した演算値U とを加算し、円
弧軌跡偏差のX軸成分とY軸成分を零にする速度指令鎮
交 。
Circular trajectory of the servo mechanism configured as above +1; I
In the IH device, the position X of the table 5 in the X-axis direction detected by the pulse generator 7X is Yf[l]
The Y-axis direction position y of the table 5 detected by the pulse generator 7Y is taken into the X-axis feedforward control device 14X. Each feedforward control device 14X
, 14Y is calculated based on the input value by formula (13), (1
4) The calculation process shown in the formula is performed, and the calculation result u,
u is sent to each adder 15X, 15Y. The adder 15X adds the position command X in the X-axis direction by the position control device IX, the speed command sentence in the X-axis direction calculated based on the response position X, and the calculated value U calculated by the feedforward control device 14X. The device 15Y adds the position command y in the Y-axis direction by the position control device IY, the speed command 9 in the Y-axis direction calculated based on the response position y, and the calculated value U calculated by the feedforward control device 14Y, and generates a circular trajectory. Speed command adjustment that makes the X-axis and Y-axis components of the deviation zero.

「 安 を出力する。この各速度指令値史、父  をr  
                         
               r       r加
算器9を介して各々速度制御増幅器2X、2Yに送り、
X軸駆動モータ3XとY軸駆動モータ3Yを制御してテ
ーブル5の位置を制御する。
This outputs the history of each speed command value, and the father is r.

R is sent to the speed control amplifiers 2X and 2Y via the r r adder 9, respectively,
The position of the table 5 is controlled by controlling the X-axis drive motor 3X and the Y-axis drive motor 3Y.

上記実施例に基づき、円弧半径50mm、送り速度4 
m11で、位置制御装置IX、IYのゲインK を30
(see−’) 、フィードフォワード制御装置14X
Based on the above example, the arc radius is 50 mm, and the feed rate is 4.
m11, set the gain K of position control devices IX and IY to 30
(see-'), feedforward control device 14X
.

14YのフィードフォワードゲインKrを0.65とし
、かつX 軸とY軸のサーボ特性を同じにして、円弧軌
跡制御の計算機シュミレーションを行なった場合の軌跡
誤差を第5図に示す。
FIG. 5 shows the trajectory error when a computer simulation of circular trajectory control is performed with the feedforward gain Kr of 14Y set to 0.65 and the servo characteristics of the X and Y axes made the same.

第5図は横軸に駆動時間(秒)をとり、縦軸に軌跡誤差
(100μm)をとって、駆動時間により軌跡誤差が変
化する状態を示し、図において、Aはこの実施例の場合
、Bは従来例の場合を示す。
In FIG. 5, the horizontal axis represents the driving time (seconds) and the vertical axis represents the trajectory error (100 μm), showing how the trajectory error changes depending on the driving time. B shows the case of a conventional example.

第5図から明らかなように、この実施例による軌跡誤差
は従来例の軌跡誤差と比較して著しく小さくすることか
でき、軌跡精度の向上を図ることかできる。
As is clear from FIG. 5, the trajectory error according to this embodiment can be significantly reduced compared to the trajectory error of the conventional example, and the trajectory accuracy can be improved.

なお、上記実施例においては2軸サ一ボ機構について説
明したが、3軸サ一ボ機構の場合も上記実施例と同様に
適用することができる。
In the above embodiment, a two-axis servo mechanism has been described, but the present invention can also be applied to a 3-axis servo mechanism in the same manner as in the above embodiment.

[発明の効果] この発明は以上説明したように、円弧中心角速度の目標
値を用い円弧軌跡の達文指令を修正するようにしたので
、円弧の半径方向に加えられる外乱を打消すことができ
、軌跡精度を著しく向上させることができる効果を有す
る。
[Effects of the Invention] As explained above, the present invention uses the target value of the arc center angular velocity to modify the delivery command of the arc trajectory, so that disturbances applied in the radial direction of the arc can be canceled. This has the effect of significantly improving trajectory accuracy.

また、この発明においては、主動軸の状態に応じた従動
輪の位賀、速度をあらかじめ記憶させる必要なしにに軌
跡制御を行なうことができるから、必要とする記憶容量
を著しく低減することができる効果も有する。
In addition, in this invention, trajectory control can be performed without the need to memorize the position and speed of the driven wheels according to the state of the driving shaft in advance, so the required storage capacity can be significantly reduced. It also has effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の動作原理を示す説明図、第2図は第
1図に示した円弧軌跡の半径方向に関する制御系のブロ
ック線図、第3図は上記円弧軌跡の中心角に関する制御
系のブロック線図、第4図はこの発明の実施例を示すブ
ロック図、第5図は上記実施例における軌跡誤差の分布
図、第6図は従来例を示すブロック図、第7図は従来例
による指令円弧軌跡と実際の応答軌跡を示す説明図であ
る。 IX、IY・・・位置制御装置、2X、2Y・・・速度
制御増幅器、3X・・・X軸駆動モータ、3Y・・・Y
軸駆動モータ、4X、4Y・・・送りねし、5・・・テ
ープル、6X、6Y・・タコジェネレータ、7X、7Y
・・パルスジェネレータ、8.9・・・加算器、14X
。 14Y・・・フィードフォワード制御装置、15X、1
5Y・・・加算器。
Fig. 1 is an explanatory diagram showing the operating principle of the present invention, Fig. 2 is a block diagram of a control system related to the radial direction of the arc locus shown in Fig. 1, and Fig. 3 is a control system related to the central angle of the arc locus shown in Fig. 1. FIG. 4 is a block diagram showing an embodiment of the present invention, FIG. 5 is a trajectory error distribution diagram in the above embodiment, FIG. 6 is a block diagram showing a conventional example, and FIG. 7 is a conventional example. FIG. 2 is an explanatory diagram showing a command circular arc trajectory and an actual response trajectory according to FIG. IX, IY...Position control device, 2X, 2Y...Speed control amplifier, 3X...X-axis drive motor, 3Y...Y
Shaft drive motor, 4X, 4Y... feed gear, 5... table, 6X, 6Y... tacho generator, 7X, 7Y
...Pulse generator, 8.9...Adder, 14X
. 14Y...Feedforward control device, 15X, 1
5Y...adder.

Claims (1)

【特許請求の範囲】[Claims] 多軸サーボ機構の各軸ごとに時間をパラメータとして独
立に制御する円弧軌跡制御において、上記各軸ごとの時
間をパラメータとした独立な制御に、円弧中心角速度の
目標値を用いたフィードフォワード制御を手段を各軸毎
に付加したことを特徴とする多軸サーボ機構の円弧軌跡
制御装置。
In circular trajectory control where each axis of a multi-axis servo mechanism is controlled independently using time as a parameter, feedforward control using the target value of the arc center angular velocity is added to the independent control using time as a parameter for each axis. A circular trajectory control device for a multi-axis servo mechanism, characterized in that a means is added to each axis.
JP62138906A 1987-06-04 1987-06-04 Arc trajectory control device for multi-axis servo mechanism Expired - Lifetime JP2515549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138906A JP2515549B2 (en) 1987-06-04 1987-06-04 Arc trajectory control device for multi-axis servo mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138906A JP2515549B2 (en) 1987-06-04 1987-06-04 Arc trajectory control device for multi-axis servo mechanism

Publications (2)

Publication Number Publication Date
JPS63303402A true JPS63303402A (en) 1988-12-12
JP2515549B2 JP2515549B2 (en) 1996-07-10

Family

ID=15232898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138906A Expired - Lifetime JP2515549B2 (en) 1987-06-04 1987-06-04 Arc trajectory control device for multi-axis servo mechanism

Country Status (1)

Country Link
JP (1) JP2515549B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450455B1 (en) * 2001-04-19 2004-10-01 도시바 기카이 가부시키가이샤 Servo control method
DE102011104445A1 (en) 2010-07-12 2012-01-12 Fanuc Corporation Numerical control for a machine tool with a speed control function of a sheet guide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271508A (en) * 1985-05-27 1986-12-01 Daikin Ind Ltd Action controller for multi-joint robot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271508A (en) * 1985-05-27 1986-12-01 Daikin Ind Ltd Action controller for multi-joint robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450455B1 (en) * 2001-04-19 2004-10-01 도시바 기카이 가부시키가이샤 Servo control method
DE102011104445A1 (en) 2010-07-12 2012-01-12 Fanuc Corporation Numerical control for a machine tool with a speed control function of a sheet guide
US8744612B2 (en) 2010-07-12 2014-06-03 Fanuc Corporation Numerical controller for machine tool with function of controlling speed of arc operation
DE102011104445B4 (en) 2010-07-12 2019-01-17 Fanuc Corporation Numerical control for a machine tool with a speed control function of a sheet guide

Also Published As

Publication number Publication date
JP2515549B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
Koren et al. Advanced controllers for feed drives
JP4289299B2 (en) Servo controller
JP3313643B2 (en) Servo control method in orbit machining with bite tool and servo controller for orbit machining
JP5208325B1 (en) Numerical control apparatus, machining system, and numerical control method
CN101362511A (en) Synergetic control method of aircraft part pose alignment based on four locater
US4754208A (en) Circular path control apparatus and method for multi-axis servomechanisms
JP2000250614A (en) Backlash correction device and numerical control system
JP2002175105A (en) Method for numerical control
JP2011145884A (en) Locus control device
CN101362513A (en) Synergetic control method of aircraft part pose alignment based on three locater
JPH03263208A (en) Servo motor controller
JP2020163486A (en) Servo control device
JPH06274228A (en) Numerical control device
JPS63303402A (en) Device for controlling circular arcuate locus of multi-axis servo mechanism
JPS63308613A (en) Control system for servo motor
KR0135308B1 (en) Method of controlling servomotors
JPS63206805A (en) Controller for circular arc locus of multi spindle servo mechanism
JPS63126008A (en) Circular arc locus controller for multi-axis servo mechanism
JP3040448B2 (en) Positioning device
JPH07111645B2 (en) Arc trajectory control method for multi-axis feed drive mechanism
JP2007034653A (en) Path controlling method for nc milling machine
WO2022202656A1 (en) Numerical control device and numerical control program
Krishnamurthy et al. Control design implementation for Sawyer motors used in manufacturing systems
JPH04114209A (en) Numerical controller for laser beam machine
JP2004185364A (en) Numerical controller