JPS63302948A - Catalyst for reducing oxide of nitrogen - Google Patents

Catalyst for reducing oxide of nitrogen

Info

Publication number
JPS63302948A
JPS63302948A JP62136231A JP13623187A JPS63302948A JP S63302948 A JPS63302948 A JP S63302948A JP 62136231 A JP62136231 A JP 62136231A JP 13623187 A JP13623187 A JP 13623187A JP S63302948 A JPS63302948 A JP S63302948A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
nitrogen
oxide
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62136231A
Other languages
Japanese (ja)
Inventor
Norio Totsuka
戸塚 範雄
Yasuaki Fujiwara
藤原 靖晃
Masayasu Sato
佐藤 眞康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd filed Critical Cataler Industrial Co Ltd
Priority to JP62136231A priority Critical patent/JPS63302948A/en
Publication of JPS63302948A publication Critical patent/JPS63302948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst for reducing oxide of nitrogen prevented from deterioration of catalytic function by using either one of beta-alumina or alpha-alumina as carrier and forming the catalyst for reducing oxide of nitrogen by depositing at least one kind among Cu, V, Fe, Mn, Ni, Cr, and Co to the carrier. CONSTITUTION:After immersing beta-alumina or alpha-alumina in an aq. soln. of nitrate or oxalate of at least one among Cu, V, Fe, Mn, Ni, Cr, and Co, a catalyst for reducing oxide of nitrogen is produced by drying the immersed product and then calcining at ca. 200-700 deg.C. Preferred amt. of the metal to be carried on an alumina carrier is about 1-10wt.%. When nitrogen oxide is reduced with the obtd. catalyst, ammonia is added as reducing agent to combustion waste gas of fossil fuel contg. nitrogen oxide and sulfur oxide. By allowing the gas to contact at 200-700 deg.C with said catalyst packed in a column, the nitrogen oxide is reduced to N2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、排ガス中の窒素酸化物の還元用触媒に係わ
り、特には窒素酸化物をアンモニアにより還元する際に
用いられる窒素酸化物還元触媒に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a catalyst for reducing nitrogen oxides in exhaust gas, and particularly to a nitrogen oxide reducing catalyst used when reducing nitrogen oxides with ammonia. Regarding.

〔従来の技術〕[Conventional technology]

各種排ガス中の有害な窒素酸化物を触媒の存在下にアン
モニアと反応させて無害の窒素に還元することは従来か
ら行われている。その触媒としてはアルミナを担体とし
、これに銅、バナジウム、鉄、マンガン、ニッケル、ク
ロム、コバルトのうちの少なくともIFiを担持させた
ものが用いられている。従来、この種の触媒の担体とし
て用いられているアルミナはγあるいはδ型の結晶構造
を有するものである。
BACKGROUND ART Conventionally, harmful nitrogen oxides in various exhaust gases are reduced to harmless nitrogen by reacting with ammonia in the presence of a catalyst. The catalyst used is an alumina carrier on which at least IFi selected from copper, vanadium, iron, manganese, nickel, chromium, and cobalt is supported. Alumina conventionally used as a support for this type of catalyst has a γ- or δ-type crystal structure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、重油、軽油、原油等の鉱油類あるいは石炭等
の化石燃料を燃焼した後の排ガス中には、窒素酸化物の
ほかに硫黄酸化物も含まれている。
Incidentally, exhaust gas after burning mineral oils such as heavy oil, light oil, and crude oil, or fossil fuels such as coal, contains sulfur oxides in addition to nitrogen oxides.

しかしながら、窒素酸化物還元触媒の担体として従来よ
り用いられているγ−あるいはδ−アルミナは、硫黄酸
化物と反応しやすいため硫黄酸化物をも含む排ガスと長
時間接触させると硫黄酸化物とめ反応により劣化しやす
く、これに金属を担持させた触媒は触媒活性が低下して
しまう。
However, γ- or δ-alumina, which has been conventionally used as a support for nitrogen oxide reduction catalysts, easily reacts with sulfur oxides, so if it comes into contact with exhaust gas that also contains sulfur oxides for a long time, it will cause a reaction to stop sulfur oxides. The catalytic activity of catalysts with metals supported on them is likely to deteriorate.

したがって、この発明の目的は硫黄酸化物の共存下にお
いても排ガス中の窒素酸化物のアンモニアによる還元反
応に対して長時間にわたって効率よく触媒作用を発揮で
きる窒素酸化物還元触媒を提供することにある。
Therefore, an object of the present invention is to provide a nitrogen oxide reduction catalyst that can efficiently exert a catalytic action over a long period of time on the reduction reaction of nitrogen oxides in exhaust gas with ammonia even in the presence of sulfur oxides. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明では硫黄酸化物に反応しやすい従来のγ−ある
いはδ−アルミナに替えて、安定なθ、α型のいずれか
あるいは両者の結晶構造を有するアルミナを担体とし、
銅、バナジウム、鉄、マンガン、ニッケル、クロム、コ
バルトのうち少なくとも1種を担持させている。この結
晶構造の決定はX線回折によるものである。
In this invention, instead of conventional γ- or δ-alumina that easily reacts with sulfur oxides, alumina having a stable θ-type, α-type, or both crystal structures is used as a carrier,
At least one of copper, vanadium, iron, manganese, nickel, chromium, and cobalt is supported. This crystal structure was determined by X-ray diffraction.

この発明の触媒の担体として用いるθ型、α型の結晶構
造を有するアルミナ(θ−アルミナ、α−アルミナ)は
、γ−アルミナまたはδ−アルミナを熱処理することに
よって得られる。この熱処理は、通常、900°Cない
し1200℃の温度で、1時間ないし5時間行う。
Alumina having a θ-type or α-type crystal structure (θ-alumina, α-alumina) used as a support for the catalyst of the present invention can be obtained by heat-treating γ-alumina or δ-alumina. This heat treatment is usually carried out at a temperature of 900°C to 1200°C for 1 to 5 hours.

上記θ−アルミナおよび(または)α−アルミナに担持
される金属は、銅、バナジウム、鉄、マンガン、ニッケ
ル、クロムおよびコバルトよりなる群の中から選ばれる
少なくとも一種の金属である。これら金属をアルミナに
担持させるには、従来と同様、当該金属の塩(例えば、
硝酸塩、シュウ酸塩等)の水溶液にアルミナを浸漬し、
乾燥後200℃ないし700℃で焼成する。金属の担持
量はアルミナ担体の0.1重量%ないし10重量%相当
息である。
The metal supported on the θ-alumina and/or α-alumina is at least one metal selected from the group consisting of copper, vanadium, iron, manganese, nickel, chromium, and cobalt. In order to support these metals on alumina, as in the past, salts of the metals (e.g.
Alumina is immersed in an aqueous solution of nitrates, oxalates, etc.
After drying, it is fired at 200°C to 700°C. The amount of metal supported is 0.1% to 10% by weight of the alumina carrier.

この発明の触媒を用いて窒素酸化物を還元するに際し、
窒素酸化物を硫黄酸化物とともに含む排ガス(例えば、
重油、軽油、原油等の鉱油類あるいは石炭等の化石燃料
の燃焼排ガス)に還元剤としてアンモニアを添加する。
When reducing nitrogen oxides using the catalyst of this invention,
Exhaust gas containing nitrogen oxides together with sulfur oxides (e.g.
Ammonia is added as a reducing agent to mineral oils such as heavy oil, light oil, and crude oil, or combustion exhaust gas from fossil fuels such as coal.

このガスをこの発明の触媒を充填したカラムに200℃
ないし700°Cの温度で通す。これにより窒素酸化物
は窒素に還元される。
This gas was transferred to a column packed with the catalyst of this invention at 200°C.
Pass at a temperature of 700°C to 700°C. This reduces nitrogen oxides to nitrogen.

〔実施例〕〔Example〕

〈実施例1〉 γ型の結晶構造を有する粒状アルミナ担体を電気炉に入
れ900°Cで3時間焼成した。生成物の結晶構造はX
線回折法によりθ型であることが確められた。該担体を
硝酸銅水溶液に浸し、液切り後乾燥焼成して触媒を得た
(これを触媒Aとする)。触媒Aの銅担持量は2.2重
量%であった。
<Example 1> A granular alumina support having a γ-type crystal structure was placed in an electric furnace and fired at 900°C for 3 hours. The crystal structure of the product is
It was confirmed by line diffraction that it was of the θ type. The carrier was immersed in an aqueous copper nitrate solution, drained, and then dried and fired to obtain a catalyst (this is referred to as catalyst A). The amount of copper supported on Catalyst A was 2.2% by weight.

耐久性を評価するために上記の方法で調製した触媒A3
0ccを内径30m+nの反応管に充填し、ボイラー排
気ガスに近似した下記組成の合成ガスを連続的に通し、
No還元率を定期的に測定した。
Catalyst A3 prepared by the above method to evaluate durability
A reaction tube with an inner diameter of 30 m + n is filled with 0 cc, and a synthesis gas having the following composition, which is similar to boiler exhaust gas, is continuously passed through.
The No reduction rate was measured periodically.

No : 2300ppm   SO2: 750pp
a+NH3: 3000ppm  02  : 5%c
o2 :12.3%  H2O:1B%N2 :残部 
 入口ガス温度:400℃空間速度:800hr’ 結果を第1図に示す。
No.: 2300ppm SO2: 750ppm
a+NH3: 3000ppm 02: 5%c
o2: 12.3% H2O: 1B% N2: remainder
Inlet gas temperature: 400° C. Space velocity: 800 hr' The results are shown in FIG.

〈実施例2〉 実施例1と同様のγ−アルミナを電気炉に入れ1050
℃で3時間焼成した。生成物の結晶構造はX線回折法に
よりθおよびα型であることが確められた。該担体を硝
酸銅水溶液に浸し、液切り後乾燥焼成して触媒を得た(
これを触媒Bとする)。触媒Bの銅担持量は2,1重量
%であった。
<Example 2> The same γ-alumina as in Example 1 was placed in an electric furnace and heated to 1050
It was baked at ℃ for 3 hours. The crystal structure of the product was confirmed to be θ and α types by X-ray diffraction. The carrier was immersed in a copper nitrate aqueous solution, drained, and then dried and fired to obtain a catalyst (
This will be referred to as catalyst B). The amount of copper supported on catalyst B was 2.1% by weight.

触媒Bを用いて実施例1と同一の条件でNo還元率をA
l11定した。結果を第1図に示す。
Using catalyst B, the No reduction rate was reduced to A under the same conditions as in Example 1.
l11 was determined. The results are shown in Figure 1.

〈実施例3〉 実施例1と同様のγ−アルミナを電気炉に入れ1120
℃で3時間焼成した。生成物の結晶構造はX線回折法に
よりα型であることが確められた。
<Example 3> The same γ-alumina as in Example 1 was placed in an electric furnace at 1120
It was baked at ℃ for 3 hours. The crystal structure of the product was confirmed to be α type by X-ray diffraction method.

該担体を硝酸銅水溶液に浸し、液切り後乾燥焼成して触
媒を得た(これを触媒Cとする)。触媒Cの銅担持量は
2.0重量%であった。
The carrier was immersed in an aqueous copper nitrate solution, drained, and then dried and fired to obtain a catalyst (this will be referred to as Catalyst C). The amount of copper supported on Catalyst C was 2.0% by weight.

触媒Cを用いて実施例1と同一の条件でNo還元率を測
定し結果を第1図に示す。
The No reduction rate was measured using Catalyst C under the same conditions as in Example 1, and the results are shown in FIG.

〈実施例4〉 実施例2と同様にγ−アルミナを電気炉に入れ1050
°Cで3時間焼成することによって得られたθおよびα
型の結晶構造を有するアルミナを、シュウ酸バナジウム
水溶液に浸し、液切り後乾燥焼成して触媒を得た(これ
を触媒りとする)。触媒りのバナジウム担持量は2.2
重量%であった。
<Example 4> As in Example 2, γ-alumina was placed in an electric furnace and heated to 1050
θ and α obtained by calcination for 3 hours at °C
Alumina having a type crystal structure was immersed in a vanadium oxalate aqueous solution, the liquid was drained, and then dried and fired to obtain a catalyst (this was used as a catalyst). The amount of vanadium supported on the catalyst is 2.2
% by weight.

触媒りに、実施例1で用いたものと同一の組成および条
件の合成ガスを800時間連続して通した後、No還元
率を測定した。結果を下記表1に示す。
Synthesis gas having the same composition and conditions as those used in Example 1 was continuously passed through the catalyst for 800 hours, and then the No reduction rate was measured. The results are shown in Table 1 below.

〈実施例5〉 シュウ酸バナジウム水溶液を硝酸第2鉄水溶液に替えた
ことを除き、実施例4と同様にして触媒を得た(これを
触媒Eとする)。触媒Eの鉄担持量は2.2重量%であ
った。
<Example 5> A catalyst was obtained in the same manner as in Example 4, except that the vanadium oxalate aqueous solution was replaced with a ferric nitrate aqueous solution (this was referred to as catalyst E). The amount of iron supported on Catalyst E was 2.2% by weight.

さらに、触媒Eを用いて実施例4と同一の条件でNo還
元率を測定した。結果を表1に示す。
Furthermore, the No reduction rate was measured using Catalyst E under the same conditions as in Example 4. The results are shown in Table 1.

〈実施例6〉 シュウ酸バナジウム水溶液を硝酸マンガン水溶液に替え
たことを除き、実施例4と同様にして触媒を得た(これ
を触媒Fとする)。触媒Fのマンガン担持量は2.2重
量96であった。
<Example 6> A catalyst was obtained in the same manner as in Example 4, except that the vanadium oxalate aqueous solution was replaced with a manganese nitrate aqueous solution (this was referred to as catalyst F). The amount of manganese supported on Catalyst F was 2.2 weight 96.

さらに、触媒Fを用いて実施例4と同一の条件でNo還
元率を測定した。結果を表1に示す。
Furthermore, the No reduction rate was measured using Catalyst F under the same conditions as in Example 4. The results are shown in Table 1.

〈実施例7〉 シュウ酸バナジウム水溶液を硝酸ニッケル水溶液に替え
たことを除き、実施例4と同様にして触媒を得た(これ
を触媒Gとする)。触媒Gのニッケル担持量は2.2重
量%であった。
<Example 7> A catalyst was obtained in the same manner as in Example 4, except that the vanadium oxalate aqueous solution was replaced with a nickel nitrate aqueous solution (this is referred to as catalyst G). The amount of nickel supported on Catalyst G was 2.2% by weight.

さらに、触媒Gを用いて実施例4と同一の条件でNo還
元率を測定した。結果を表1に示す。
Furthermore, the No reduction rate was measured using Catalyst G under the same conditions as in Example 4. The results are shown in Table 1.

〈実施例8〉 シュウ酸バナジウム水溶液を硝酸クロム水溶液に替えた
ことを除き、実施例4と同様にして触媒を得た(これを
触媒Hとする)。触媒Hのクロム担持量は2.2重量%
であった。
<Example 8> A catalyst was obtained in the same manner as in Example 4, except that the vanadium oxalate aqueous solution was replaced with a chromium nitrate aqueous solution (this was referred to as catalyst H). The amount of chromium supported on catalyst H is 2.2% by weight.
Met.

さらに、触媒Hを用いて実施例4と同一の条件でNo還
元率を測定した。結果を表1に示す。
Furthermore, the No reduction rate was measured using Catalyst H under the same conditions as in Example 4. The results are shown in Table 1.

〈実施例9〉 シュウ酸バナジウム水溶液を硝酸コバルト水溶液に替え
たことを除き、実施例4と同様にして触媒を得た(これ
を触媒Iとする)。触媒Iのコバルト担持量は2,2重
量%であった。
<Example 9> A catalyst was obtained in the same manner as in Example 4, except that the vanadium oxalate aqueous solution was replaced with a cobalt nitrate aqueous solution (this is referred to as catalyst I). The amount of cobalt supported in Catalyst I was 2.2% by weight.

さらに、触媒Iを用いて実施例4と同一の条件でNo還
元率を測定した。結果を表1に示す。
Furthermore, the No reduction rate was measured using Catalyst I under the same conditions as in Example 4. The results are shown in Table 1.

〈比較例1〉 γ型の結晶構造を有するアルミナ担体を硝酸銅水溶液に
浸し、液切り後乾燥焼成して触媒を得た(これを触媒A
′とする)。触媒へ゛の銅担持量は2.2重量%であっ
た。
<Comparative Example 1> An alumina support having a γ-type crystal structure was immersed in a copper nitrate aqueous solution, the liquid was drained off, and then dried and fired to obtain a catalyst (this was used as catalyst A).
’). The amount of copper supported on the catalyst was 2.2% by weight.

触媒A′を用いて、実施例1と同一の条件でNo還元率
の経時変化を測定した。結果を第1図に示す。
Using catalyst A', the change in No reduction rate over time was measured under the same conditions as in Example 1. The results are shown in Figure 1.

〈比較例2〉 γ型の結晶構造を有するアルミナ担体をシュウ酸バナジ
ウム水溶液に浸し、液切り後乾燥焼成して触媒を得た(
これを触媒D′とする)。触媒D′のバナジウム担持量
は2.2重量%であった。
<Comparative Example 2> An alumina support having a γ-type crystal structure was immersed in a vanadium oxalate aqueous solution, the liquid was drained off, and then dried and calcined to obtain a catalyst (
This will be referred to as catalyst D'). The amount of vanadium supported on catalyst D' was 2.2% by weight.

実施例4と同様に、触媒D′に実施例1と同一の組成お
よび条件の合成ガスを800時間連続して通した後No
還元率を測定した。結果を表1に示す。
Similarly to Example 4, after continuously passing synthesis gas having the same composition and conditions as in Example 1 through catalyst D' for 800 hours, No.
The reduction rate was measured. The results are shown in Table 1.

く比較例3〉 シュウ酸バナジウム水溶液を硝酸第2鉄水溶液に替えた
ことを除き、比較例2と同様にして触媒を得た(これを
触媒E゛とする)。触媒E′の鉄担持二は2.2重量%
であった。
Comparative Example 3 A catalyst was obtained in the same manner as in Comparative Example 2, except that the vanadium oxalate aqueous solution was replaced with a ferric nitrate aqueous solution (this was referred to as catalyst E'). The amount of iron supported on catalyst E' is 2.2% by weight.
Met.

さらに、触媒E゛を用いて実施例4と同一の条件でNo
還元率を1(III定した。結果を表1に示す。
Furthermore, using catalyst E'' and under the same conditions as in Example 4, No.
The reduction rate was determined to be 1 (III). The results are shown in Table 1.

〈比較例4〉 シュウ酸バナジウム水溶液を硝酸マンガン水溶液に替え
たことを除き、比較例2と同様にして触媒を得た(これ
を触媒F′とする)。触媒F゛のマンガン担持量は2.
2重量%であった。
<Comparative Example 4> A catalyst was obtained in the same manner as in Comparative Example 2, except that the vanadium oxalate aqueous solution was replaced with a manganese nitrate aqueous solution (this was referred to as catalyst F'). The amount of manganese supported on catalyst F' is 2.
It was 2% by weight.

さらに、触媒F゛を用いて実施例4と同一の条件でNo
還元率を測定した。結果を表1に示す。
Furthermore, using catalyst F'' and under the same conditions as in Example 4, No.
The reduction rate was measured. The results are shown in Table 1.

〈比較例5〉 シュウ酸バナジウム水溶液を硝酸ニッケル水溶液に替え
たことを除き、比較例2と同様にして触媒を得た(これ
を触媒G′とする)。触媒G″のニッケル担持量は2.
2重量%であった。
<Comparative Example 5> A catalyst was obtained in the same manner as in Comparative Example 2, except that the vanadium oxalate aqueous solution was replaced with a nickel nitrate aqueous solution (this was referred to as catalyst G'). The amount of nickel supported on catalyst G″ is 2.
It was 2% by weight.

さらに、触媒G′を用いて実施例4と同一の条件でNo
還元率をdll定した。結果を表1に示す。
Further, using catalyst G′ and under the same conditions as in Example 4, No.
The reduction rate was determined. The results are shown in Table 1.

く比較例6〉 シュウ酸バナジウム水溶液を硝酸クロム水溶液に替えた
ことを除き、比較例2と同様にして触媒を得た(これを
触媒H′とする)。触媒H′のクロム担持量は2.2重
量%であった。
Comparative Example 6 A catalyst was obtained in the same manner as in Comparative Example 2, except that the vanadium oxalate aqueous solution was replaced with a chromium nitrate aqueous solution (this was referred to as catalyst H'). The amount of chromium supported on catalyst H' was 2.2% by weight.

さらに、触媒H゛を用いて実施例4と同一の条件でNo
還元率を測定した。結果を表1に示す。
Furthermore, using catalyst H, No.
The reduction rate was measured. The results are shown in Table 1.

く比較例7〉 シュウ酸バナジウム水溶液を硝酸コバルト水溶液に替え
たことを除き、比較例2と同様にして触媒を得た(これ
を触媒■゛とする)。触媒!゛のコバルト担持量は2.
2重量%であった。
Comparative Example 7 A catalyst was obtained in the same manner as in Comparative Example 2, except that the vanadium oxalate aqueous solution was replaced with a cobalt nitrate aqueous solution (this will be referred to as catalyst ①). catalyst! The amount of cobalt supported is 2.
It was 2% by weight.

さらに、触媒I′を用いて実施例4と同一の条件でNo
還元率を測定した。結果を表1に示す。
Further, using catalyst I′ and under the same conditions as in Example 4, No.
The reduction rate was measured. The results are shown in Table 1.

表    1 第1図および表1に示す結果から明らかなように、本発
明の触媒は硫黄酸化物を含むガスを長時間流した後でも
No還元率にほとんど変化はなく、従来の触媒に見られ
た触媒活性の大きな低下は認められなかった。
Table 1 As is clear from the results shown in Figure 1 and Table 1, the catalyst of the present invention shows almost no change in the No reduction rate even after flowing gas containing sulfur oxides for a long time, which is different from that seen in conventional catalysts. No significant decrease in catalyst activity was observed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明の触媒は硫黄酸化物の共存
下においても担体の劣化による触媒活性の低下はみられ
ず、排ガス中の窒素酸化物のアンモニアによる還元反応
に対して長時間にわたって効率よく触媒作用を発揮する
As mentioned above, the catalyst of this invention does not show any decrease in catalytic activity due to deterioration of the carrier even in the coexistence of sulfur oxides, and is highly efficient over a long period of time in the reduction reaction of nitrogen oxides in exhaust gas with ammonia. It has a good catalytic effect.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 窒素酸化物および硫黄酸化物を含有するガス中にアンモ
ニアを添加し、このガスを触媒に接触させ、該ガス中の
窒素酸化物を窒素に還元する反応に用いる触媒であって
、θ、α型のいずれかあるいは両者の結晶構造を有する
アルミナを担体とし、これに銅、バナジウム、鉄、マン
ガン、ニッケル、クロムおよびコバルトのうちの少なく
とも1種を担持させたことを特徴とする窒素酸化物還元
触媒。
A catalyst used in a reaction in which ammonia is added to a gas containing nitrogen oxides and sulfur oxides, the gas is brought into contact with a catalyst, and the nitrogen oxides in the gas are reduced to nitrogen. A nitrogen oxide reduction catalyst characterized in that alumina having one or both of the crystal structures is used as a carrier, and at least one of copper, vanadium, iron, manganese, nickel, chromium and cobalt is supported on the carrier. .
JP62136231A 1987-05-30 1987-05-30 Catalyst for reducing oxide of nitrogen Pending JPS63302948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136231A JPS63302948A (en) 1987-05-30 1987-05-30 Catalyst for reducing oxide of nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136231A JPS63302948A (en) 1987-05-30 1987-05-30 Catalyst for reducing oxide of nitrogen

Publications (1)

Publication Number Publication Date
JPS63302948A true JPS63302948A (en) 1988-12-09

Family

ID=15170352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136231A Pending JPS63302948A (en) 1987-05-30 1987-05-30 Catalyst for reducing oxide of nitrogen

Country Status (1)

Country Link
JP (1) JPS63302948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041407A (en) * 1989-12-14 1991-08-20 Allied-Signal Inc. High-temperature three-way catalyst for treating automotive exhaust gases
KR20000039143A (en) * 1998-12-11 2000-07-05 이구택 Method for simultaneously eliminating nitrogen oxides and dioxin compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041407A (en) * 1989-12-14 1991-08-20 Allied-Signal Inc. High-temperature three-way catalyst for treating automotive exhaust gases
KR20000039143A (en) * 1998-12-11 2000-07-05 이구택 Method for simultaneously eliminating nitrogen oxides and dioxin compound

Similar Documents

Publication Publication Date Title
US4221768A (en) Catalyst for purifying exhaust and waste gases
US4003978A (en) Method for treating ammonia-containing gases
EP0457480B1 (en) Catalytic reduction
US5283055A (en) Process using novel catalysts for the selective reduction of nitrogen oxides
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JPS6211892B2 (en)
US4228138A (en) Catalysis
US3864459A (en) Process for the economical use of refractory reducing gases for the reduction of sulfur dioxide
JPS63302948A (en) Catalyst for reducing oxide of nitrogen
US4071601A (en) Selective removal of nitrogen oxides from waste gases using V-Mo-W catalysts
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
US4036785A (en) Catalyst for reduction of nitrogen oxides in presence of ammonia
US4075283A (en) Selective removal of nitrogen oxides from waste gases containing sulfur oxides
JPS5812057B2 (en) Shiyokubaisosabutsu
US4105745A (en) Catalyst and process for reducing nitrogen oxides
JPS59213442A (en) Preparation of denitration catalyst
JPS6335298B2 (en)
JPS6050489B2 (en) Catalyst for purifying exhaust gas containing sulfur compounds
SU1409586A1 (en) Catalyst for oxidizing hydrogen chloride
JP2563393B2 (en) Combustible gas oxidation catalyst
JPS6333891B2 (en)
JPS6151937B2 (en)
SU1315012A1 (en) Catalyst for reducing nitrogen oxides with ammonia
JPH074527B2 (en) Combustible gas oxidation catalyst
JP3093941B2 (en) Method for removing nitrogen oxides from flue gas