JPS63302904A - Multi-layered composite hollow fiber containing fluid and its production - Google Patents

Multi-layered composite hollow fiber containing fluid and its production

Info

Publication number
JPS63302904A
JPS63302904A JP13902987A JP13902987A JPS63302904A JP S63302904 A JPS63302904 A JP S63302904A JP 13902987 A JP13902987 A JP 13902987A JP 13902987 A JP13902987 A JP 13902987A JP S63302904 A JPS63302904 A JP S63302904A
Authority
JP
Japan
Prior art keywords
membrane
polymer
hollow fiber
composite hollow
crystalline polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13902987A
Other languages
Japanese (ja)
Inventor
Jun Kamo
純 加茂
Makoto Uchida
誠 内田
Takayuki Hirai
平井 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP13902987A priority Critical patent/JPS63302904A/en
Publication of JPS63302904A publication Critical patent/JPS63302904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain an extremely thin multi-layered composite hollow yarn membrane having a high permeation rate by alternately laminating a separation membrane consisting of a polymer which is liq. at ordinary temp. and a porous membrane consisting of a crystalline polymer. CONSTITUTION:For example, polypropylene as the raw polymer material for the innermost and outermost layers and polydimethylsiloxane as the raw fluid polymer material for the intermediate layer are discharged from the three concentrically arranged discharge ports of a hollow yarn producing spinning nozzle, and spinning is carried out. The undrawn hollow yarn consisting of three layers is annealed at a temp. above the glass transition temp. of the crystalline polymer and below the m.p., further drawn at room temp. to generate microcracks in the layer consisting of a crystalline polymer, and then thermally drawn to expand the pore generated by the microcracks. Consequently, the form of the pore is stabilized, and a composite hollow yarn membrane is obtained. In this case, the drawing conditions are selected so that the size of the pore of the porous membrane consisting of a crystalline polymer is made smaller than the molecule of the fluid polymer constituting the separation membrane.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は、ボイラー、エンジン等の燃焼効率を北げたり
、燃焼温度を上げたりするために高酸素透過速度が必要
となる分野や、水−アルコール分離の分野等で用いられ
る中空糸状の選択分離膜、およびこの選択分離膜の製造
方法に関する。
Detailed Description of the Invention C. Industrial Field of Application The present invention is applicable to fields where a high oxygen permeation rate is required to increase the combustion efficiency or combustion temperature of boilers, engines, etc. - A hollow fiber selective separation membrane used in the field of alcohol separation, etc., and a method for manufacturing this selective separation membrane.

〔従来技術〕[Prior art]

物質を分離する技術は、古くから数多くの方法が開発さ
れ、改良が毛ねられてきた。■り分離技術もその一つで
あるが、その改良の経過をみると。
Many methods for separating substances have been developed and improvements have been made since ancient times. ■Separation technology is one such technology, and let's take a look at the progress of its improvements.

優れた膜材料の開発、分離効率を高めるための薄膜化技
術の開発、装置効率を高めるための中空糸膜の開発等が
大きな技術開発の流れとなっている。
Major trends in technological development include the development of superior membrane materials, the development of thin membrane technology to increase separation efficiency, and the development of hollow fiber membranes to increase device efficiency.

物質の透過速度を高める素材の開発として、自由体積が
大きく、高分子セグメント間の相互作用が小さいポリマ
ーの開発が一つの方向として進められており、使用温度
で膜の構成素材が液体である液膜が最も透過速度が高い
と考えられる。しかし、従来の液膜は、その素材が隔膜
を通過してしまう等安定性に欠けており、また、薄膜化
も困難であることから実用化が難しい状況にある。
One way to develop materials that increase the permeation rate of substances is to develop polymers that have a large free volume and low interaction between polymer segments. The membrane is considered to have the highest permeation rate. However, conventional liquid films lack stability, such as the material passing through the diaphragm, and are also difficult to make into thin films, making it difficult to put them into practical use.

分離膜を形成する方法として、溶融賦形による方法が従
来より知られているが、この方法による薄膜化では、薄
膜素材中に含まれるゴミ、気泡等の影響により、膜厚を
薄くするにつれてピンホール等の膜欠陥による分#機能
の低下が顕われることが大きな問題となっていた。
Melt-forming is a conventionally known method for forming separation membranes, but this method has problems with thinning the membrane as it becomes thinner due to the effects of dust, air bubbles, etc. contained in the membrane material. A major problem has been that the film's functionality deteriorates due to film defects such as holes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、非常に薄く、かつ分離操作時の温度で
流体状である素材を分離膜として有する新規な形態の選
択分離膜を提供することにある。
An object of the present invention is to provide a novel selective separation membrane having a material that is extremely thin and fluid at the temperature during separation operation.

本発明の他の目的は、透過速度の高い選択分離膜を提供
することにある。
Another object of the present invention is to provide a selective separation membrane with a high permeation rate.

本発明のもう一つの目的は、このような選択分#膜を、
安定した形で製造できる方法を提供することにある。
Another object of the present invention is to prepare such selective membranes by
The purpose is to provide a method that allows production in a stable manner.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明の多層複合中空糸膜は、分離機能を受
け持つ分離膜(A)と、補強機部を受け持つ多孔膜(B
)とからなる中空繊維状膜であって、分#膜(A)と多
孔1t!J (B)とは交互に積層されており、該中空
繊維状膜の内表面および外表面が多孔膜(B)からなる
構造を有する多層複合中空糸膜において、該分#膜(A
)が選択性gI機俺を有する常温で流体状の高分子(A
o)からなり、多孔膜(B)が結晶性高分子(Bo)か
らなり、流体状の高分子(Ao)の分子の大きさが多孔
膜(B)の孔の大きさよりも大きいものであることを特
徴とする。
That is, the multilayer composite hollow fiber membrane of the present invention comprises a separation membrane (A) that takes charge of the separation function, and a porous membrane (B) that takes charge of the reinforcement part.
) is a hollow fibrous membrane consisting of a membrane (A) and a porous 1t! In a multilayer composite hollow fiber membrane having a structure in which the inner and outer surfaces of the hollow fibrous membrane are composed of the porous membrane (B), the membranes (A
) is a polymer (A) that is fluid at room temperature and has selectivity.
o), the porous membrane (B) is made of a crystalline polymer (Bo), and the molecular size of the fluid polymer (Ao) is larger than the pore size of the porous membrane (B). It is characterized by

また、本発明の多層複合中空糸膜の製造方法は、多重円
筒紡糸ノズルに1分離膜(A)を形成する常温で流体状
の高分子(Ao)および多孔膜(B)を形成する結晶性
高分子(Bo)を、最外層および最内層に結晶性高分子
(Bo)が配置され、かつ高分子(Ao)および高分子
(Bo)が交互にサンドイッチ状に配置されるように供
給して多層複合中空繊維を紡糸する工程と、多孔膜(B
)の孔の大きさが分離膜(A)の流体状高分子(Ao)
の分子の大きさよりも小さくなるように、得られた多層
複合中空m維を延伸して、結晶性高分子(Bo)の層を
多孔化する工程とを有することを特徴とする。
In addition, the method for producing a multilayer composite hollow fiber membrane of the present invention includes a polymer (Ao) that is fluid at room temperature to form a single separation membrane (A) in a multi-cylindrical spinning nozzle, and a crystalline polymer to form a porous membrane (B). The polymer (Bo) is supplied such that the crystalline polymer (Bo) is arranged in the outermost layer and the innermost layer, and the polymer (Ao) and the polymer (Bo) are arranged alternately in a sandwich shape. The process of spinning multilayer composite hollow fibers and the porous membrane (B
) of the fluid polymer (Ao) of the separation membrane (A).
The method is characterized by comprising a step of making the layer of the crystalline polymer (Bo) porous by stretching the obtained multilayer composite hollow m-fiber so that the size of the crystalline polymer (Bo) is smaller than the molecular size of the crystalline polymer (Bo).

本発明の多層複合中空糸膜は、少なくとも三層構造を有
している。外表面および内表面が、補強材としての多孔
膜(B)からなっており、中間層が1選択分離機能を有
する流体状のごく薄い分離nり(A)からなっている、
基本的には、分#膜(A)層は一層で充分であるが、目
的に応じて分離膜(A)を二層以上の多層構造としても
よい。
The multilayer composite hollow fiber membrane of the present invention has at least a three-layer structure. The outer and inner surfaces are made of a porous membrane (B) as a reinforcing material, and the middle layer is made of a very thin fluid-like separation layer (A) having a one-selection separation function.
Basically, one layer of the separation membrane (A) is sufficient, but depending on the purpose, the separation membrane (A) may have a multilayer structure of two or more layers.

分離膜においては分離機能を受け持つ層が最も重要であ
るが、それが最外層にあると取り扱い時等に損傷するお
それがある。しかし、本発明の中空糸膜では三層以上の
多層構造の中間層に分#*能を有する層を配しているた
めにこのような危険性がない。
The most important layer in a separation membrane is the layer responsible for the separation function, but if it is the outermost layer, there is a risk of damage during handling. However, in the hollow fiber membrane of the present invention, there is no such danger because the layer having the function is disposed in the middle layer of the multilayer structure of three or more layers.

また、同心円状の多層サンドイッチ構造という特異な構
造のために、層間に接着性が無くても積層構造が安定に
保持できることから、各層の素材の選択について接着性
による制約がないという特徴がある。このことは、モ膜
では達成不可壱であり、中空糸膜の大きな特徴の一つで
ある。他の薄膜形成技術である、蒸着技術、プラズマ重
合技術、コーティング技術等では、いずれにおいても分
離膜と基材との接着性が解決すべき一つの大きな課題と
なっていた。
Furthermore, due to the unique structure of a concentric multilayer sandwich structure, the laminated structure can be stably maintained even without adhesiveness between the layers, so there is no restriction on the selection of materials for each layer due to adhesiveness. This cannot be achieved with membranes, and is one of the major features of hollow fiber membranes. In other thin film forming technologies, such as vapor deposition technology, plasma polymerization technology, and coating technology, one major problem that must be solved is the adhesion between the separation membrane and the base material.

本発明において、酸素富化や水−アルコール分#等の選
択分#機能を受け持つ分離膜(A)を形成する常温で流
体状の高分子(Ao)としては、シリコン系重合体や、
シリコン系重合体とパーフロロアルキル系フッ素含有重
合体、ポリ−4−ビニルピリジン等の共重合体が挙げら
れる。この流体状分子(Ao)は、室温下で10−10
000ボイズ、より好ましくは 100〜5000ポイ
ズ程度の粘度を有するものであることが望ましい。
In the present invention, the polymer (Ao) which is fluid at room temperature and which forms the separation membrane (A) that takes charge of oxygen enrichment, water-alcohol component function, etc., is a silicon-based polymer,
Examples include copolymers of silicone polymers, perfluoroalkyl fluorine-containing polymers, and poly-4-vinylpyridine. This fluid molecule (Ao) is 10-10 at room temperature.
000 poise, more preferably 100 to 5000 poise.

一方、補強機能を分担する多孔膜(B)を形成する重合
体としては、各種のものを使用することができるが、延
伸操作によって容易に多孔質化でき、その孔の大きさを
調整できることから結晶性高分子(Bo)を用いること
が適当である。このような結晶性高分子の代表的なもの
として、ポリエチレン、ポリプロピレン、ポリ−4−メ
チルペンテン−1等のポリオレフィン系ポリマーおよび
ポリフッ化ビニリデン、テトラフロロエチレン等のフッ
素含有ポリマーが挙げられる。
On the other hand, various polymers can be used to form the porous membrane (B) that performs the reinforcing function, but since it can be easily made porous by stretching and the size of the pores can be adjusted, It is appropriate to use a crystalline polymer (Bo). Typical examples of such crystalline polymers include polyolefin polymers such as polyethylene, polypropylene, and poly-4-methylpentene-1, and fluorine-containing polymers such as polyvinylidene fluoride and tetrafluoroethylene.

以下、多孔膜(日)層を溶融紡糸、延伸によって多孔化
する方法を例にとり、本発明の多層複合中空R離脱の製
造方法につき説明する。
Hereinafter, the method for manufacturing the multilayer composite hollow R-separated film of the present invention will be explained, taking as an example a method for making a porous membrane layer porous by melt spinning and stretching.

多重円筒型紡糸ノズルを用いて多層複合中空糸を紡糸す
るにあたり、紡糸ノズルに、分#膜(A)を形成する常
温で流体状の高分子(Ao)および多孔11!2(B)
を形成する結晶性高分子(Bo)を、最外層および最内
層に結晶性高分子(Bo)が配置され、かっ高分子(A
o)および高分子(Bo)が交互にサンドイッチ状に配
置されるように供給して紡糸する。紡糸ノズルの多重円
筒は、3層以上の奇数層とされる。紡糸温度は、結晶性
高分子(Bo)の融点から融点より約80℃高い温度ま
での範囲とするのが奸ましく、紡糸ドラフトは30以上
とすることが好ましい、紡糸温度が、結晶性高分子(B
o)の融点より約80℃高い温度を超えると安定した紡
糸ができにくくなり、また、紡糸ドラフトが30未満で
あると、結晶性高分子(Bo)の配向が低くなり、引き
続き実施される延伸工程で十分延伸できず、その結果、
多孔膜(B)層に微小空孔が形成されにくくなる。
When spinning a multilayer composite hollow fiber using a multi-cylindrical spinning nozzle, the spinning nozzle contains a polymer (Ao) that is fluid at room temperature and pores 11!2 (B) that form a membrane (A).
A crystalline polymer (Bo) is arranged in the outermost layer and an innermost layer to form a crystalline polymer (Bo).
o) and the polymer (Bo) are fed and spun so that they are alternately arranged in a sandwich pattern. The multi-cylinder of the spinning nozzle has an odd number of layers of three or more layers. The spinning temperature is preferably in the range from the melting point of the crystalline polymer (Bo) to a temperature approximately 80°C higher than the melting point, and the spinning draft is preferably 30 or higher. Molecule (B
If the temperature exceeds about 80°C higher than the melting point of o), it becomes difficult to perform stable spinning, and if the spinning draft is less than 30, the orientation of the crystalline polymer (Bo) will become low and the subsequent stretching It could not be stretched sufficiently during the process, and as a result,
Micropores are less likely to be formed in the porous membrane (B) layer.

このとき、薄膜に形成される高分子(Ao)の粘度は極
めて低くなっているのでlμs以下のメツシュを通過さ
せることが可能となり、高分子(Ao)の微少なゴミ、
気泡を除去することができ、薄い分離n1A)の膜欠陥
を大幅に減少させることができる。通常のエラストマー
の溶融賦形ではその粘度が高いのでメツシュを通過させ
て微少なゴミ、気泡を除去することはできないことであ
り、分#膜(A)に常温で流体状の高分子(八°)を用
いることの大きな特徴である。
At this time, the viscosity of the polymer (Ao) formed in the thin film is extremely low, so it is possible to pass through the mesh of less than 1μs, and the minute particles of the polymer (Ao),
Air bubbles can be removed and membrane defects in thin separation n1A) can be significantly reduced. Due to the high viscosity of ordinary melt-forming elastomers, it is impossible to pass them through a mesh to remove minute dust and air bubbles. ) is a major feature of using.

このようにして紡糸して得られた中空糸膜は、所望によ
り結晶性高分子(Bo)のガラス転移温度以ト融点未満
の温度範囲で7ニール処理された後、0℃から結晶性高
分子(Bo)の融点より 5℃低い温度までの範囲の温
度下で5〜150%延伸し、結晶性高分子(Bo)から
なる層にミクロクラックを発生させる0次いで上記の延
伸温度より高く結晶性高分子(Bo)の融点より低い温
度で1段または多段に延伸してミクロクラックにより生
成した孔を拡大し、孔形状を安定化させる。この延伸条
件は、多孔膜(B)の孔の大きさが分離膜(A)の波体
状高分子(八°)の分子の大きさよりも小さくなるよう
、すなわち多孔膜の細孔から流体状高分子(Ao)が流
れ出ないように選定される。
The hollow fiber membrane obtained by spinning in this manner is optionally subjected to a 7-neal treatment in a temperature range below the glass transition temperature of the crystalline polymer (Bo) and below the melting point of the crystalline polymer (Bo). (Bo) is stretched 5 to 150% at a temperature 5°C lower than the melting point of the crystalline polymer (Bo) to generate microcracks in the layer made of crystalline polymer (Bo). The pores generated by microcracks are expanded by stretching in one stage or in multiple stages at a temperature lower than the melting point of the polymer (Bo), and the pore shape is stabilized. This stretching condition is such that the size of the pores of the porous membrane (B) is smaller than the molecular size of the corrugated polymer (8°) of the separation membrane (A), that is, the pores of the porous membrane are It is selected so that the polymer (Ao) does not flow out.

なお、本発明にいう流体状高分子(八゛)の分子の大き
さとは、該分子の両末端距離より算出される値を目安と
するのが適当である。また、多孔膜(B)の孔の大きさ
とは、細孔の最大孔径をいう。
It is appropriate that the size of the molecule of the fluid polymer (8') referred to in the present invention is based on a value calculated from the distance between both ends of the molecule. Moreover, the pore size of the porous membrane (B) refers to the maximum pore diameter of the pores.

流体状高分子の両末端距離は、次式により算出される。The distance between both ends of the fluid polymer is calculated by the following formula.

ただし、(〒2)T は両末端距離、nは重合度、lは
結合長、θは結合角、φは回転角を表わし、CoSφは
CQSφの平均値を表わす。
Here, (〒2)T represents the distance between both ends, n represents the degree of polymerization, l represents the bond length, θ represents the bond angle, φ represents the rotation angle, and CoSφ represents the average value of CQSφ.

〔発明の効果〕〔Effect of the invention〕

本発明の多層複合中空糸膜は、 (1)紡糸、延伸という簡易な操作により流体を挟み込
み、かつ薄膜に賦形できる。
The multilayer composite hollow fiber membrane of the present invention can (1) sandwich a fluid and form into a thin film by simple operations such as spinning and stretching;

(2)選択分離機能を受け持つ薄い分離膜が直接外部に
出ていないので損傷の心配がなく安定に存在できる、 (3)分#、膜を構成する素材が常温で流体であるため
膜中の透過分子拡散速度が非常に大きい、(4)分離膜
層と多孔膜層との居間に接着性が不要なので分離膜を構
成する素材選定の自由度が大きい、 (5)中空糸膜は単位体積当りの膜面積がモ膜に比ベて
大きいので、コンパクトなモジュールが設計可能である
、 という大きな利点がある。
(2) The thin separation membrane that performs the selective separation function is not directly exposed to the outside, so it can exist stably without worrying about damage. (3) The material that makes up the membrane is a fluid at room temperature, so the The permeation molecule diffusion rate is very high. (4) There is no need for adhesion between the separation membrane layer and the porous membrane layer, so there is a high degree of freedom in selecting the material that makes up the separation membrane. (5) Hollow fiber membranes have a large unit volume. Since the per membrane area is larger than that of a monomembrane, it has the great advantage of being able to design a compact module.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 同心円状に配置された三つの吐出口を有する中空糸製造
用紡糸ノズルに対して、最内層と最外層のポリマー素材
としてポリプロピレン(メルトインデックス15)、中
間層の流体状高分子素材としてポリジメチルシロキサン
オイル(重量平均分子量= 5000.000、両末端
距離= 0.0251L11.20℃での粘度=250
ポイズ)を用い、吐出温度195℃、吐出線速度3cm
/win、巻取速度Sow/sinで紡糸した。得られ
た未延伸糸は内径200騨であり、最も内側の層から各
々25.0.2および25騨の厚さを有する同心円状に
配された三層より成りたっていた。
Example 1 For a spinning nozzle for manufacturing hollow fibers having three discharge ports arranged concentrically, polypropylene (melt index 15) was used as the polymer material for the innermost and outermost layers, and polypropylene (melt index 15) was used as the fluid polymer material for the middle layer. Polydimethylsiloxane oil (weight average molecular weight = 5000.000, distance between both ends = 0.0251L11. Viscosity at 20°C = 250
Poise), discharge temperature 195℃, discharge linear velocity 3cm
/win and the winding speed was Sow/sin. The resulting undrawn yarn had an internal diameter of 200 mm and consisted of three concentrically arranged layers having thicknesses of 25 mm, 0.2 mm, and 25 mm, respectively, starting from the innermost layer.

この未延伸中空糸を140℃で1時間アニール処理した
。更にアニール糸を室温下で80%延伸し、引き続き 
120℃に加熱された加熱炉中で総延伸にが100%に
なるまで熱延伸を行い複合中空糸膜を得た。得られた複
合中空糸膜は内径が180μsで最も内側の層から20
. 0.1および20騨の厚さを有する同心円状に配さ
れた三層から成っており、電子顕微鏡で観察した結果、
内表面と外表面にはスリット状の孔が形成されていた。
This undrawn hollow fiber was annealed at 140° C. for 1 hour. Furthermore, the annealed yarn was stretched by 80% at room temperature, and then
Hot stretching was performed in a heating furnace heated to 120° C. until the total stretching was 100% to obtain a composite hollow fiber membrane. The obtained composite hollow fiber membrane has an inner diameter of 180 μs and a distance of 20 μs from the innermost layer.
.. It consists of three layers arranged concentrically with a thickness of 0.1 and 20 mm, and as a result of observation with an electron microscope,
Slit-like holes were formed on the inner and outer surfaces.

スリットのサイズは幅が0.005〜0.010uで、
長さが0.015〜0.020gであり、流体状高分子
の両末端距離よりも小さかった。
The width of the slit is 0.005~0.010u,
The length was 0.015 to 0.020 g, which was smaller than the distance between both ends of the fluid polymer.

この複合中空糸膜を容器の中に入れ、複合中空糸膜の両
末端に容器と複合中空糸膜を接着するボッティング剤を
流し込み、モジュールを製作した。ただしボッティング
剤には、中空糸両末端から流体状高分子が流れ出ないよ
う流体状高分子と相溶性の良いシリコン系接着剤(KE
J6とCAT−RCの 1:l混合物、信越化学株製)
を使用して接着した。このモジュールを用いて複合中空
糸膜の気体透過速度を測定した。その結果、この複合中
空糸IQの酸素透過速度は 6、OX IO= [cm’ (STP)/cs+2.
sec1cmHg] 、窒素透過速度は 2、sX 10−’ [cm’(STP)/cm2−s
eclcmHgl テあり、酸素選択透過性は2.1で
あった。また、膜を透過し洩れ出た流体状高分子はなか
った。
This composite hollow fiber membrane was placed in a container, and a botting agent for bonding the container and the composite hollow fiber membrane was poured into both ends of the composite hollow fiber membrane to produce a module. However, the botting agent is a silicone adhesive (KE) that has good compatibility with the fluid polymer to prevent the fluid polymer from flowing out from both ends of the hollow fiber.
1:1 mixture of J6 and CAT-RC, manufactured by Shin-Etsu Chemical Co., Ltd.)
Glued using. Using this module, we measured the gas permeation rate of a composite hollow fiber membrane. As a result, the oxygen permeation rate of this composite hollow fiber IQ was 6, OX IO = [cm' (STP)/cs+2.
sec1cmHg], nitrogen permeation rate is 2, sX 10-'[cm'(STP)/cm2-s
eclcmHgl was present, and the oxygen permselectivity was 2.1. Further, no fluid polymer permeated the membrane and leaked out.

以上のように、流体を挟み込んだ多層複合中空糸膜は、
中間層にピンホールが無く、酸素透過速度が10−3の
オーダーで、かつ酸素選択性が2.0以トという極めて
優れた酸素富化膜であった。
As mentioned above, the multilayer composite hollow fiber membrane sandwiching fluid is
It was an extremely excellent oxygen-enriched membrane with no pinholes in the intermediate layer, an oxygen permeation rate of the order of 10-3, and an oxygen selectivity of 2.0 or more.

Claims (2)

【特許請求の範囲】[Claims] (1)分離機能を受け持つ分離膜(A)と、補強機能を
受け持つ多孔膜(B)とからなる中空繊維状膜であって
、分離膜(A)と多孔膜(B)とは交互に積層されてお
り、該中空繊維状膜の内表面および外表面が多孔膜(B
)からなる構造を有する多層複合中空糸膜において、該
分離膜(A)が選択分離機能を有する常温で流体状の高
分子(A’)からなり、多孔膜(B)が結晶性高分子(
B’)からなり、流体状の高分子(A’)の分子の大き
さが多孔膜(B)の孔の大きさよりも大きいものである
ことを特徴とする多層複合中空糸膜。
(1) A hollow fibrous membrane consisting of a separation membrane (A) that has a separation function and a porous membrane (B) that has a reinforcing function, where the separation membrane (A) and the porous membrane (B) are alternately laminated. The inner and outer surfaces of the hollow fibrous membrane are made of a porous membrane (B
), the separation membrane (A) is made of a polymer (A') that is fluid at room temperature and has a selective separation function, and the porous membrane (B) is made of a crystalline polymer (A') that has a selective separation function.
A multilayer composite hollow fiber membrane comprising B'), characterized in that the molecular size of the fluid polymer (A') is larger than the pore size of the porous membrane (B).
(2)多重円筒紡糸ノズルに、分離膜(A)を形成する
常温で流体状の高分子(A’)および多孔膜(B)を形
成する結晶性高分子(B’)を、最外層および最内層に
結晶性高分子(B’)が配置され、かつ高分子(A’)
および高分子(B’)が交互にサンドイッチ状に配置さ
れるように供給して多層複合中空繊維を紡糸する工程と
、多孔膜(B)の孔の大きさが分離膜(A)の流体状高
分子(A’)の分子の大きさよりも小さくなるように、
得られた多層複合中空繊維を延伸して、結晶性高分子(
B’)の層を多孔化する工程とを有することを特徴とす
る多層複合中空糸膜の製造方法。
(2) In a multi-cylindrical spinning nozzle, the outermost layer and A crystalline polymer (B') is arranged in the innermost layer, and a polymer (A')
and the step of spinning a multilayer composite hollow fiber by supplying the polymers (B') so as to be alternately arranged in a sandwich-like manner, so that it is smaller than the molecule size of the polymer (A'),
The obtained multilayer composite hollow fiber is stretched to form a crystalline polymer (
B') A method for producing a multilayer composite hollow fiber membrane, comprising the step of making the layer porous.
JP13902987A 1987-06-04 1987-06-04 Multi-layered composite hollow fiber containing fluid and its production Pending JPS63302904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13902987A JPS63302904A (en) 1987-06-04 1987-06-04 Multi-layered composite hollow fiber containing fluid and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13902987A JPS63302904A (en) 1987-06-04 1987-06-04 Multi-layered composite hollow fiber containing fluid and its production

Publications (1)

Publication Number Publication Date
JPS63302904A true JPS63302904A (en) 1988-12-09

Family

ID=15235803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13902987A Pending JPS63302904A (en) 1987-06-04 1987-06-04 Multi-layered composite hollow fiber containing fluid and its production

Country Status (1)

Country Link
JP (1) JPS63302904A (en)

Similar Documents

Publication Publication Date Title
EP0206354B1 (en) Multilayer composite hollow fibers and method of making same
US4741829A (en) Composite hollow fibers and method of making same
TWI355962B (en)
JPS60139815A (en) Conjugate hollow yarn and production thereof
JPS6279806A (en) Porous separation membrane and its production
JPS63302904A (en) Multi-layered composite hollow fiber containing fluid and its production
JPH0224574B2 (en)
JPH07171360A (en) Modified cross-section multilayer composite separation membrane
JPS5962305A (en) Composite membrane for gas separation and its production
JPS5966308A (en) Gas permeable composite membrane
JPS63230173A (en) Hollow yarn membrane type artificial lung
JPH03169330A (en) Composite membrane
JP2942867B2 (en) Multilayer composite membrane
JPH06339617A (en) Hollow fiber composite membrane and its preparation
JPS61215709A (en) Hollow fiber and production thereof
JPH04215828A (en) Multilayer composite membrane and production thereof
JPH0440222A (en) Multilayer composite separation membrane
JP2934902B2 (en) Manufacturing method of composite hollow fiber membrane
JPS63274433A (en) Preparation of oxygen enriching multilayer composite hollow yarn membrane
JPH01127023A (en) Composite hollow fiber membranes
JPS62117811A (en) Production of conjugated hollow fiber membrane
JP2858262B2 (en) How to remove dissolved gas
JP2004290838A (en) Fluid separation filter and fluid separation module
JPS63256118A (en) Oxygen enriching membrane and its production
JPH0781009B2 (en) Thin film manufacturing method