JPS63302344A - Particulate measuring instrument - Google Patents

Particulate measuring instrument

Info

Publication number
JPS63302344A
JPS63302344A JP13871287A JP13871287A JPS63302344A JP S63302344 A JPS63302344 A JP S63302344A JP 13871287 A JP13871287 A JP 13871287A JP 13871287 A JP13871287 A JP 13871287A JP S63302344 A JPS63302344 A JP S63302344A
Authority
JP
Japan
Prior art keywords
particulates
liquid
inspected
measuring
standard solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13871287A
Other languages
Japanese (ja)
Inventor
Toshio Kumagai
熊谷 稔生
Koki Shigemi
重見 弘毅
Shigeyuki Akiyama
重之 秋山
Riichiro Suzuki
理一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Kurita Water Industries Ltd
Original Assignee
Horiba Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Kurita Water Industries Ltd filed Critical Horiba Ltd
Priority to JP13871287A priority Critical patent/JPS63302344A/en
Publication of JPS63302344A publication Critical patent/JPS63302344A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply judge whether a particle counter is normal when required by a simple mechanism by measuring the number of particulates contained in a liquid to be inspected that is supplied from a supply line for the liquid to be inspected. CONSTITUTION:Number of particulates measuring means 1 is provided with a supply line 2 for supplying a liquid to be inspected and a discharge line 3. Reference liquid supply means 6 is composed of an adding unit 6a and a plunger unit 6b. The number of particulates is read from a display unit 4. Then, a changeover switch 5 is changed over from a measuring mode to a cumulative mode and, at the same time, the measurement of a cumulative mode time is initiated. Thus, the number of the particulates instantaneously is displayed as zero. Then, since a prescribed quantity of a reference liquid is added to a liquid 10 to be inspected in a passage 9 from a disposal type injector cylinder 15 by turning a cock 11, the number of the particulates gradually increases and, after a peak value is reached finally, returns to the original value of the number of the particulates. A measurement is stopped at this time and changed over to the measuring mode again. The total sum of the numbers of the particulates in the cumulative mode obtained when the reference liquid is added thereto is obtained. When an obtained value matches a value obtained by a prescribed formula, the means 1 is judged to be normal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、液体中の微粒子を計測する微粒子計測装置、
いわゆるパーティクルカウンタに関し、特に校正機能を
有するパーティクルカウンタに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a particle measuring device that measures particles in a liquid;
The present invention relates to a so-called particle counter, and particularly to a particle counter having a calibration function.

(従来の技術) 従来、パーティクルカウンタとしては、■レーザビーム
を被験液(試料液)中に照射し、被験液中の微粒子に当
たって生ずる散乱光を集光レンズで集光し、フォトマル
で電気変換して検出するレーザ光散乱方式 ■薄膜フィルタを用いて被験液を濾過し、薄膜フィルム
上に捕捉された微粒子を光学または走査型電子顕微鏡で
カウントする顕微鏡方式 ■光源に連続な平行光源を使用し、この平行光源の光軸
上に、被験液を加圧またはポンプ吸引によって導き、平
行光束と交わらせ、微粒子が通過するとき平行光束は減
少し光量も減光される現象を利用した光遮断方式 ■濾過膜を通してナトリウム電解液が加えられて、一定
電導度の被験液を作り、この被験液を検出部に加圧によ
り導き、被験液はポンプ吸引によってさらに検出部の微
細孔を通過する際、微粒子が被験液とともに微細孔を通
過する瞬間に電流(aが変化することを利用した電気抵
抗方式 ■超音波パルスを一定時間間隔で被験液中に照射した際
、被験液中の微粒子に当たり反射してきた超音波を測定
して微粒子を検知する超音波方式などが実用化されてい
る。
(Prior art) Conventionally, particle counters have been used to: ■ irradiate a test liquid (sample liquid) with a laser beam, collect the scattered light generated by hitting fine particles in the test liquid with a condensing lens, and convert it into electricity using a photomultiplier. - Laser light scattering method for detection - Microscope method in which the test liquid is filtered using a thin film filter and the particles captured on the thin film are counted using an optical or scanning electron microscope - A continuous parallel light source is used as the light source , a light blocking method that utilizes the phenomenon that the test liquid is guided onto the optical axis of this parallel light source by pressurization or pump suction, and intersects with the parallel light beam, and when the particles pass, the parallel light beam decreases and the light intensity is also reduced. ■ Sodium electrolyte is added through the filtration membrane to create a test liquid with a constant conductivity, and this test liquid is guided to the detection part under pressure.When the test liquid further passes through the fine pores of the detection part by pump suction, Electrical resistance method that takes advantage of the fact that the electric current (a) changes at the moment when the particles pass through the micropores with the test liquid ■When ultrasonic pulses are irradiated into the test liquid at fixed time intervals, they hit the particles in the test liquid and are reflected. Ultrasonic methods that detect fine particles by measuring ultrasonic waves have been put into practical use.

これらパーティクルカウンタは、メーカから出荷される
際に、既知の微粒子数を含む標準液により校正されてユ
ーザがそのまま使用できるようになっている。
When these particle counters are shipped from the manufacturer, they are calibrated with a standard solution containing a known number of particles and can be used by users as is.

しかし、ユーザがこれらパーティクルカウンタを使用し
ている最中に、異常に高い測定値や、逆に異常に低い測
定値を示すことがあり、この場合は、被験液がそのよう
な値になっているのか、またはパーティクルカウンタが
故障により巽常値を示したのかを調べるために、計測を
中止して、被験液の代りに標準液を通液してパーティク
ルカウンタが正常か否かを判定している。
However, while users are using these particle counters, they may show abnormally high or abnormally low readings, and in this case, the test liquid may have such values. In order to find out whether the particle counter is normal or not, stop the measurement and pass the standard solution instead of the test solution to determine whether the particle counter is normal or not. There is.

(発明が解決しようとする問題点) しかしながら、上記の従来のパーティクルカウンタの判
定の仕方では、標準液を連続的にパーティクルカウンタ
に注入するための、複雑で高価な装置を必要とし、また
、この判定には習熟した者が当たらなければならないと
いう欠点がおった。
(Problems to be Solved by the Invention) However, the conventional particle counter determination method described above requires a complicated and expensive device for continuously injecting the standard solution into the particle counter. The drawback was that the judgment had to be made by an experienced person.

(問題点を解決するための手段) 本発明は、上記の問題点に鑑みてなされたちのであって
、被験液供給ラインから供給された被験液中の微粒子数
を計測する微粒子計測手段と、前記被験液供給ラインに
、被験液中に既知の微粒子個数濃度の標準液を所定量添
加するための標準液供給手段を設けたことを特徴とする
ものである。
(Means for Solving the Problems) The present invention has been made in view of the above problems, and includes a particulate counting means for measuring the number of particulates in a test liquid supplied from a test liquid supply line; The present invention is characterized in that the test solution supply line is provided with a standard solution supply means for adding a predetermined amount of a standard solution having a known particle number concentration into the test solution.

(作用) 本発明は、上記のように構成したので、被験液供給ライ
ンに所定量の標準液が供給されて標準液供給前後の微粒
子数と標準液供給中の微粒子測定によりパーティクルカ
ウンタが正常か否かを判定する。
(Function) Since the present invention is configured as described above, a predetermined amount of the standard solution is supplied to the test solution supply line, and the particle counter determines whether the particle counter is normal by measuring the number of particles before and after supplying the standard solution and during the supply of the standard solution. Determine whether or not.

(実施例の説明) 本発明を図示の実施例に基づいて説明する。(Explanation of Examples) The present invention will be explained based on illustrated embodiments.

図において1は、レーザ光散乱方式のパーティクルカウ
ンタであって、被験液供給ライン2と計測後の被験液を
排出するための排出ライン3を有している。
In the figure, reference numeral 1 denotes a particle counter of a laser light scattering type, which has a test liquid supply line 2 and a discharge line 3 for discharging the test liquid after measurement.

4はパーティクルカウンタ1が計測した微粒子数を表示
させるための表示部であり、また、5は被験液を計測中
および後述する標準液を被験液供給ライン2に供給した
ことを選択する切替スイッチである。
4 is a display section for displaying the number of particles measured by the particle counter 1, and 5 is a changeover switch for selecting whether the test solution is being measured or when a standard solution (to be described later) is being supplied to the test solution supply line 2. be.

6はワンショット注入式の標準液供給手段であって、添
加部6aとプランジャ部6bから構成されている。この
うち、添加部6aは、被験液供給ライン2の上流側に連
絡されるポート7と下流側に連絡されるボート8を有し
、これら両ポート7゜8を連通する通路9から構成され
ている。また、この通路9には、一端の開口が直交して
連絡している通路10が設けられており、この通路10
にはコック11が介在されており、ざらに通路の他端の
開口は添加部6aの上面に設けられている四部12の底
に位置している。
Reference numeral 6 denotes a one-shot injection type standard solution supply means, which is composed of a dosing section 6a and a plunger section 6b. Of these, the addition section 6a has a port 7 connected to the upstream side of the test liquid supply line 2 and a boat 8 connected to the downstream side, and is composed of a passage 9 that communicates both ports 7.8. There is. Further, this passage 9 is provided with a passage 10 whose openings at one end are orthogonal and communicate with each other.
A cock 11 is interposed therein, and the opening at the other end of the passage is located at the bottom of the four parts 12 provided on the upper surface of the addition part 6a.

また、プランジャ部6bは、注入ボタン13を押すと、
プランジャにより添加部6aの凹部12に向けて所定量
下降する抑圧片14が設けられている。
Moreover, when the plunger part 6b presses the injection button 13,
A suppressing piece 14 is provided that descends by a predetermined amount toward the recess 12 of the addition section 6a by a plunger.

15は、後述する粒子fi度に調整された標(W液を充
填しておるディスポーザル型注射筒であり、その先端1
6は添加部6aの凹部12に位置させるとともに、その
上部のプランジャ17は、プランジャ部6bの押圧片1
4の下部に位置させて挾持されている。
15 is a disposable syringe filled with a mark (W liquid) adjusted to the particle fi degree described later, and its tip 1
6 is located in the concave part 12 of the adding part 6a, and the plunger 17 on the upper part is located in the pressing piece 1 of the plunger part 6b.
It is positioned and held at the bottom of 4.

従って、コック11を開き、注入ボタン13を押すと抑
圧片14が所定量矢印方向に下降するので、ディスポー
ザル型注射筒15内の標準液の所定量が所定時間内に、
例えば1秒間に1150嘘が通路9中を流れている被験
液中に添加される。
Therefore, when the cock 11 is opened and the injection button 13 is pressed, the suppression piece 14 is lowered by a predetermined amount in the direction of the arrow, so that the predetermined amount of the standard solution in the disposable syringe barrel 15 is filled within a predetermined time.
For example, 1150 drops are added to the test liquid flowing through the passageway 9 per second.

ディスポーザル型注射筒15に充填される標準液の粒子
個数温度は、1×107個/観のものが用いられる。こ
の濃度は、以下の理由により決められる。
The particle number temperature of the standard solution filled into the disposable syringe 15 is 1×10 7 particles/view. This concentration is determined for the following reasons.

すなわち、レーザビーム光散乱方式のパーティクルカウ
ンタにおいては、測定セル内のレーザビーム径と光散乱
を検出する受光系のスリットの大きさで囲われる容積、
つまり計測対象領域(Vm)によって決まり、しかも、
この計測対象領域内に同時に2個以上の微粒子が存在1
していないことが計測の必要条件である。従って、1/
V(ta)か1嘘当たりの最大再開濃度の値となり、通
常、この値はlXl0’個/Tn11程度が選定されて
いる。
In other words, in a laser beam light scattering type particle counter, the volume surrounded by the diameter of the laser beam in the measurement cell and the size of the slit in the light receiving system that detects light scattering;
In other words, it is determined by the measurement target area (Vm), and
There are two or more particles at the same time in this measurement target area1
This is a necessary condition for measurement. Therefore, 1/
V(ta) is the value of the maximum restart concentration per lie, and this value is usually selected to be approximately lXl0' pieces/Tn11.

以上の理由から、1X107個/mlの濃度の標準液を
被験液流量が1000雉/分中に添加したとすれば、充
分に上記の最大再開濃度の範囲内で微粒子数のカウント
が可能となる。
For the above reasons, if a standard solution with a concentration of 1 x 107 particles/ml is added while the test solution flow rate is 1000 particles/min, it will be possible to count the number of particles sufficiently within the above maximum restart concentration range. .

なお、市販されている標準液は、例えばポリスチレン球
の分散液で、標準粒径0.212μm。
A commercially available standard solution is, for example, a dispersion of polystyrene spheres, with a standard particle size of 0.212 μm.

10%(wt%)でその個数濃度は、約2.0×101
3個/帷である。従って、ディスポーザル型注射筒15
に充填する標準液は、上記の標準液を希釈して1X10
7個/雉に調整して充填する。
At 10% (wt%), the number concentration is approximately 2.0×101
3 pieces/strip. Therefore, the disposable syringe 15
For the standard solution to be filled in, dilute the above standard solution to 1X10
Adjust to 7 pheasants/pheasant and fill.

さて、上述した構成からなる実施例において、パーティ
クルカウンタ1が正常か否かを判定するには、まず、そ
の時点の微粒子数C1を表示部4から読取っておき、次
に切替スイッチ5を計測[−ドから積算モードに切り替
えると同時に、積算モード時間Tの計測を開始するとと
もに、コック11を回転させ、押しボタン13を押す。
Now, in the embodiment configured as described above, in order to determine whether or not the particle counter 1 is normal, first read the current number of particles C1 from the display section 4, and then turn the changeover switch 5 to measure [- Simultaneously with switching from mode to integration mode, measurement of integration mode time T is started, cock 11 is rotated, and push button 13 is pressed.

これにより、切替スイッチ5が計測上−ドから積算モー
ドに切り替えられたとぎに微粒子数C1は瞬時にOを示
し、次いで、コック11の回転により標準液の所定量が
ディスポーザル型注射筒15から通路9中の被験液10
に添加されるので、微粒子数は徐々に高くなり、ついに
ピークに達した後、もとの微粒子数C1の値となる。こ
の時点で積算モード時間下の計測を止め、再び切替スイ
ッチ5を計測モードに切り替える。
As a result, as soon as the changeover switch 5 is switched from the measurement mode to the integration mode, the number of particles C1 instantly indicates O, and then, by rotating the cock 11, a predetermined amount of the standard solution is dispensed from the disposable syringe 15. Test liquid 10 in passage 9
, the number of fine particles gradually increases, and after finally reaching a peak, returns to the original value of the number of fine particles C1. At this point, the measurement under the integration mode time is stopped and the selector switch 5 is switched to the measurement mode again.

以上の微粒子数の経時変化は、第2図に示す通りとなる
The above change in the number of fine particles over time is as shown in FIG.

ところで、この積算モード時間Tにおける微粒子数の積
算値C工は下記の(1)式により求めることができる。
By the way, the integrated value C of the number of particles in this integration mode time T can be determined by the following equation (1).

CT=((Co−q・60/Q)・V)十(C+  ・
5−L−T)・・・(1)Co・・・シリンダ内の標準
粒子個数濃度(個/cm3) Q・・・測定セル内を流れる被験液流量(cm2/秒)
q・・・プランジャ送出し1回分の容積(Cm3)■・
・・計測対象領域容積(Cm3) C1・・・標準液添加前後の被験液の粒子個数濃度(個
/cm3) S・・・計測対象領域の流れ方向の断面積(Cm2)L
・・・計測対象領域の流速(cm/秒)T・・・パーテ
ィクルカウンタの積算上−ド運転の時間(秒) なお、上式においてCo 、Q、 q、V、Sおよび[
は定数として与えられるので、以下の(2)式のように
書換えた簡略な式とすることができる。
CT=((Co-q・60/Q)・V) ten(C+・
5-L-T)...(1) Co...Number concentration of standard particles in the cylinder (particles/cm3) Q...Flow rate of the test liquid flowing in the measurement cell (cm2/sec)
q...Volume for one plunger delivery (Cm3)■・
...Measurement target area volume (Cm3) C1...Particle number concentration of test liquid before and after standard solution addition (particles/cm3) S...Cross-sectional area in the flow direction of measurement target area (Cm2) L
...Flow velocity in the measurement target area (cm/sec) T...Particle counter cumulative top-down operation time (seconds) In the above equation, Co, Q, q, V, S and [
Since is given as a constant, it can be rewritten as a simple equation as shown in equation (2) below.

Cv=に+ +(K2・C1・T)・・・(2)なお、
上記(1)および(2)式の前項で示される値は、第2
図の左下がりハツチングで示される部分に該当し、この
部分は標準液添加による微粒子の総数を意味し、右下が
りハツチングに示される部分は上式の後項に該当し、こ
の部分は被験液中の微粒子の総数を意味する。
Cv=to++(K2・C1・T)...(2) Furthermore,
The value shown in the previous section of equations (1) and (2) above is the second
This part corresponds to the part shown by the hatching on the left side of the figure, and this part means the total number of particles due to the addition of the standard solution. means the total number of fine particles.

従って、標準液を添加したときの積算モードTの微粒子
数をカウントして累計値を求め、この累計値が、上式で
求めた値と整合すれば、そのパーティクルカウンタは正
常と判断される。勿論、この整合性の判断をマイクロコ
ンピュータを用いて自動的に行なわせても良い。
Therefore, the number of particles in integration mode T when the standard solution is added is counted to obtain a cumulative value, and if this cumulative value matches the value determined by the above equation, the particle counter is determined to be normal. Of course, this consistency judgment may be made automatically using a microcomputer.

第3図は、標準液供給手段6の伯の例を示すものであっ
て、添加部6aに設けたボート7.8間を連絡する通路
9には、直角に屈曲する2箇所の部分を設けるとともに
、その1つの屈曲箇所に4方弁機構を有するコック11
−を設けた構成となっている。
FIG. 3 shows an example of the standard solution supply means 6, in which a passage 9 that communicates between the boats 7 and 8 provided in the addition section 6a is provided with two parts bent at right angles. Also, a cock 11 having a four-way valve mechanism at one bending point.
The configuration includes -.

従って、ディスポーザル型注射筒15に連通する通路1
0もコック11″の一方の連通孔18と連通し、他方の
連通孔19は、通路9を連絡するようになっている。ま
た、このコック11−を180’回転させたときは、一
方の連通孔18が通路9を連絡し、他方の連通孔19が
通路10と連通することになる。
Therefore, the passage 1 communicating with the disposable syringe 15
0 also communicates with one communication hole 18 of the cock 11'', and the other communication hole 19 communicates with the passage 9. Also, when the cock 11- is rotated 180', one of the communication holes 18 of the cock 11'' communicates with the other. The communication hole 18 communicates with the passage 9, and the other communication hole 19 communicates with the passage 10.

また、添加部6aの凹部12にはディスポーザル型注射
筒15の先端を支持固定できるように、弾性リング12
−が設けられている。
In addition, an elastic ring 12 is provided in the recess 12 of the addition portion 6a so that the tip of the disposable syringe barrel 15 can be supported and fixed.
- is provided.

上述の標準液添加手段6を用いて、被検液中に標準液を
添加するには、プランジャ17を押して、一方の連通孔
18に標準液を充満させておき、コック11′を180
0回転させると、一方の連通孔18の容積に等しい一定
量の標準液が添加される。
To add a standard solution to a test liquid using the standard solution addition means 6 described above, press the plunger 17 to fill one of the communication holes 18 with the standard solution, and then turn the cock 11' to 180.
At zero rotation, a constant amount of standard solution equal to the volume of one of the communicating holes 18 is added.

また、次回に標準液を添加するには、同様に他方の連通
孔19に標準液を充満させておいて行なう。
Further, when adding the standard solution next time, the other communication hole 19 is similarly filled with the standard solution.

このように、ここに示された標準添加手段は、極めて簡
単な構成により標r(を液を添加できる利益がおる。
As described above, the standard addition means shown here has the advantage of being able to add the liquid with a very simple structure.

なお、上述の実施例においてはパーティクルカウンタと
してレーザ光散乱方式を用いたが、前述した他の方式の
パーティクルカウンタを用いることもできる。
In addition, in the above-mentioned embodiment, a laser light scattering method was used as a particle counter, but it is also possible to use a particle counter of the other method described above.

また、ディスポーザル型注則筒に充填する標準液の個数
′a度をlX107個/観としたが、これを被験液の流
最により、最大再開濃度の範囲で計測可能なように調整
することができる。
In addition, the number of standard solutions to be filled into the disposable pouring tube was set to 107 lx/cm, but this should be adjusted so that it could be measured within the maximum restart concentration range depending on the flow of the test solution. Can be done.

(効果) 本発明は、上記したように、パーティクルカウンタの被
験液供給ラインに標準液供給手段を設けたので、簡単な
機構により必要なときに簡単にパーティクルカウンタが
正常か否かを判定することができる。また、この判定に
は特に習熟した者でなくとも、容易に行なえる特長があ
る。
(Effects) As described above, the present invention provides a standard solution supply means in the test solution supply line of the particle counter, so it is possible to easily determine whether the particle counter is normal or not when necessary using a simple mechanism. Can be done. Moreover, this judgment has the advantage that it can be easily performed even by a person who is not particularly skilled.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例を示すもので必って、第1図は
一部を断面した正面図、第2図は計測時および積算時の
微粒子数の経時変化を示すグラフおよび第3図は他の標
準液注入手段を示す一部を断面した正面図である。 1・・・微粒子数計測手段(パーティクルカウンタ)2
・・・被験液供給ライン 6・・・標準液供給手段 11.11”・・・コック
The drawings show embodiments of the present invention, and FIG. 1 is a partially sectional front view, FIG. 2 is a graph showing changes over time in the number of particles during measurement and integration, and FIG. FIG. 2 is a partially sectional front view showing another standard solution injection means. 1... Particulate number measuring means (particle counter) 2
... Test liquid supply line 6 ... Standard solution supply means 11.11" ... Cock

Claims (1)

【特許請求の範囲】[Claims] (1)被験液供給ラインから供給された被験液中の微粒
子数を計測する微粒子計測手段と、 前記被験液供給ラインに、被験液中に既知の微粒子個数
濃度の標準液を所定量添加するための標準液供給手段を
設けたことを特徴とする微粒子数計測装置。
(1) Particle counting means for measuring the number of particles in the test solution supplied from the test solution supply line; and for adding a predetermined amount of a standard solution with a known particle number concentration into the test solution to the test solution supply line. A particulate number measuring device characterized by being provided with a standard solution supply means.
JP13871287A 1987-06-02 1987-06-02 Particulate measuring instrument Pending JPS63302344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13871287A JPS63302344A (en) 1987-06-02 1987-06-02 Particulate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13871287A JPS63302344A (en) 1987-06-02 1987-06-02 Particulate measuring instrument

Publications (1)

Publication Number Publication Date
JPS63302344A true JPS63302344A (en) 1988-12-09

Family

ID=15228364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13871287A Pending JPS63302344A (en) 1987-06-02 1987-06-02 Particulate measuring instrument

Country Status (1)

Country Link
JP (1) JPS63302344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407269A (en) * 1992-07-09 1995-04-18 International Business Machine Corporation Dynamic mixing chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407269A (en) * 1992-07-09 1995-04-18 International Business Machine Corporation Dynamic mixing chamber

Similar Documents

Publication Publication Date Title
US7395103B2 (en) Surface plasmon resonance based nanoliter tear osmometer
US7344679B2 (en) Method and apparatus for point of care osmolarity testing
DK170570B1 (en) Aggregate for measuring intravascular blood gas
JP2965688B2 (en) Particle detector
EP0682258A1 (en) Obstruction detection circuit for sample probe
EP2348299A2 (en) Reagent preparing apparatus
JPH0114531B2 (en)
JPH0476427B2 (en)
JP5097657B2 (en) Analysis method
US7712348B2 (en) Device and method for the selective determination of the quantity of oil mist
JP2007271323A (en) Instrument
JPS63302344A (en) Particulate measuring instrument
EP0866966B1 (en) A method and apparatus for measuring ethanol vapour concentration
US5747667A (en) Particle counter verification method
US3577162A (en) Automatic counting system for fluid suspended particle
JP2005055446A (en) Method of detecting gas bubbles in liquid
Mcfadyen et al. An automatic flow ultramicroscope for submicron particle counting and size analysis
US20040261792A1 (en) Control unit for flow regulation
JPS5838856A (en) Automatic liquid chromatograph apparatus
JPH09505146A (en) Erythrocyte sedimentation velocity measuring device
CN207923657U (en) Liquid sucks the measuring device of behavior in porous or pulverulent solids
GB2256478A (en) Flow measurement device
JPS5935799Y2 (en) Suspended particle counter
CN220201906U (en) Patch clamp perfusion drug delivery device
JPH0215011B2 (en)