JPS63301467A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS63301467A
JPS63301467A JP13851987A JP13851987A JPS63301467A JP S63301467 A JPS63301467 A JP S63301467A JP 13851987 A JP13851987 A JP 13851987A JP 13851987 A JP13851987 A JP 13851987A JP S63301467 A JPS63301467 A JP S63301467A
Authority
JP
Japan
Prior art keywords
organic electrolyte
pyridine
active substance
sulfide
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13851987A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukuda
浩 福田
Tsukasa Ohira
大平 司
Takafumi Fujii
隆文 藤井
Kenichiro Ando
安藤 謙一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13851987A priority Critical patent/JPS63301467A/en
Publication of JPS63301467A publication Critical patent/JPS63301467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives

Abstract

PURPOSE:To enhance long-term preservation characteristics at high temps. of an organic electrolyte battery using metal oxide or metal sulfide as active substance by adding pyridine into organic electrolyte. CONSTITUTION:In a battery consisting of a positive pole 1 using metal oxide or sulfide as active substance, a negative pole 4 using light metal as active substance, and organic electrolyte containing polypropylene carbonate (PC), pyridine is added to the electrolyte. PC adsorption is hindered by adsorbing pyridine to the surface active site of the metal oxide or sulfide as positive pole active substance, which has undergone heat treatment, and thereby dissolution of PC is suppressed. This enhances anti-leakage property and shape stability in preserving at a high temp. for a long period of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は正極活物質に二酸化マンガン、酸化銅等の金属
酸化物および硫化鉄、硫化銅等の金属硫化物を用い、負
極活物質にリチウム、カリウム等の1経金属金用い、′
電解液としてプロピレンカーボネート(以下PCと略す
)を主としてテトラヒドロフラン、1,2−ジメトキシ
エタン(以下DMEと略す)、1.3−ジオキンラン等
のエーテルやエチレンカーボネート、γ−ブチルラクト
ン等のエステルを混合した溶媒中に過塩素酸リチウム。
Detailed Description of the Invention: Industrial Field of Application The present invention uses metal oxides such as manganese dioxide and copper oxide, and metal sulfides such as iron sulfide and copper sulfide as positive electrode active materials, and uses lithium and potassium as negative electrode active materials. Using 1 grade metal gold such as '
As an electrolytic solution, propylene carbonate (hereinafter abbreviated as PC) was mainly mixed with ethers such as tetrahydrofuran, 1,2-dimethoxyethane (hereinafter abbreviated as DME), 1,3-dioquinrane, and esters such as ethylene carbonate and γ-butyl lactone. Lithium perchlorate in solvent.

ホウフッ化リチウム等の無機塩を溶解したものを用いる
有機電解質7に池、特に負極にリチウム電池いる有機電
解質リチウム電池の改良に関するものである。
This invention relates to the improvement of organic electrolyte lithium batteries in which the organic electrolyte 7 uses a dissolved inorganic salt such as lithium fluoroborate, particularly in which the negative electrode is a lithium battery.

従来の技術 従来有機電解質リチウム電池の正極としては、取り扱い
の容易さから固体活物質が特に注目され、なかでも、フ
ッ化炭素、二酸化マンガン、硫化鉄。
Conventional technology Conventional organic electrolyte Solid active materials have attracted particular attention as positive electrodes for lithium batteries due to their ease of handling, among them carbon fluoride, manganese dioxide, and iron sulfide.

酸化銅を正極活物質としたリチウム電池はすでに実用化
されている。しかしながらこれらの9ち、二酸化マンガ
ン、酸化銅などの金属酸化物、硫化鉄などの金属硫化物
全正極活物質とし電解液の溶媒にPCを単独または混合
物として用いた場合、正極活物質上でPCの加水分解が
おこり二酸化炭素を発生するために、長期保存、特に高
温での長期保存では電池のふくれや漏液全ひき起こした
り内部抵抗が増大したりした。従来この問題の解決法と
して、正極活物質全高温で熱処理した後に用いていたが
、熱処理温度全土けるほど7E池の放7E電圧や放1五
容量が低下するため、放′、E特性を維持するためには
二酸化炭素の発生度合いとの妥協点となる温度でしか熱
処理できなかった。
Lithium batteries that use copper oxide as a positive electrode active material are already in practical use. However, if these 9 are made of metal oxides such as manganese dioxide, copper oxide, or metal sulfides such as iron sulfide as all positive electrode active materials, and if PC is used alone or as a mixture as the electrolyte solvent, PC will be removed on the positive electrode active material. Hydrolysis occurs and generates carbon dioxide, so long-term storage, especially at high temperatures, can cause the battery to swell, leak, or increase internal resistance. Conventionally, as a solution to this problem, the positive electrode active material was used after being heat-treated at a high temperature, but as the heat treatment temperature increases, the 7E voltage and 15 capacity of the 7E cell decrease, so it is necessary to maintain the radiation and E characteristics. In order to achieve this, heat treatment could only be carried out at a temperature that was a compromise with the degree of carbon dioxide generation.

発明が解決しようとする問題点 前述のような温度での正極活物質の熱処理は二酸化炭素
の発生に基づく問題の根本的な解決にはならない。すな
わち、電池の構成方法、形状や、高温保存の条件によっ
ては充分な耐漏液性や形状安定性が得られないことにな
る。本発明は1π解液にピリジン全添加することによっ
てPCの分解を抑制することにより、高温長期保存にお
ける耐漏液性、形状安定性を向上することを目的とする
ものである。
Problems to be Solved by the Invention Heat treatment of the positive electrode active material at the above-mentioned temperatures does not fundamentally solve the problems caused by the generation of carbon dioxide. That is, sufficient leakage resistance and shape stability may not be obtained depending on the battery construction method, shape, and high-temperature storage conditions. The purpose of the present invention is to suppress the decomposition of PC by completely adding pyridine to the 1π solution, thereby improving leakage resistance and shape stability during long-term storage at high temperatures.

問題点を解決するための手段 この問題点を解決するために本発明は有機電解液中にピ
リジンを添加したものである。
Means for Solving the Problem In order to solve this problem, the present invention adds pyridine to the organic electrolyte.

作用 この構成により、熱処理した正極活物質の金属酸化物も
しくは金属硫化物の表面活性サイトにピリジンを吸着さ
せることによってPCの吸着を阻害してPCの分解を抑
制したものである。これによV、従来と同様の正極活物
質熱処理温度でも高温長期保存における耐漏液性、形状
安定性が向」ニすることとなる。
Function: With this configuration, pyridine is adsorbed to the surface active sites of the metal oxide or metal sulfide of the heat-treated positive electrode active material, thereby inhibiting the adsorption of PC and suppressing the decomposition of PC. As a result, leakage resistance and shape stability during high-temperature long-term storage are improved even at the same heat treatment temperature for the positive electrode active material as in the conventional case.

実施例 図に本発明の一実施例である円筒形MnO2/L工1E
池の断面図を示す。
The example diagram shows cylindrical MnO2/L work 1E, which is an example of the present invention.
A cross-sectional view of the pond is shown.

図中、1は正極であり、これは熱処理しfr、 MnO
2粉末に導電剤として黒鉛粉末とケッチェンブラックの
混合体を約10重量多添加し、結着剤にポリ四弗化エチ
レンを加えて、水で十分混練した合剤を圧延ローラーで
ンート化した後、図示していないが金属性の多孔性正極
集電体に圧入した7−1・状極板からなる。使用に尚っ
てはこの極[110℃で一次乾燥し所定の寸法に切断し
た後、極板の中央部の合剤を所定の幅剥離し、その部分
へ正極リード板2を溶接する。この正極リード板2を溶
接した部分及び正極板1の長さ方向の一端に絶縁テープ
を表裏共に張ジつけて補強する。この正イウ板を二次乾
燥として250℃で真空乾燥する。このようにして作っ
た正極板の長さ方向のテープ全張っていない端部を巻芯
側にして微水性ポリプロピレン製のセパレータ3を介し
て負極リチウム4と対向させて渦巻状の電極群を構成す
る。
In the figure, 1 is the positive electrode, which is heat treated fr, MnO
A mixture of graphite powder and Ketjen black was added as a conductive agent to the 2 powder by about 10% by weight, polytetrafluoroethylene was added as a binder, and the mixture was sufficiently kneaded with water and then rolled into a paste using a rolling roller. After that, although not shown, it consists of a 7-1-shaped electrode plate press-fitted into a metallic porous positive electrode current collector. In use, this electrode is first dried at 110° C., cut into a predetermined size, the mixture at the center of the electrode plate is peeled off to a predetermined width, and the positive electrode lead plate 2 is welded to that part. Insulating tape is pasted on both the front and back of the welded portion of the positive electrode lead plate 2 and one lengthwise end of the positive electrode plate 1 for reinforcement. This solid iron plate is vacuum-dried at 250° C. as secondary drying. The end of the positive electrode plate in the length direction where the tape is not fully stretched is placed on the winding core side and is opposed to the negative electrode lithium 4 through a separator 3 made of slightly aqueous polypropylene to form a spiral electrode group. do.

構成後、図示していないが負極リチウムのリード板を穴
あき底部絶縁板を介して鉄にニッケルメッキした′電池
ケース6の内底部に接するように挿入し、電極群中央部
の巻芯跡空間を利用してスポット溶接する。以上のよう
にして電極群を電池ケース5に収納した後、上部絶縁リ
ング6を配置し′lTilTiスケースれをする。Aβ
ラミネート7を熱溶着した端子側キャップ8をカンノ、
ガスケット9をはめこんだ内側キャンプ1oに正極リー
ド板2全スポツト溶接した後PC: 、DMEの混合溶
媒に2体積係のピリジン全添加し0.6モル/lとなる
様にL工ClO4を溶解した電解液の所定量を注液して
封口する。
After configuration, the negative electrode lithium lead plate (not shown) is inserted through the perforated bottom insulating plate so as to be in contact with the inner bottom of the nickel-plated iron battery case 6, and the core trace space in the center of the electrode group is inserted. spot weld using. After the electrode group is housed in the battery case 5 as described above, the upper insulating ring 6 is placed and the case is removed. Aβ
Attach the terminal side cap 8 to which the laminate 7 is heat-welded.
After all spots of the positive electrode lead plate 2 are welded to the inner camp 1o in which the gasket 9 is fitted, PC: Add 2 parts by volume of pyridine to a mixed solvent of DME and dissolve ClO4 at a concentration of 0.6 mol/l. Pour a predetermined amount of the electrolyte solution into the container and seal it.

以上のようにして作製した′+tAAサイズの電池で従
来のピリジンを添加しない″電解液を用いた一程池と比
較した。
The '+tAA size battery produced as described above was compared with a conventional battery using a '+tAA size electrolyte without the addition of pyridine.

二酸化マンガンの熱処理温度全340℃、400℃とし
た時のそれぞれの条件において電M液にピリジンを添加
した場合としない場合の計4通りの電池の5人、0.6
秒放電の閉回路’71圧と70℃で1ケ月保存したとき
の漏液率を表1に示す。
The heat treatment temperature of manganese dioxide was 340°C and 400°C, respectively. 5 people tested batteries in 4 different cases with and without adding pyridine to the electrolytic M solution. 0.6
Table 1 shows the leakage rate when stored for one month at closed circuit '71 pressure of second discharge and 70°C.

(以下余 白) 人の7F池では閉回路電圧は高く放″11(特性は良好
であるが70℃で1t月保存すると電池内部で二酸化炭
素が発生するために図1中7のAβラミネートが押し上
げられ端子側キャップ8の内fll11への刃突起に当
たって破れ、漏液するものが80cil)ヲ占めた。−
万Cの’i[池では漏液率は格段に減するが閉回路電圧
が低下した。これに対しピリジンを添加したB、Dの電
池では表1のようになった。
(Left below) In a human 7F pond, the closed circuit voltage is high and the discharge is ``11 (The characteristics are good, but when stored at 70℃ for 1 ton, carbon dioxide is generated inside the battery, so the Aβ laminate shown in 7 in Figure 1 is 80 cil) were pushed up and hit the blade protrusion on the inner flll11 of the terminal side cap 8, causing it to tear and leaking.-
In the case of 10,000C, the leakage rate was significantly reduced, but the closed circuit voltage was reduced. On the other hand, in the batteries B and D to which pyridine was added, the results were as shown in Table 1.

すなわち340 ’Cで熱処理したMnO2を使った場
合(B)閉回路電圧を低下させることなく漏液率をCの
400℃で熱処理したMnO2に使ったCの場合とほぼ
同等にまで低減し、また40o℃で熱処理したMnO2
全使ったDの場合には漏液率をOチに1で低減させるこ
とができた。
In other words, when MnO2 heat-treated at 340'C is used (B), the leakage rate is reduced to almost the same as that of C using MnO2 heat-treated at 400'C without reducing the closed circuit voltage, and MnO2 heat treated at 40oC
In the case of D, which was fully used, the leakage rate could be reduced by 1.

発明の効果 以上のように本発明によれば、金属酸化物もしくは金属
硫化物を活物質とする有機電4M、質”、E池の長期保
存、特に高温での長期保存特性を向上することができる
という効果が得られる。
Effects of the Invention As described above, according to the present invention, it is possible to improve long-term storage, especially long-term storage characteristics at high temperatures, of organic batteries using metal oxides or metal sulfides as active materials. You can get the effect that you can.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例における円筒形リチウム電池の断面
図である。 1・・・・・・正極、3・・・・・・セパレータ、4・
・・・・・負極リチウム、7・・・・・・A7I ラミ
ネート、8・・・・・・端子側キャップO 代理人の氏名 弁理士 中 尾 敏 男 ほか1名t−
〔向 2−−  r/  lへド・汲 3°゛−でハ゛し一ター 4−一一寒不シリ÷・う4 S−−−4tうで1−人 G−f二るや亨で、奪う(す)フ゛ 7−Vllバキート ざ−−p?6−+s印1←・7フ゛ q−−一刀°ス’71vl−
The figure is a cross-sectional view of a cylindrical lithium battery according to an embodiment of the present invention. 1...Positive electrode, 3...Separator, 4...
...Negative electrode lithium, 7...A7I laminate, 8...Terminal side cap O Name of agent: Patent attorney Toshio Nakao and one other person t-
[Direction 2--r/l to do/pull 3°--to increase one ter 4-11 Kanfushiri ÷ U4 S----4t arm 1-person G-f two or more , take away (su) fi 7-Vll Bakitoza--p? 6-+s mark 1←・7 ゛q--Ittou °su'71vl-

Claims (1)

【特許請求の範囲】[Claims] 金属の酸化物もしくは硫化物を活物質とする正極、軽金
属を活物質とする負極およびプロピレンカーボネートを
含む有機電解液を有する電池において、電解液にピリジ
ンを添加したことを特徴とする有機電解質電池。
An organic electrolyte battery comprising a positive electrode using a metal oxide or sulfide as an active material, a negative electrode using a light metal as an active material, and an organic electrolyte solution containing propylene carbonate, characterized in that pyridine is added to the electrolyte solution.
JP13851987A 1987-06-02 1987-06-02 Organic electrolyte battery Pending JPS63301467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13851987A JPS63301467A (en) 1987-06-02 1987-06-02 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13851987A JPS63301467A (en) 1987-06-02 1987-06-02 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS63301467A true JPS63301467A (en) 1988-12-08

Family

ID=15224041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13851987A Pending JPS63301467A (en) 1987-06-02 1987-06-02 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS63301467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030379A1 (en) * 1997-12-10 1999-06-17 The Secretary Of State For Defence Electrochemical cell comprising a liquid organic electrolyte with a conductive additive

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030379A1 (en) * 1997-12-10 1999-06-17 The Secretary Of State For Defence Electrochemical cell comprising a liquid organic electrolyte with a conductive additive
GB2346256A (en) * 1997-12-10 2000-08-02 Secr Defence Electrochemical cell comprising a liquid organic electrolyte with a conductive additive
GB2346256B (en) * 1997-12-10 2001-08-22 Secr Defence Electrochemical cell comprising a liquid organic electrolyte with a conductive additive
US6596441B1 (en) 1997-12-10 2003-07-22 Qinetiq Limited Electrochemical cell comprising a liquid organic electrolyte with a conductive additive

Similar Documents

Publication Publication Date Title
IE49844B1 (en) Non-aqueous cells employing heat-treated manganese dioxide cathodes
JPS63301467A (en) Organic electrolyte battery
JP2002260728A (en) Lithium secondary battery using nonaqueous electrolyte solution
JPH0426075A (en) Organicelectrolyte battery
JPS61165961A (en) Organic electrolytic solution battery
JP2865387B2 (en) Non-aqueous electrolyte secondary battery
JPS58158856A (en) Nonaqueous electrolytic battery
JP2686072B2 (en) Non-aqueous electrolyte battery
JPS59134567A (en) Organic electrolytic battery
JP2552438B2 (en) Non-aqueous electrolyte battery
JPH0244105B2 (en) HISUIYOBAIDENCHI
JPS63307662A (en) Organic electrolyte battery
JPS6023971A (en) Manufacture of electrolyte for nonaqueous solvent battery
JPH0254626B2 (en)
JPH04355069A (en) Lithium secondary battery
JPH0439187B2 (en)
JPS59209274A (en) Nonaqueous solvent battery
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPS59171470A (en) Nonaqueous solvent battery
JPH04324258A (en) Lithium battery
JPH02195661A (en) Cylindrical lithium secondary cell
JPH04351862A (en) Lithium secondary cell
JPS59163766A (en) Nonaqueous electrolyte battery
JPS63218161A (en) Nonaqueous electrolyte cell
JPS61237369A (en) Organic electrolyte cell