JPS63297577A - Surface structure of steel material strengthened in physical property and its production - Google Patents

Surface structure of steel material strengthened in physical property and its production

Info

Publication number
JPS63297577A
JPS63297577A JP13599587A JP13599587A JPS63297577A JP S63297577 A JPS63297577 A JP S63297577A JP 13599587 A JP13599587 A JP 13599587A JP 13599587 A JP13599587 A JP 13599587A JP S63297577 A JPS63297577 A JP S63297577A
Authority
JP
Japan
Prior art keywords
layer
steel
plating
steel material
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13599587A
Other languages
Japanese (ja)
Inventor
Yoshihiko Takano
高野 嘉彦
Tetsuya Nakada
哲也 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA AEN MEKKI KK
Original Assignee
TANAKA AEN MEKKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA AEN MEKKI KK filed Critical TANAKA AEN MEKKI KK
Priority to JP13599587A priority Critical patent/JPS63297577A/en
Publication of JPS63297577A publication Critical patent/JPS63297577A/en
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a surface structure excellent in external appearance, by forming an Ni or Co layer on the surface of a steel material and then forming a Zn layer on the above so as to improve the adhesive strength between the plating film and the steel material and prevent the occurrence of burning. CONSTITUTION:As pretreatment, an Ni or Co layer is formed to about 1-10mum film thickness on the surface of a steel material by means of electroless plating or electroplating. Subsequently, hot dip galvanizing, electrogalvanizing, or thermal spraying of metallic Zn is applied so as to form a Zn layer of <=about 150mum film thickness. This method is applicable to high-tensile steel, silicon- killed steel, etc., and by using this method, physical properties at the surface of a steel material to be used for a building structure, etc., can be strengthened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄塔、橋梁及び建築構造物等に用いる鋼材の
物性的に強化された表面構造並びにその製造方法に係わ
り、更に詳しくは高張力鋼及びシリコンキルド鋼等にも
採用し得る物性的に強化された鋼材表面構造並びにその
製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a physically strengthened surface structure of steel materials used for steel towers, bridges, building structures, etc., and a method for manufacturing the same, and more specifically relates to a high tensile strength This invention relates to a physically strengthened steel surface structure that can be used for steel, silicon-killed steel, etc., and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、鉄塔、橋梁及び建築構造物等の鋼材表面には、耐
蝕性を持たせる為に溶融亜鉛めっきの表面処理を行って
いた。この熔融亜鉛めっきを施す鋼構造物の鋼材の鋼種
としては、リムド鋼若しくはキャソブド鋼が過半数を占
めていたが、近年、鉄鋼メーカーではMm歩留りの向上
、省エネルギ−1省力化等の対策として連続鋳造法の採
用が盛んになって連鋳材の占める割合が高くなっている
Conventionally, the surfaces of steel materials such as steel towers, bridges, and building structures have been treated with hot-dip galvanizing to provide corrosion resistance. Rimmed steel or cassocked steel accounted for the majority of the steel types used for steel structures to which hot-dip galvanizing is applied, but in recent years steel manufacturers have continued to take measures such as improving Mm yield and saving energy and labor. With the increasing adoption of casting methods, the proportion of continuously cast materials is increasing.

また、高張力鋼板をはじめとして、高強度な鋼材が開発
され、鋼中の珪素分が高くなる傾向にあり、それに伴い
、溶融亜鉛めっき用鋼種も必然的に珪素分の高い鋼材や
高張力鋼に置き換えられつつある。一般にリムド鋼やキ
ャンブト鋼への溶融亜鉛めっき被膜は、光沢のある滑ら
かな外観を呈するが、珪素分の高いシリコンキルド鋼や
高張力鋼に溶融亜鉛めっきを行うとめっき付着量の過多
、ヤケあるいは不均一な被膜の形成により、外観を甚だ
しく損ねたり、めっき被膜と鋼材との密着性が悪くなる
。これに対する対策として430〜440℃の低温で熔
融亜鉛めっきを行うとともに、めっき時間及び冷却時間
を短くする等の方法を講じである程度改善しているのが
現状である。また、高張゛刃鋼でも単体であればめっき
時間は短(て済み、めっき条件を選べばめっき被膜の外
観、密着性においても問題はないが、大型構造物の構成
部材として使用されている場合、製品の熱容量が大きく
なり、短時間での熔融亜鉛めっきは不可能であり、5分
以上の長時間を要することが多くあり、この為、このう
ような大型構造の高張力鋼に於いてはめっき被膜の剥離
、付着量過多及びヤケが発生し、著しい品質の低下をき
たすことがあった。また、めっき温度を低下させること
は、熔融亜鉛の粘性の上昇につながり、鋼材をめっき浴
から引き上げる際に付着する溶融亜鉛の流れが悪くなり
、通常タレといわれる不均一なめっき層が形成されると
いった問題があった。
In addition, with the development of high-strength steel materials such as high-strength steel sheets, the silicon content in steel tends to increase, and as a result, the steel types for hot-dip galvanizing will inevitably become steels with high silicon content and high-strength steel. is being replaced by. In general, hot-dip galvanized coatings on rimmed steel and Cambuton steel have a shiny and smooth appearance, but when hot-dip galvanized on silicon-killed steel or high-strength steel with a high silicon content, the coating may be excessively deposited, discolored, or The formation of a non-uniform coating seriously impairs the appearance and deteriorates the adhesion between the plating coating and the steel material. As a countermeasure against this problem, methods such as performing melt-dip galvanizing at a low temperature of 430 to 440° C. and shortening the plating time and cooling time are currently being taken to improve the problem to some extent. In addition, even if high-strength blade steel is used alone, the plating time is short, and if the plating conditions are selected, there will be no problem with the appearance or adhesion of the plating film, but when it is used as a component of a large structure. , as the heat capacity of the product increases, it is impossible to hot-dip galvanize in a short time, and it often takes a long time of 5 minutes or more. Peeling of the plating film, excessive adhesion, and burning may occur, resulting in a significant deterioration in quality.In addition, lowering the plating temperature leads to an increase in the viscosity of the molten zinc, making it difficult to remove the steel from the plating bath. There was a problem in that the flow of the molten zinc that adhered during pulling up deteriorated, resulting in the formation of an uneven plating layer, commonly referred to as sagging.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が前述の状況に鑑み、解決しようとするところは
、シリコンキルド鋼等の珪素分の多い鋼材、更には今後
益々増加が予想される高張力鋼に於いても鋼材表面の物
性的強化を図るとともに、外観性にも優れた表面構造と
なすことができ、特に溶融亜鉛めっきに於いては、44
0〜460℃の通常のめっき温度で行うことができ、め
っき被膜の剥離、付着量過多、ヤケの発生を掻刃防止す
ることができる物性的に強化された鋼材表面構造並びに
その製造方法を提供する点にある。
In view of the above-mentioned situation, the present invention aims to solve the problem by strengthening the physical properties of the steel surface even in steel materials with a high silicon content such as silicon-killed steel, and even in high-tensile steel materials, which are expected to increase in the future. At the same time, it is possible to create a surface structure with excellent appearance.Especially in hot-dip galvanizing, 44
Provides a physically strengthened steel surface structure that can be carried out at normal plating temperatures of 0 to 460°C and can prevent peeling of the plating film, excessive adhesion, and occurrence of burns, as well as a method for producing the same. It is in the point of doing.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、前述の問題解決の為に、鋼材表面に無電解め
っき又は電気めっきによってニッケル層又はコバルト層
を形成する前処理を施した後に、溶融亜鉛めっき又は電
気亜鉛めっき又は金属亜鉛溶射を施して亜鉛層を形成し
てなる物性的に強化された鋼材表面構造並びにその製造
方法を提供するものである。
In order to solve the above-mentioned problem, the present invention pre-treats the surface of the steel material to form a nickel layer or cobalt layer by electroless plating or electroplating, and then performs hot-dip galvanizing, electrogalvanizing, or metallic zinc spraying. The present invention provides a physically strengthened steel surface structure formed by forming a zinc layer, and a method for manufacturing the same.

〔作用〕[Effect]

以上の如き内容からなる本発明の物性的に強化された鋼
材表面構造並びにその製造方法は、鋼材の表面に無電解
めっき又は電気めっきによってニッケル(Ni)層又は
コバルト(Go)層を形成する前処理を施しているので
、その前処理をした鋼材を溶融亜鉛めっき浴内に浸漬し
て、表面に亜鉛層を形成した場合、前記N1層又はCo
層により鋼材の鉄(Fe)と亜鉛(Zn)の拡散を防止
し物性的に脆いPa −Zn合金層の発達を抑制し、も
って溶融亜鉛めっき層の厚さを抑制することができると
ともに、めっき温度を通常の440〜460℃で行うこ
とができて密着性を改善するとともに、付着量過多、ヤ
ケ及びタレの防止をすることができ、また電気亜鉛めっ
き又は金属亜鉛溶射により亜鉛層を形成する場合にも同
様の作用を有するものである。
The physically reinforced steel material surface structure and its manufacturing method of the present invention having the above-mentioned contents are applied before forming a nickel (Ni) layer or cobalt (Go) layer on the surface of the steel material by electroless plating or electroplating. Since the pretreated steel material is immersed in a hot-dip galvanizing bath to form a zinc layer on the surface, the N1 layer or Co
The layer prevents the diffusion of iron (Fe) and zinc (Zn) in the steel material, suppresses the development of the physically brittle Pa-Zn alloy layer, and thereby suppresses the thickness of the hot-dip galvanized layer. It can be carried out at a normal temperature of 440 to 460°C, which improves adhesion and prevents excessive adhesion, burning, and sagging.Also, a zinc layer can be formed by electrogalvanizing or metallic zinc spraying. It has a similar effect in other cases as well.

〔実施例〕〔Example〕

本発明に於いて鋼材の前処理に用いる無電解液は、酸性
無電解ニッケルめっき液であり、例えばpH4〜6の塩
化ニッケル、次亜燐酸ナトリウム、ヒドロキシ酢酸ナト
リウム混合水溶液を用いた。
In the present invention, the electroless solution used in the pretreatment of the steel material is an acidic electroless nickel plating solution, for example, a mixed aqueous solution of nickel chloride, sodium hypophosphite, and sodium hydroxyacetate having a pH of 4 to 6.

無電解液の液温は反応速度を大きくする為に高温が望ま
しく、通常80℃以上で行われ、処理時間は製品の!i
量、形状及び材料の厚みによって熔融亜鉛めっき時間が
異なる為各製品に通したN1Jiiの厚さが要求される
ので一定しないが、通常は5〜30分で十分である。ま
た、本発明に用いる電気めっき液には、ワット浴、塩化
浴及びホウフッ化浴等をあげることができ、電解液は特
に加熱せず常温で実施され、そのめっき処理に於ける電
流密度は平滑な電析面を得る為に1〜IOA/d+++
2が好ましく、特に2〜5 A/dm2が良好な結果が
得られる。
The temperature of the electroless solution is preferably high in order to increase the reaction rate, and it is usually carried out at 80°C or higher, and the processing time is determined by the product! i
Since the melt galvanizing time varies depending on the amount, shape, and thickness of the material, the thickness of N1Jii passed through each product is not constant because it is required, but usually 5 to 30 minutes is sufficient. Further, the electroplating solution used in the present invention can include a Watt bath, a chloride bath, a borofluoride bath, etc. The electrolyte solution is not particularly heated and is carried out at room temperature, and the current density in the plating process is smooth. 1 to IOA/d+++ to obtain a deposited surface.
2 is preferable, and particularly good results can be obtained with 2 to 5 A/dm2.

このようにして得られた無電解ニッケルめっき層又は電
気ニッケルめっき層は、平滑で素地の新HT60の鋼材
との密着性も良好であり、ニッケル層で被覆された鋼材
をフラックス処理後、440〜460℃の溶融亜鉛めっ
き浴中に1〜10分間浸漬して溶融亜鉛めっきを施すと
金属光沢のある素地との密着性に優れた亜鉛めっき層が
形成される。
The electroless nickel plating layer or electrolytic nickel plating layer obtained in this way has good adhesion to the new HT60 steel material, which is smooth and the base material. When hot-dip galvanizing is performed by immersing the product in a hot-dip galvanizing bath at 460° C. for 1 to 10 minutes, a galvanized layer with metallic luster and excellent adhesion to the substrate is formed.

本発明の物性的に強化された鋼材表面構造並びにその製
造方法は、高シリコン(Si)含有鋼、高張力鋼のバッ
チ式溶融亜鉛めっきに通用すると、従来のめっき条件と
同じ条件で実施しても、密着性の良好な亜鉛めっき被膜
を形成することができる。例えば、従来アルミニウム(
AI)0.002%、鉛(Pb) 1.00%、カドミ
ウム(Cd) 0.10%、鉄(Fe) 0.045%
を含有する440℃の亜鉛めっき浴では、Si含有量0
.2%の高張力鋼のめっき被膜の密着性は、めっき時間
の影響を太き(受け、5分以上のめっき時間では良好な
密着性を得ることは不可能であることが実験の結果から
判明している。ところが、本発明に於ける前処理によれ
ば0.02〜0.30%範囲のSt含有鋼、高張力鋼に
対してめっき時間が5分以上であっても密着性の良好な
めっき被膜を得ることができ、鋼種の変化に対しても品
質を安定させ且つ亜鉛付着量を減少させることができて
亜鉛の有効利用及びタレ発生の防止、またFe−Zn合
金によるヤケ発生の防止をすることができるものである
The physically strengthened steel surface structure and manufacturing method of the present invention can be applied to batch hot-dip galvanizing of high silicon (Si)-containing steel and high-strength steel, and can be carried out under the same conditions as conventional plating conditions. It is also possible to form a galvanized film with good adhesion. For example, conventional aluminum (
AI) 0.002%, lead (Pb) 1.00%, cadmium (Cd) 0.10%, iron (Fe) 0.045%
In a 440°C galvanizing bath containing Si, the Si content is 0.
.. The adhesion of the plating film on 2% high-strength steel is greatly affected by the plating time (experimental results have shown that it is impossible to obtain good adhesion with plating times of 5 minutes or more). However, according to the pretreatment in the present invention, good adhesion can be achieved for steel containing 0.02 to 0.30% St and high-strength steel even if the plating time is 5 minutes or more. It is possible to obtain a plain plating film, stabilize the quality even with changes in steel type, and reduce the amount of zinc deposited, making effective use of zinc and preventing sagging, as well as preventing discoloration caused by Fe-Zn alloys. It is something that can be prevented.

次に実施例によって本発明を更に詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

本発明を実施する鋼材としては、溶融亜鉛めっき層の密
着性等のめっき特性が特に悪い高張力鋼の鋼材(板厚1
2fl)を用いて行い、本発明の有効性を明らかにする
一例を示す。
The steel material to be used in the present invention is a high tensile steel material (plate thickness 1
2fl) to demonstrate the effectiveness of the present invention.

工程、1 鋼材を温度80℃の10%アルカリ溶液(カセイソーダ
士オルソケイ酸ソーダ、重量比1:1)ニ60分間浸漬
して脱脂した後、水洗し、次に温度50℃の12%硫酸
水溶液(酸洗抑制剤0.7%添加)に60分間浸漬する
ことによって錆を除去した。
Step 1: After degreasing the steel material by immersing it in a 10% alkaline solution (caustic soda orthosilicate, weight ratio 1:1) at a temperature of 80°C for 60 minutes, washing it with water, and then soaking it in a 12% aqueous sulfuric acid solution (caustic soda orthosilicate, weight ratio 1:1) at a temperature of 50°C. Rust was removed by immersing the sample in a solution (addition of 0.7% pickling inhibitor) for 60 minutes.

工程、 2a 水洗した後、硫酸ニッケル300g/C塩化ニッケル4
5g/ 42 、ホウ酸30g/ lを含むpH4(7
)電解液に浸漬し、めっき液温を25〜30℃に維持す
るとともに、6 V、 1.5 A/dm2(7)電流
密度で3〜30分間電解を行って鋼材表面に電気ニッケ
ルめっきを施して、膜厚1〜10μmのニッケルめっき
層を形成した。
Step 2a After washing with water, nickel sulfate 300g/C nickel chloride 4
pH 4 (7) containing 5 g/42, boric acid 30 g/l
) Electrolytic nickel plating is applied to the steel surface by immersing it in an electrolytic solution, maintaining the plating solution temperature at 25 to 30°C, and electrolyzing at a current density of 6 V and 1.5 A/dm2 (7) for 3 to 30 minutes. A nickel plating layer having a thickness of 1 to 10 μm was formed by applying the following steps.

工程、 2b 工程、1の表面処理を施し水洗した後、硫酸ニッケル3
0g/12.次亜燐酸ナトリウム10g/ It 、酢
酸ナトリウム10g/βを含有するpH5の無電解液に
浸漬し、めっき液温を80℃以上に維持し、3〜25分
間の無電解ニッケルめっきを施して、膜厚1〜10μm
のニッケルめっき層を形成した。
Step 2b After performing the surface treatment of Step 1 and washing with water, nickel sulfate 3
0g/12. The film was immersed in an electroless solution of pH 5 containing 10 g/It of sodium hypophosphite and 10 g/β of sodium acetate, maintained at a plating solution temperature of 80°C or higher, and subjected to electroless nickel plating for 3 to 25 minutes. Thickness 1-10μm
A nickel plating layer was formed.

工程、3 水洗後、温度50℃の30%フラックス溶液(塩化亜鉛
+塩化アンモニウム、モル比1:3)に数秒間浸漬し、
フラックス処理を施し、数分間風乾を行った。
Step 3 After washing with water, immerse it in a 30% flux solution (zinc chloride + ammonium chloride, molar ratio 1:3) at a temperature of 50°C for a few seconds,
Flux treatment was performed and air drying was performed for several minutes.

工程、4 鋼製めっき槽に蒸留亜鉛1種を熔解し、第1表に示す組
成に調整しためっき浴中に浸漬した。
Step 4 One type of distilled zinc was melted in a steel plating bath, and the solution was immersed in a plating bath whose composition was adjusted to the composition shown in Table 1.

めっき温度は440−460℃、浸漬時間は5〜10分
であり、めっき操作は浴面上のアンシュを除去した後に
鋼板を浸漬し、所定の時間経過後、再び浴面上のアッシ
ュを除去し、鋼材を約2…/分の速度で引上げ、そのま
ま1分間大気中で放冷した後水冷した。
The plating temperature is 440-460℃, and the immersion time is 5 to 10 minutes.The plating operation involves removing the ansh on the bath surface, immersing the steel plate, and after a predetermined period of time, removing the ash on the bath surface again. The steel material was pulled up at a speed of about 2.../min, left to cool in the atmosphere for 1 minute, and then water-cooled.

以上のように、鋼材表面に電気めっき又は無電解めっき
を施して膜厚1〜10μmのニッケルめっき層を形成し
た後、熔融亜鉛めっきを施し、常温まで冷却した鋼材を
ハンマー試験機(JISHO401に準拠)で表裏各1
0点(4嘗輪間隔)ずつたたき剥離の有無で密着性の良
否を判定するとともに、溶融亜鉛めっき層の膜厚は電磁
微厚計で表裏各6点ずつ測定しその平均を求めて決定し
、更に溶融亜鉛めっきを施した鋼材の表面のヤケ及びタ
レの良否を外観観察により行った。
As described above, after applying electroplating or electroless plating to the surface of the steel material to form a nickel plating layer with a film thickness of 1 to 10 μm, molten galvanizing was applied, and the steel material was cooled to room temperature using a hammer tester (based on JISHO401). ) for each side
The adhesion is determined by tapping at 0 points (at intervals of 4 rings) and the presence or absence of peeling, and the thickness of the hot-dip galvanized layer is determined by measuring 6 points each on the front and back using an electromagnetic micro-thickness meter and calculating the average of the results. Furthermore, the appearance of the hot-dip galvanized steel was examined to determine whether the surface was discolored or sagging.

第1図(al中、1は鋼材、2はニッケルめっき層、3
は溶融亜鉛めっき層である。洗浄前処理をした鋼材1に
、10μm以下の種々の膜厚でニッケルめっき1it2
を形成し、溶融亜鉛めっき浴の温度を通常のめっき温度
、即ち440℃、450℃、460℃に設定し、めっき
時間を5分、7分、10分として熔融亜鉛めっきを施し
た実験結果を第2図及び第3図に示している。第2図に
示したものは、電気ニッケルめっきを施した鋼材1に、
熔融亜鉛めっきを施したもので、ニッケルめっきN2の
膜厚(μm)を横軸、溶融亜鉛めっき層3の膜厚(μm
)を縦軸にとり、溶融亜鉛めっきN3の膜厚に対するニ
ッケルめっき層2の膜厚、めっき時間及びめっき温度の
及ぼす要因効果を示したグラフであり、同時に白抜き丸
で溶融亜鉛めっきii3の密着性の良好なものを示して
いる。第3図に示したものは、無電解ニッケルめっきを
施した鋼材lに熔融亜鉛めっきを施したもので、第2図
と同様な実験結果を示したグラフである。
Figure 1 (in al, 1 is steel, 2 is nickel plating layer, 3 is
is a hot-dip galvanized layer. Nickel plating 1it2 with various film thicknesses of 10 μm or less is applied to steel material 1 that has been pre-cleaned.
The experimental results are as follows: This is shown in FIGS. 2 and 3. What is shown in Fig. 2 is a steel material 1 that has been electro-nickel plated.
The horizontal axis represents the film thickness (μm) of nickel plating N2, and the film thickness (μm) of the hot-dip galvanized layer 3.
) is a graph showing the factorial effects of the thickness of nickel plating layer 2, plating time, and plating temperature on the film thickness of hot-dip galvanizing N3, and at the same time, the open circles indicate the adhesion of hot-dip galvanizing II3. It shows good things. What is shown in FIG. 3 is a graph showing the same experimental results as in FIG. 2, in which a steel material l which has been subjected to electroless nickel plating is subjected to melt-dip galvanizing.

上記の実験結果より定性的にわかったことは、鋼材1の
表面にニッケルめっき層2を形成していない状態(08
m)からニッケルめっき層2の膜厚を徐々に増加させた
場合、あるニッケルめっき層2の膜厚(電気ニッケルめ
っきでは1〜2μm1無電解ニツケルめっきでは2〜4
μm)で溶融亜鉛めっきN3の膜厚は極大になり、その
後ニッケルめっき層2の膜厚の増加に伴って急激に減少
し、例えばニッケルめっき層2の膜厚が8μm程度では
、ニッケルめっきwI2を形成しないものと比較して溶
融亜鉛めっき層3の膜厚は1/2〜1/3に減少してい
る。また、熔融亜鉛めっきW2Bの密着性の良好なもの
(白抜き丸)は、該溶融亜鉛めっき層3の膜厚が略15
0μm以下の領域に分布している。更に、めっき時間を
長くすれば当然であるが溶融亜鉛めっきIW3の膜厚は
増加し、更にめっき温度を増加させれば、熔融亜鉛の粘
性が低下し鋼材1を引き上げた時の流れが良くなるので
熔融亜鉛めっき層3の膜厚は減少する傾向にある。以上
のように、ニッケルめっきN2は熔融亜鉛めっきN13
の付着過多を防止するとともに、物性的に脆いFe −
Zn合金の発生を防止してめっき表面のヤケの発生を防
止するものである。
What was qualitatively revealed from the above experimental results is that the nickel plating layer 2 is not formed on the surface of the steel material 1 (08
m) When the film thickness of the nickel plating layer 2 is gradually increased from
The film thickness of hot-dip galvanizing N3 reaches a maximum at 8 μm), and then rapidly decreases as the thickness of nickel plating layer 2 increases. For example, when the thickness of nickel plating layer 2 is about 8 μm, The thickness of the hot-dip galvanized layer 3 is reduced to 1/2 to 1/3 compared to that without the galvanized layer 3. In addition, for the hot-dip galvanized layer 3 with good adhesion (white circles), the film thickness of the hot-dip galvanized layer 3 is approximately 15 mm.
It is distributed in a region of 0 μm or less. Furthermore, if the plating time is increased, the film thickness of the hot-dip galvanized IW3 will naturally increase, and if the plating temperature is further increased, the viscosity of the molten zinc will decrease and the flow will improve when the steel material 1 is pulled up. Therefore, the thickness of the molten galvanized layer 3 tends to decrease. As mentioned above, nickel plating N2 is molten galvanizing N13
In addition to preventing excessive adhesion of Fe −
This prevents the generation of Zn alloy and prevents the occurrence of discoloration on the plating surface.

本発明に於けるニッケルめっき層2を形成して熔融亜鉛
めっきの付着過多を防止し、鋼材1を組成する鉄の拡散
を抑制してヤケの発生を防止する効果が期待できるニッ
ケルめっき層2の膜厚の下限は、電気ニッケルめっきの
場合は溶融亜鉛めっきN3の膜厚が極大になる1〜2μ
m、無電解ニッケルめっきの場合には2〜4μmであり
、上限は特に限定されないが、10μm程度あれば十分
に効果が期待でき、逆に10μm以上の膜厚でニッケル
めっきFf2を形成すれば溶融亜鉛めっき層3の膜厚が
極端に減少し、所定の膜厚を形成する為には長時間の熔
融亜鉛めっきが必要となり経済性、作業性に於いて実用
的でなくなる。そして、溶融亜鉛めっき層3の膜厚は、
約150μm以下の場合で密着性の良好な結果が得られ
ており、それ以上膜厚を増加させれば、該溶融亜鉛めっ
きN3の剥離が発生するとともに、亜鉛の消費量が増加
するだけで資源の有効利用が図れない。尚、溶融亜鉛め
っき層3の膜厚の下限は日本工業規格(JISH864
1)で規定されている最も厳しい条件である膜厚78μ
m (550g / rrr)に設定できるものである
The nickel plating layer 2 of the present invention is expected to have the effect of forming the nickel plating layer 2 to prevent excessive adhesion of molten galvanizing, suppressing the diffusion of iron that composes the steel material 1, and preventing the occurrence of discoloration. In the case of electrolytic nickel plating, the lower limit of the film thickness is 1 to 2 μm, where the film thickness of hot-dip galvanized N3 is maximum.
m, in the case of electroless nickel plating, it is 2 to 4 μm, and the upper limit is not particularly limited, but a sufficient effect can be expected if it is about 10 μm, and conversely, if the nickel plating Ff2 is formed with a film thickness of 10 μm or more, it will melt. The film thickness of the galvanized layer 3 is extremely reduced, and in order to form a predetermined film thickness, long-time molten galvanizing is required, making it impractical in terms of economy and workability. The thickness of the hot-dip galvanized layer 3 is
Good adhesion results have been obtained when the film thickness is approximately 150 μm or less, and if the film thickness is increased beyond that, peeling of the hot-dip galvanized N3 will occur, and the amount of zinc consumed will only increase, reducing resource consumption. cannot be used effectively. The lower limit of the film thickness of the hot-dip galvanized layer 3 is determined by Japanese Industrial Standards (JISH864).
The film thickness is 78μ, which is the strictest condition specified in 1).
m (550g/rrr).

溶融亜鉛めっきFw3の密着性は、ニッケルめっき層2
の膜厚が厚い程まためっき時間が短い程良好であり、こ
れはニッケルめっき層2を形成することにより鉄及び亜
鉛の拡散反応が抑制され、熔融亜鉛めっき層3の被膜中
の合金相の結晶状態、組成、大きさ、厚み等がニッケル
めっきii2を形成してないものと異なるためであるが
、溶融亜鉛めっきのめっき時間が長くなるとニッケルめ
っき層2あるいはニッケル合金層が熔融亜鉛めっき層3
あるいは溶融亜鉛浴中に溶出して薄くなり、鉄と亜鉛の
拡散を防止することができなくなって、ニッケルめっき
層2を形成してないものと同様のFe −Zn合金相が
形成されるため密着性が悪くなる恐れがある。
The adhesion of hot-dip galvanizing Fw3 is the same as that of nickel plating layer 2.
The thicker the film thickness is, the shorter the plating time is, the better.This is because the diffusion reaction of iron and zinc is suppressed by forming the nickel plating layer 2, and the crystals of the alloy phase in the coating of the molten galvanized layer 3 are suppressed. This is because the state, composition, size, thickness, etc. are different from those without nickel plating II2, but if the plating time of hot dip galvanizing becomes longer, the nickel plating layer 2 or nickel alloy layer will become hot dip galvanized layer 3.
Or, it dissolves into the hot-dip zinc bath and becomes thinner, making it impossible to prevent the diffusion of iron and zinc, resulting in the formation of an Fe-Zn alloy phase similar to that without the nickel plating layer 2, resulting in the adhesion. There is a risk of sexual deterioration.

また、ニッケルめっき屓2及び熔融亜鉛めっき層3は、
第1図fa)に簡略化して示したような単純な単−屓を
形成してなく、鋼材1の素地上の所々でニッケルめっき
層2が溶出又はニッケル合金相を形成して欠落した状態
になっている。鋼材1表面のめっき層断面の顕微鏡写真
及びめっき層重直方向のX線による線分析によれば、第
1図(b)の如く鋼材1の表面にニッケルめっき層2が
溶出せず存在する部分では、鋼材1素地上に約10μm
の厚さでNt−Fe−Zn合金相が存在し、10〜20
μmではNi−ZnあるいはNi−Fe−Zn合金の微
細な合金相が存在し、30μm以内では合金1’ji2
’が形成され、30μm以上ではFeの含有量は少なく
、Nlを含む熔融亜鉛めっきii3’が形成されている
。一方、ニッケルめっきFi2が溶出して存在しない部
分では、鋼材1素地上ではFe −Zn合金相が存在し
、それより上の25〜35μm付近ではFe−Ni−Z
n合金相が存在し、35μm以内では合金[2’が形成
され、35μm以上ではFeの含有量が少ない溶融亜鉛
めっきFit3’が形成されている。
In addition, the nickel plating layer 2 and the molten galvanizing layer 3 are
The nickel plating layer 2 does not form a simple layer as shown in Fig. 1fa), but the nickel plating layer 2 is eluted or forms a nickel alloy phase and is missing in some places on the base of the steel material 1. It has become. According to a micrograph of a cross-section of the plating layer on the surface of the steel material 1 and an X-ray analysis in the direction perpendicular to the plating layer, as shown in FIG. Then, about 10μm on one steel material
Nt-Fe-Zn alloy phase exists with a thickness of 10-20
A fine alloy phase of Ni-Zn or Ni-Fe-Zn alloy exists within 30 μm, and alloy 1'ji2 exists within 30 μm.
' is formed, and when the thickness is 30 μm or more, the content of Fe is small, and hot-dip galvanizing ii3' containing Nl is formed. On the other hand, in the part where nickel plating Fi2 is eluted and does not exist, a Fe-Zn alloy phase exists on the steel material 1 base material, and in the vicinity of 25 to 35 μm above it, Fe-Ni-Z
An n-alloy phase exists, and alloy [2' is formed within 35 μm, and hot-dip galvanized Fit3' with a low Fe content is formed above 35 μm.

更に、本発明のニッケルめっき層2を前処理により形成
した熔融亜鉛めっき層3の耐蝕性にいっては、Nf−Z
n系合金はZn単体と比較して5〜lO倍も塩水に対す
る耐蝕性があるとされているので、高耐蝕性を有し優れ
たものである。
Furthermore, regarding the corrosion resistance of the molten galvanized layer 3 formed by pre-treating the nickel plating layer 2 of the present invention, Nf-Z
N-based alloys are said to have 5 to 10 times more corrosion resistance against salt water than Zn alone, so they have excellent corrosion resistance.

尚、本実施例では、鋼材1の表面にニッケルめっきN2
を形成したが、コバルト層を形成しても同様な効果を期
待できるが、ニッケルと比較して高価であるので、鉄塔
、橋梁及び建築構造物等の大型鋼材1に関しては、ニッ
ケル層が経済的である。
In this example, nickel plating N2 is applied to the surface of the steel material 1.
Although similar effects can be expected by forming a cobalt layer, it is more expensive than nickel, so a nickel layer is not economical for large steel materials such as steel towers, bridges, and building structures. It is.

〔発明の効果〕〔Effect of the invention〕

以上にしてなる本発明の物性的に強化された鋼材表面構
造並びにその製造方法によれば、鋼材表面に無電解めっ
き又は電気めっきによってニッケル層又はコバルト層を
形成する前処理を施した後に、溶融亜鉛めっき又は電気
亜鉛めっき又は金属亜鉛溶射を施して亜鉛層を形成して
なるので、シリコンキルド鋼及び高張力鋼等の溶融亜鉛
めっき被膜の付着過多、ヤケの防止及び密着性を良好に
するために、従来はめっき温度を430〜440℃に低
下させ、めっき浴中で製品を揺動させることにより熱伝
導を良くし、亜鉛の熔解を助けめっき時間の短縮を図っ
ていたが、めっき温度が440〜464゜0℃に於ける
めっきに比べると長時間を要するとともに、めっき温度
の低下は熔融亜鉛の粘性の上昇につながって引き上げ時
にタレが発生しやすく、外観を損ねるという欠点があり
、また低温めっきを行っても大型構造物の構成部材とし
て使用されている高張力鋼はめっき浴に浸漬している時
間が長くなるため、めっき被膜の剥離、付着量過多を抑
えることはできなかったが、本発明によればめっき温度
を440〜460℃の通常のめっき条件に設定してもニ
ッケル又はコバルトめっき層の膜厚を調整することによ
り、付着量過多が発生せず、亜鉛の有効利用を図ること
ができ、タレも発生し難く、またニッケルあるいはコバ
ルト層により物性的に脆いFe −Zn合金の発生を抑
制し、めっき被膜と鋼材との密着性を良(するとともに
、ヤケの発生を防止して外観的にも優れた亜鉛層を形成
することができ、鉄塔、橋梁及び建築構造物等の大型鋼
材、特に高張力鋼にも良好な密着性とヤケやタレの少な
い優れた外観を有するものである。
According to the physically strengthened steel material surface structure and the manufacturing method thereof of the present invention as described above, after performing pretreatment to form a nickel layer or cobalt layer on the steel material surface by electroless plating or electroplating, Since the zinc layer is formed by galvanizing, electrolytic galvanizing, or metallic zinc spraying, it is possible to prevent excessive adhesion and fading of hot-dip galvanized coatings such as silicon-killed steel and high-strength steel, and to improve adhesion. Conventionally, the plating temperature was lowered to 430-440°C and the product was rocked in the plating bath to improve heat conduction and help melt the zinc and shorten the plating time. Compared to plating at 440-464° 0°C, it takes a long time, and a drop in the plating temperature leads to an increase in the viscosity of the molten zinc, which tends to cause sagging during pulling, which impairs the appearance. Even with low-temperature plating, high-strength steel used as structural members of large structures is immersed in the plating bath for a long time, so it has not been possible to prevent the peeling of the plating film or excessive adhesion. According to the present invention, even if the plating temperature is set to the normal plating conditions of 440 to 460°C, by adjusting the thickness of the nickel or cobalt plating layer, excessive deposition does not occur and the effective use of zinc is achieved. The nickel or cobalt layer suppresses the formation of physically brittle Fe-Zn alloys, improves the adhesion between the plating film and the steel material (and prevents the occurrence of discoloration). It can form a zinc layer with excellent appearance, and has good adhesion to large steel materials such as steel towers, bridges, and building structures, especially high-strength steel, and has an excellent appearance with little fading or sagging. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1alは本発明の鋼材と熔融亜鉛めっき層との間
にニッケル又はコバルト層を形成した鋼材表面部分の簡
略断面図、第1rf!J(blは第1図(alをより実
物に近い状態で示した簡略断面図、第2図は鋼材の素地
上に電気めっきにより各種膜厚のニッケルめっき層を形
成した後、溶融亜鉛めっきをめっき条件を変えて行った
場合のニッケルめっき層の膜厚に対する溶融亜鉛めっき
層の膜厚の関係及び密着性の良否を示したグラフ、第3
図は第2図と同様のグラフで無電解めっきによりニッケ
ルめっき層を形成した場合のグラフである。 l:鋼材、2;ニッケルめっき層、 2′二合金層、3:溶融亜鉛めっき層、3′:溶融亜鉛
めっき層。 特許出願人   田中亜鉛鍍金株式会社第2図
FIG. 1 1al is a simplified cross-sectional view of the surface portion of the steel material in which a nickel or cobalt layer is formed between the steel material of the present invention and the molten galvanized layer, 1st rf! J (bl is a simplified cross-sectional view showing a state closer to the actual state in Figure 1 (al), Figure 2 is a simplified cross-sectional view showing a state closer to the actual product, and Figure 2 is a nickel plating layer of various thicknesses formed by electroplating on a steel base material, followed by hot-dip galvanizing. Graph showing the relationship between the thickness of the nickel plating layer and the thickness of the hot dip galvanized layer and the quality of adhesion when plating was performed under different plating conditions, Part 3
This figure is a graph similar to that of FIG. 2, in which a nickel plating layer is formed by electroless plating. 1: steel material, 2: nickel plating layer, 2' second alloy layer, 3: hot dip galvanizing layer, 3': hot dip galvanizing layer. Patent applicant: Tanaka Zinc Plating Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】 1)鋼材表面にニッケル層又はコバルト層を形成し、更
にその表面に亜鉛層を形成したことを特徴とする物性的
に強化された鋼材表面構造。 2)前記ニッケル層又はコバルト層の膜厚を1〜10μ
mとしてなる特許請求の範囲第1項記載の物性的に強化
された鋼材表面構造。 3)前記亜鉛層の膜厚を150μm以下としてなる特許
請求の範囲第1項又は第2項記載の物性的に強化された
鋼材表面構造。 4)鋼材表面に無電解めっき又は電気めっきによってニ
ッケル層又はコバルト層を形成する前処理を施した後に
、溶融亜鉛めっき又は電気亜鉛めっき又は金属亜鉛溶射
を施して亜鉛層を形成してなることを特徴とする物性的
に強化された鋼材表面構造の製造方法。 5)前記ニッケル層又はコバルト層のめっき厚を1〜1
0μmとしてなる特許請求の範囲第4項記載の物性的に
強化された鋼材表面構造の製造方法。 6)前記亜鉛層の膜厚を150μm以下としてなる特許
請求の範囲第4項又は第5項記載の物性的に強化された
鋼材表面構造の製造方法。
[Scope of Claims] 1) A physically reinforced steel surface structure, characterized in that a nickel layer or a cobalt layer is formed on the surface of the steel material, and a zinc layer is further formed on the surface of the steel material. 2) The thickness of the nickel layer or cobalt layer is 1 to 10 μm.
The physically reinforced steel surface structure according to claim 1, wherein the surface structure is as m. 3) A physically reinforced steel surface structure according to claim 1 or 2, wherein the zinc layer has a thickness of 150 μm or less. 4) Pre-treatment to form a nickel layer or cobalt layer on the surface of the steel material by electroless plating or electroplating, and then hot-dip galvanizing, electrogalvanizing, or metallic zinc spraying to form a zinc layer. A method for manufacturing a physically reinforced steel surface structure. 5) The plating thickness of the nickel layer or cobalt layer is 1 to 1
5. The method for manufacturing a physically reinforced steel surface structure according to claim 4, wherein the surface structure is 0 μm. 6) The method for manufacturing a physically strengthened steel surface structure according to claim 4 or 5, wherein the zinc layer has a thickness of 150 μm or less.
JP13599587A 1987-05-29 1987-05-29 Surface structure of steel material strengthened in physical property and its production Expired - Lifetime JPS63297577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13599587A JPS63297577A (en) 1987-05-29 1987-05-29 Surface structure of steel material strengthened in physical property and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13599587A JPS63297577A (en) 1987-05-29 1987-05-29 Surface structure of steel material strengthened in physical property and its production

Publications (1)

Publication Number Publication Date
JPS63297577A true JPS63297577A (en) 1988-12-05

Family

ID=15164732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13599587A Expired - Lifetime JPS63297577A (en) 1987-05-29 1987-05-29 Surface structure of steel material strengthened in physical property and its production

Country Status (1)

Country Link
JP (1) JPS63297577A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209108A (en) * 1996-02-01 1997-08-12 Nippon Steel Corp Dip plating method for steel worked product
JP2006188724A (en) * 2005-01-04 2006-07-20 Nippon Steel Corp Flux composition for hot dip coating zn-al-mg alloy, and method for manufacturing hot dip zn-al-mg alloy coated steel using the same
JP2011236455A (en) * 2010-05-07 2011-11-24 Nippon Steel Corp Galvannealed steel alloy, and method for manufacturing the same
CN107686955A (en) * 2017-08-07 2018-02-13 北京钢研新冶工程设计有限公司 A kind of high-strength steel and its galvanized method
CN108796568A (en) * 2017-05-02 2018-11-13 贵州理工学院 The method and device of high-silicon steel thin strip is prepared under a kind of low-intensity magnetic fields

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776176A (en) * 1980-10-28 1982-05-13 Nippon Steel Corp Manufacture of high preformance hot-galvanized steel plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776176A (en) * 1980-10-28 1982-05-13 Nippon Steel Corp Manufacture of high preformance hot-galvanized steel plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209108A (en) * 1996-02-01 1997-08-12 Nippon Steel Corp Dip plating method for steel worked product
JP2006188724A (en) * 2005-01-04 2006-07-20 Nippon Steel Corp Flux composition for hot dip coating zn-al-mg alloy, and method for manufacturing hot dip zn-al-mg alloy coated steel using the same
JP4564361B2 (en) * 2005-01-04 2010-10-20 新日本製鐵株式会社 Flux composition for hot dip Zn-Al-Mg alloy plating and method for producing hot dip Zn-Al-Mg alloy plating steel using the same
JP2011236455A (en) * 2010-05-07 2011-11-24 Nippon Steel Corp Galvannealed steel alloy, and method for manufacturing the same
CN108796568A (en) * 2017-05-02 2018-11-13 贵州理工学院 The method and device of high-silicon steel thin strip is prepared under a kind of low-intensity magnetic fields
CN107686955A (en) * 2017-08-07 2018-02-13 北京钢研新冶工程设计有限公司 A kind of high-strength steel and its galvanized method

Similar Documents

Publication Publication Date Title
JP2777571B2 (en) Aluminum-zinc-silicon alloy plating coating and method for producing the same
JP3476408B2 (en) Hot-dip Zn-Mg-Al alloy-plated steel wire and method for producing the same
JPH0419299B2 (en)
JPS63297577A (en) Surface structure of steel material strengthened in physical property and its production
JPH0753901B2 (en) Hot dip galvanizing method
JPH03281788A (en) Production of zn-al alloy plated steel wire
JPS6138259B2 (en)
KR970000190B1 (en) Method for producing zinc coated steel sheet
JPH05148604A (en) Manufacture of galvanized steel sheet
JP2003064493A (en) Electrogalvanized steel sheet having excellent appearance
JPS634635B2 (en)
JP2783457B2 (en) Manufacturing method of hot-dip Zn-Al plated steel sheet
JP7290757B2 (en) Plated steel wire and its manufacturing method
JPH04214848A (en) Hot-dip galvanized coating material and method for hot-dip galvanizing
JPH05171389A (en) Manufacture of galvanized steel sheet
JPH04224666A (en) Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance
JP3322662B2 (en) Hot-dip zinc-aluminum alloy plating coating
JP4166412B2 (en) Method for producing hot-dip galvanized steel sheet
KR20050050174A (en) The process for high strength and high tensile steel sheet with good phosphate coating and painting properties
JPH04160143A (en) Hot dip zn-al alloy two-steps plating method
JP3643473B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
JP2754590B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JPH04246158A (en) Manufacture of alloy plated steel wire having excellent surface characteristic and corrosion resistance
JP2727597B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same
JP2001262307A (en) HOT DIP An-Mg-Al ALLOY METHOD

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term