JPS63294928A - Device for controlling wet exhaust gas desulfurizer - Google Patents

Device for controlling wet exhaust gas desulfurizer

Info

Publication number
JPS63294928A
JPS63294928A JP62127018A JP12701887A JPS63294928A JP S63294928 A JPS63294928 A JP S63294928A JP 62127018 A JP62127018 A JP 62127018A JP 12701887 A JP12701887 A JP 12701887A JP S63294928 A JPS63294928 A JP S63294928A
Authority
JP
Japan
Prior art keywords
liq
absorbent
absorption
slurry
absorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62127018A
Other languages
Japanese (ja)
Inventor
Hajime Furubayashi
肇 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62127018A priority Critical patent/JPS63294928A/en
Publication of JPS63294928A publication Critical patent/JPS63294928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To obtain a high oxidation rate even when the load of a boiler is changed by providing a specified pipeline for supplying a liq. absorbent slurry to a circulating tank at the dust collecting part from a liq. absorbent slurry tank, and respectively furnishing a means capable of supplying the liq. absorbent slurry to the circulating tank at the dust collecting part from the pipeline and a means capable of supplying the liq. absorbent slurry to a circulating tank at the absorption part from the liq. absorbent slurry tank. CONSTITUTION:In the wet exhaust gas desulfurizer, an auxiliary supply pipe 20 for the liq. absorbent slurry, a liq. absorbent slurry flow control valve 3 at the dust collecting part for controlling the supply of the liq. absorbent slurry, and a liq. absorbent slurry flow rate detector 30 at the dust collecting part are provided. As a result, a fresh liq. absorbent can be supplied to the circulating tank 9 at the dust collecting part from a liq. absorbent tank 14. Accordingly, the pH of the liq. absorbent in the circulating tank at the dust collecting part is stabilized, and the oxidation rate is not lowered. In addition, the liq. absorbent slurry flow control valve 48 at the absorption part for supplying the liq. absorbent to a circulating tank 19 at the absorption part and a liq. absorbent slurry flow rate detector 45 at the absorption part are provided. Consequently, the supply of the liq. absorbent is controlled, and a specified desulfurization rate can be maintained.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は湿式排煙脱硫装置に係り、特に負荷変動に対応
して吸収液スラリを供給することができる湿式排煙脱硫
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to a wet flue gas desulfurization system, and particularly relates to a wet flue gas desulfurization system that can supply absorbent slurry in response to load fluctuations. be.

(2)従来の技術 従来の湿式排煙脱硫装置の吸収液スラリの供給は第5図
において吸収液スラリタンク14から吸収液スラリポン
プ15、吸収液スラリ供給配管16により吸収部循環タ
ンク19へ吸収液スラリを供給し、一方吸収部循環タン
ク19内のスラリの一部を吸収部循環ポンプ17で抜出
し、吸収部5に供給し、排ガスと気液接触させながら吸
収部(塔)5内を落下し、コレクタ4で捕集し下降管4
9を通って吸収部循環タンク19に戻し循環させること
によって行われる。また吸収液スラリの一部は吸収部循
環タンク19への吸収液スラリ供給量に見合って導管1
8に依り、除塵部循環タンク9に抜出される。また除塵
部循環タンク9には空気供給配管10を設置し、空気を
吸い込むことに依り、亜硫酸塩を酸化し石膏13とする
(2) Prior Art Absorbent slurry in a conventional wet flue gas desulfurization system is supplied from an absorbent slurry tank 14 to an absorbent circulation tank 19 through an absorbent slurry pump 15 and an absorbent slurry supply pipe 16 in FIG. A liquid slurry is supplied, and on the other hand, a part of the slurry in the absorption section circulation tank 19 is extracted by the absorption section circulation pump 17, supplied to the absorption section 5, and dropped inside the absorption section (tower) 5 while bringing it into gas-liquid contact with the exhaust gas. is collected by the collector 4 and sent to the downcomer pipe 4.
9 and returns to the absorption section circulation tank 19 for circulation. In addition, a portion of the absorption liquid slurry is transferred to the conduit 1 according to the amount of absorption liquid slurry supplied to the absorption section circulation tank 19.
8, it is extracted to the dust removal section circulation tank 9. Further, an air supply pipe 10 is installed in the dust removal section circulation tank 9, and sulfite is oxidized to gypsum 13 by sucking in air.

しかし除塵部循環タンク9に空気を吸い込み酸化させる
工程において高い酸化率を得るためには、除塵部循環タ
ンク9内のスラリ液をある所定のPHに維持する必要が
あるが、第5図の従来のものにおいては吸収液スラリの
供給は、吸収部循環タンク19、導管18、除塵部循環
タンク9へと供給されるために時間遅れがあり、吸収部
5で既にSoxと反応しているためにPHが下がり、反
応性に乏しくボイラ負荷変化特等脱硫装置入口のSOに
濃度が変化した際、除塵部循環タンク9内のスラリ液O
PH値が変動し、酸化率も不安定なものとなる。すなわ
ち、安定した高い酸化率を得る運転方法については配慮
されていなかった。
However, in order to obtain a high oxidation rate in the step of sucking air into the dust removal section circulation tank 9 and oxidizing it, it is necessary to maintain the slurry liquid in the dust removal section circulation tank 9 at a certain pH. In this case, there is a time delay in supplying the absorption liquid slurry to the absorption section circulation tank 19, the conduit 18, and the dust removing section circulation tank 9, and because it has already reacted with Sox in the absorption section 5. When the pH decreases and the concentration of SO at the inlet of the desulfurization equipment changes due to poor reactivity and boiler load changes, the slurry liquid O in the dust removal section circulation tank 9 changes.
The pH value fluctuates and the oxidation rate becomes unstable. That is, no consideration was given to an operating method for obtaining a stable and high oxidation rate.

尚、1は脱硫ファン、2は煙道、3は除塵部、11は遠
心分離機、12はシラフナである。
In addition, 1 is a desulfurization fan, 2 is a flue, 3 is a dust removal part, 11 is a centrifugal separator, and 12 is Shirafuna.

(3)発明が解決しようとする問題点 上記従来技術はボイラ負荷変動時の脱硫装置人口S O
x濃度変化による酸化率への影響が配慮されておらず、
安定した高い酸化性能が得られないという問題があった
(3) Problems to be solved by the invention The above-mentioned conventional technology is designed to solve the problem of desulfurization equipment population S O during boiler load fluctuations.
The effect of changes in x concentration on the oxidation rate is not taken into account,
There was a problem that stable and high oxidation performance could not be obtained.

本発明の目的は吸収部循環タンク及び除塵部循環タンク
ヘフレツシュな吸収液スラリを供給し、ボイラ側の負荷
が変動しても高い酸化率と脱硫率を得ることの出来る制
御装置を提供することにある。
An object of the present invention is to provide a control device that supplies fresh absorption liquid slurry to an absorption section circulation tank and a dust removal section circulation tank, and can obtain a high oxidation rate and desulfurization rate even if the load on the boiler side changes. There is a particular thing.

(4)問題点を解決するための手段 上記目的は、除塵部循環タンク9ヘフレッシュな吸収液
スラリを供給する吸収液スラリ副供給管20、及びこの
吸収液スラリの供給量を制御するための除塵部吸収液ス
ラリ流量調節弁33、除塵部吸収液スラリ流量検出器3
0と、吸収部循環タンク19へ吸収液スラリを供給する
ための吸収部吸収液スラリ流量調節弁48、吸収部吸収
液スラリ流量検出器45を設けることにより、達成され
る。
(4) Means for solving the problem The above purpose is to provide an absorption liquid slurry sub-supply pipe 20 for supplying fresh absorption liquid slurry to the dust removal section circulation tank 9, and a system for controlling the supply amount of this absorption liquid slurry. Dust removing section absorption liquid slurry flow rate control valve 33, dust removal section absorption liquid slurry flow rate detector 3
This is achieved by providing an absorbent absorbent slurry flow rate control valve 48 for supplying the absorbent slurry to the absorbent circulation tank 19 and an absorbent absorbent slurry flow rate detector 45.

(5)作用 吸収液スラリ副供給管20及び除塵部吸収液スラリ流量
検出器30、除塵部吸収液スラリ流量調節弁33により
吸収液スラリタンク14からのフレッシュな吸収液を除
塵部循環タンク9に供給する。それによって除塵部循環
タンク9内の吸収液のPHは安定し酸化率が低下するこ
とは無い。また除塵部循環タンク9とは別に吸収部循環
タンク19への吸収液スラリは吸収部吸収液スラリ流量
調節弁48、吸収部吸収液スラリ流量検出器45によっ
て供給量が制御されるので所定の脱硫率を維持すること
が出来る。
(5) Effect Fresh absorption liquid from the absorption liquid slurry tank 14 is transferred to the dust removal part circulation tank 9 by the absorption liquid slurry sub-supply pipe 20, the dust removal part absorption liquid slurry flow rate detector 30, and the dust removal part absorption liquid slurry flow rate adjustment valve 33. supply As a result, the pH of the absorption liquid in the dust removal section circulation tank 9 is stabilized, and the oxidation rate does not decrease. In addition to the dust removal section circulation tank 9, the supply amount of the absorption liquid slurry to the absorption section circulation tank 19 is controlled by an absorption section absorption liquid slurry flow rate control valve 48 and an absorption section absorption liquid slurry flow rate detector 45, so that the predetermined desulfurization is carried out. rate can be maintained.

(6)発明の実施例 第1図において、排ガスは脱硫ファン11煙道2から除
塵部3へ導かれ、除塵、冷却及び一部脱硫された後、コ
レクタ4の間を通り吸収部5へ導かれる。ここで排ガス
中の亜硫酸ガスは吸収液スラリと気液接触し、SOXが
吸収除去され、更にデミスタ6により同伴ミストが除去
された後、脱硫塔(吸収部)5の出ロアから排出される
(6) Embodiment of the invention In FIG. 1, exhaust gas is guided from the desulfurization fan 11 flue 2 to the dust removing section 3, where it is removed, cooled and partially desulfurized, and then passed between the collectors 4 and guided to the absorption section 5. It will be destroyed. Here, the sulfur dioxide gas in the exhaust gas comes into gas-liquid contact with the absorption liquid slurry, SOX is absorbed and removed, and entrained mist is further removed by the demister 6, after which it is discharged from the output lower of the desulfurization tower (absorption section) 5.

一方、吸収剤である吸収液スラリは吸収液スラリタンク
14から吸収液スラリポンプ15、吸収液スラリ供給配
管16、吸収液スラリ副供給配管20により吸収部循環
タンクI9、及び除塵部循環タンク9に独自に供給され
る。
On the other hand, the absorption liquid slurry, which is an absorbent, is transferred from the absorption liquid slurry tank 14 to the absorption part circulation tank I9 and the dust removal part circulation tank 9 via the absorption liquid slurry pump 15, the absorption liquid slurry supply pipe 16, and the absorption liquid slurry sub-supply pipe 20. Uniquely supplied.

吸収部循環タンク19内の吸収液スラリは、吸収部循環
ポンプ17により吸収部5に供給され、排ガスと気液接
触しながら塔(吸収部)5内を落下し、コレクタ4で捕
集され、下降管49を通って吸収部循環タンク19に戻
され循環して使用する。また吸収液スラリの一部は吸収
部循環タンク19への吸収液スラリ供給量に見合って導
管18により、除塵部循環タンク9に抜出される。一方
除塵部循環タンク9には吸収液スラリ副供給配管20に
よりフレッシュな吸収剤スラリか供給され、且つこの吸
収剤スラリが除塵部循環ポンプ8により除塵部3でスプ
レーされ排ガスと気液接触して、排ガスの冷却、除塵及
び一部脱硫が行われる。また除塵部循環タンク9には空
気配管10を設置し、空気を吸い込むことにより、亜硫
酸塩を酸化し石膏13とする。
The absorption liquid slurry in the absorption section circulation tank 19 is supplied to the absorption section 5 by the absorption section circulation pump 17, falls through the tower (absorption section) 5 while in gas-liquid contact with the exhaust gas, and is collected by the collector 4. It is returned to the absorption section circulation tank 19 through the downcomer pipe 49 and is used for circulation. Further, a portion of the absorption liquid slurry is drawn out to the dust removal section circulation tank 9 through the conduit 18 in proportion to the amount of absorption liquid slurry supplied to the absorption section circulation tank 19. On the other hand, fresh absorbent slurry is supplied to the dust removal section circulation tank 9 by the absorption liquid slurry sub-supply pipe 20, and this absorbent slurry is sprayed in the dust removal section 3 by the dust removal section circulation pump 8 and comes into gas-liquid contact with the exhaust gas. , exhaust gas is cooled, dust removed, and partially desulfurized. Further, an air pipe 10 is installed in the dust removal section circulation tank 9, and by sucking air, sulfite is oxidized to gypsum 13.

尚、除塵部3における脱硫率とPH,酸化率とPHの関
係を第3図、第4図を用いて説明する。
The relationship between the desulfurization rate and PH and the oxidation rate and PH in the dust removal section 3 will be explained using FIGS. 3 and 4.

第3図、第4図に示す様に、除塵部循環タンク9内のP
Hと脱硫率、酸化率とPHの関係は相反するものである
ために、高い脱硫率、酸化率で運転するためには除塵部
3のPHを5.0〜5.5付近で運転することが必要に
なってくる。しかし除塵部循環タンク9内で空気供給配
管10からの酸化用空気によって強制的に酸化を行うた
め除塵部循環タンク9内のスラリ中に亜硫酸カルシウム
は殆ど共存せず、PHは不安定となる。また石灰石粒子
の表面を覆うブラインデインク現象が無いため石灰石の
反応性は向上し、スラリ中のCa COsは殆ど亜硫酸
ガスに吸収される。その結果除塵部循環タンク9内のス
ラリ中にはCaCO3は殆ど無くなり、PHは低下する
ことになる。しかし本発明では吸収部5とは別に冷却部
3ヘフレッシュな吸収液スラリを吸収液スラリ副供給管
20から供給するため、PHを5.0〜5.5付近に安
定させ高い酸化率を得ることが出来る。また吸収部循環
タンク19へも吸収液スラリタンク14からの吸収液ス
ラリを吸収部吸収液スラリ流量調節弁4日、吸収部吸収
液スラリ流量検出器45で煙道2から入ってくる排ガス
中の総SO,lNに見合った供給量に制御するため吸収
部5での所定の脱硫率を得ることが出来る。
As shown in FIGS. 3 and 4, P inside the dust removal section circulation tank 9 is
Since the relationships between H, desulfurization rate, and oxidation rate and PH are contradictory, in order to operate at a high desulfurization rate and oxidation rate, the pH of the dust removal section 3 should be operated at around 5.0 to 5.5. becomes necessary. However, since oxidation is forcibly carried out in the dust removal section circulation tank 9 by the oxidizing air from the air supply pipe 10, almost no calcium sulfite coexists in the slurry in the dust removal section circulation tank 9, and the pH becomes unstable. Furthermore, since there is no blinding phenomenon covering the surface of limestone particles, the reactivity of limestone is improved, and most of the Ca COs in the slurry is absorbed by sulfur dioxide gas. As a result, there is almost no CaCO3 in the slurry in the dust removal section circulation tank 9, and the pH decreases. However, in the present invention, fresh absorption liquid slurry is supplied to the cooling unit 3 from the absorption liquid slurry sub-supply pipe 20 separately from the absorption unit 5, so that the pH is stabilized at around 5.0 to 5.5 and a high oxidation rate is obtained. I can do it. Also, the absorption liquid slurry from the absorption liquid slurry tank 14 is transferred to the absorption part circulation tank 19 by the absorption part absorption liquid slurry flow rate control valve 4, and the absorption part absorption liquid slurry flow rate detector 45 detects the absorption liquid slurry in the flue gas coming in from the flue 2. Since the supply amount is controlled to match the total SO and IN, a predetermined desulfurization rate in the absorption section 5 can be obtained.

次に本発明の制御系統を第2図について説明する。排ガ
ス流量検出器21と入口S Oを濃度検出器22からの
排ガス流量信号23とSO2濃度信号24を乗算器25
により乗算して、総SO,量信号26を求め、この総S
O,量信号26を関数発生器27により総S Oを量信
号26に対する除塵部吸収液スラリ流!調節計28のP
H設定信号29とし、除塵部吸収液スラリ流量検出器3
0からの吸収液スラリ流量検出信号31と比較し、比例
積分動作させた後、電空変換器32により空気信号に変
換し、吸収液スラリ副供給配管20の除塵部吸収液スラ
リ流量調節弁33を操作する0以上の回路により各負荷
で安定したPHが得られる様吸収液スラリか供給される
が、負荷変動等の外乱が入った場合、一時的にPHが変
動することを防ぐため除塵部循環タンクPH検出器34
からの実測信号を除塵部循環タンクpHlfl計35で
の設定信号と比較し、比例積分動作させた後この信号を
補正信号36として加算器37で加算し、除塵部吸収液
スラリ供給流量の設定信号29を修正する。つまり負荷
一定時等はPHの変動は殆ど無く安定しているため、加
算器37への補正信号36はゼロとなり、関数発生器2
7からの出力信号がそのままPH設定信号29となるが
、負荷変動時等には除塵部循環タンク9のPHが変動す
るため、加算器37へ補正信号36が入力され、PH設
定信号29が修正される。
Next, the control system of the present invention will be explained with reference to FIG. The exhaust gas flow rate detector 21 and the inlet SO are multiplied by the exhaust gas flow rate signal 23 from the concentration detector 22 and the SO2 concentration signal 24 in a multiplier 25.
The total SO, amount signal 26 is obtained by multiplying by
O, the amount signal 26 is converted to the total SO by the function generator 27, and the dust removal section absorption liquid slurry flow for the amount signal 26! Controller 28 P
The H setting signal is 29, and the dust removal section absorption liquid slurry flow rate detector 3
The absorption liquid slurry flow rate detection signal 31 is compared with the absorption liquid slurry flow rate detection signal 31 from 0, and after performing proportional integral operation, it is converted into an air signal by the electro-pneumatic converter 32, and the absorption liquid slurry flow rate adjustment valve 33 of the dust removal section of the absorption liquid slurry sub-supply piping 20 is Absorbing liquid slurry is supplied so that a stable pH can be obtained at each load by a circuit of 0 or more that operates the Circulation tank PH detector 34
The actual measurement signal from the dust removal section is compared with the setting signal of the pHlfl meter 35 in the circulation tank of the dust removal section, and after a proportional-integral operation is performed, this signal is added as a correction signal 36 in the adder 37, and the setting signal of the flow rate of the absorption liquid slurry supply to the dust removal section is obtained. Modify 29. In other words, when the load is constant, the PH is stable with almost no fluctuation, so the correction signal 36 to the adder 37 becomes zero, and the function generator 2
The output signal from 7 becomes the PH setting signal 29 as it is, but since the PH of the dust removal section circulation tank 9 fluctuates when the load fluctuates, the correction signal 36 is input to the adder 37, and the PH setting signal 29 is corrected. be done.

次に吸収部循環タンク19への吸収液スラリ供給方法に
ついて説明する。先に述べた総SO1信号26に対し関
数発生器38で吸収部循環タンク19のPHを設定し、
この設定信号と吸収部循環タンクPH検出器40の出力
信号との偏差を減算器41で求め、関数発生器39で設
定した総SO□信号に対する石灰石過剰率の設定過剰率
の設定値に対し先に求めた偏差を無くするための補正信
号とを加算器43で加算することにより石灰石過剰率補
正信号とする。この補正信号と総Sow信号とを乗算器
44で乗算することにより吸収部吸収液スラリ要求流量
を求め吸収部吸収液スラリ流量検出器45での出力信号
と比較し、吸収部吸収液スラリ流量調節計46で比例積
分動作させた後、電空変換器47により空気信号に変換
し、吸収液スラリ供給配管16の吸収部吸収液スラリ流
MEN節弁48を操作する。
Next, a method of supplying the absorption liquid slurry to the absorption section circulation tank 19 will be explained. Set the pH of the absorption section circulation tank 19 with the function generator 38 for the total SO1 signal 26 mentioned above,
The deviation between this set signal and the output signal of the absorption section circulation tank PH detector 40 is obtained by the subtractor 41, and the limestone excess rate is calculated based on the set value of the excess rate of limestone with respect to the total SO□ signal set by the function generator 39. An adder 43 adds the correction signal for eliminating the deviation found in the above to obtain a limestone excess rate correction signal. By multiplying this correction signal and the total Sow signal by the multiplier 44, the required flow rate of the absorption liquid slurry in the absorption part is obtained and compared with the output signal from the absorption part absorption liquid slurry flow rate detector 45, and the flow rate of the absorption liquid slurry in the absorption part is adjusted. After the proportional integral operation is carried out in the total 46, the signal is converted into an air signal by the electro-pneumatic converter 47, and the absorption part absorption liquid slurry flow MEN control valve 48 of the absorption liquid slurry supply piping 16 is operated.

(8)発明の効果 本発明によれば吸収液スラリタンクから除塵部循環タン
クへ吸収液スラリを供給する吸収液スラリ副供給管を設
けたのでボイラが負荷変動を行っても除塵部のPHを安
定させることが出来、高い酸化率を得られる効果がある
。また吸収液スラリタンクから吸収部循環タンクへ供給
する吸収液スラリ供給量を制御できるのでボイラが負荷
変動を行っても所定の脱硫率を得られる効果がある。
(8) Effects of the Invention According to the present invention, since an absorption liquid slurry sub-supply pipe is provided that supplies the absorption liquid slurry from the absorption liquid slurry tank to the dust removal section circulation tank, the pH of the dust removal section can be maintained even when the boiler load fluctuates. It can be stabilized and has the effect of obtaining a high oxidation rate. Furthermore, since the amount of absorption liquid slurry supplied from the absorption liquid slurry tank to the absorption section circulation tank can be controlled, there is an effect that a predetermined desulfurization rate can be obtained even if the load of the boiler changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る湿式排煙脱硫装置の概略
系統図、第2図は第1図の制御系統図、第3図及び第4
図は除塵部における脱硫率とPH1酸化率とPHの関係
を示す特性図、第5図は従来の湿式排煙脱硫装置の概略
系統図である。 第1図 第2図 第3図 PH(−) 第4図 −PH(−) 第5図
FIG. 1 is a schematic system diagram of a wet flue gas desulfurization apparatus according to an embodiment of the present invention, FIG. 2 is a control system diagram of FIG. 1, and FIGS.
The figure is a characteristic diagram showing the relationship between the desulfurization rate, PH1 oxidation rate, and PH in the dust removal section, and FIG. 5 is a schematic system diagram of a conventional wet flue gas desulfurization apparatus. Figure 1 Figure 2 Figure 3 PH (-) Figure 4 - PH (-) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 排ガスを吸収液スラリで冷却除塵する除塵部と、この吸
収液スラリを貯蔵する除塵部循環タンクと、排ガス中の
硫黄酸化物を吸収液スラリで吸収する吸収部と、この吸
収液スラリを貯蔵する吸収部循環タンクとを備え、吸収
液スラリタンクから吸収部循環タンクへ吸収液スラリを
供給する湿式排煙脱硫装置において、前記吸収液スラリ
タンクから除塵部循環タンクへ吸収液スラリを供給する
吸収液スラリ副供給配管を設け、この吸収液スラリ副供
給配管から除塵部循環タンクへ及び吸収液スラリタンク
から吸収部循環タンクへそれぞれ吸収液スラリを供給で
きる手段を設けたことを特徴とする湿式排煙脱硫装置の
制御装置。
A dust removal section that cools and removes dust from exhaust gas using an absorbent slurry, a dust removal section circulation tank that stores this absorption liquid slurry, an absorption section that absorbs sulfur oxides in the exhaust gas with an absorption liquid slurry, and stores this absorption liquid slurry. In the wet flue gas desulfurization equipment which is equipped with an absorption part circulation tank and supplies the absorption liquid slurry from the absorption liquid slurry tank to the absorption part circulation tank, the absorption liquid which supplies the absorption liquid slurry from the absorption liquid slurry tank to the dust removal part circulation tank. A wet smoke exhaust system, characterized in that a slurry sub-supply pipe is provided, and a means is provided for supplying the absorbent slurry from the absorbent slurry sub-supply pipe to the dust removing section circulation tank and from the absorbent slurry tank to the absorption section circulation tank, respectively. Control device for desulfurization equipment.
JP62127018A 1987-05-26 1987-05-26 Device for controlling wet exhaust gas desulfurizer Pending JPS63294928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127018A JPS63294928A (en) 1987-05-26 1987-05-26 Device for controlling wet exhaust gas desulfurizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127018A JPS63294928A (en) 1987-05-26 1987-05-26 Device for controlling wet exhaust gas desulfurizer

Publications (1)

Publication Number Publication Date
JPS63294928A true JPS63294928A (en) 1988-12-01

Family

ID=14949650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127018A Pending JPS63294928A (en) 1987-05-26 1987-05-26 Device for controlling wet exhaust gas desulfurizer

Country Status (1)

Country Link
JP (1) JPS63294928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517561A (en) * 2015-04-22 2018-07-05 バルチラ モス アクティーゼルスカブWartsila Moss AS Inline scrubber with dual water system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517561A (en) * 2015-04-22 2018-07-05 バルチラ モス アクティーゼルスカブWartsila Moss AS Inline scrubber with dual water system

Similar Documents

Publication Publication Date Title
JPH06182148A (en) Controlling apparatus for wet flue gas desulfurization apparatus
JPH1085549A (en) Wet exhaust gas desulfurization device and exhaust gas desulfutization
JP3272562B2 (en) Predictive control device and control method for wet flue gas desulfurization plant
JPS63294928A (en) Device for controlling wet exhaust gas desulfurizer
JPH0355171B2 (en)
JPH06238126A (en) Abnormality diagnostic device for wet flue gas desulfurizer
JPH03213125A (en) Absorbent ph control apparatus of wet exhaust gas desulfurizer
JP2583902B2 (en) Control device for wet flue gas desulfurization unit
JP3411597B2 (en) Control system for wet flue gas desulfurization plant
JPH01180219A (en) Absorbing liquid slurry control device for wet type flue gas desulfurization apparatus
JPS61274727A (en) Apparatus for controlling wet waste gas desulfurization apparatus
JPH11244648A (en) Control of absorbent slurry flow rate of wet stack gas desulfurizer and device therefor
JPH0573452B2 (en)
JP2798973B2 (en) Exhaust gas desulfurization equipment
JPS62204828A (en) Method for controlling oxidizing air of wet exhaust gas desulfurizing device
JP2684735B2 (en) Carbonate concentration control method
JPH0427530Y2 (en)
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JPH0417691B2 (en)
JPS6274436A (en) Wet type waste gas desulfurization apparatus
JPS59102425A (en) Supply method of adsorbent for wet type stack gas desulfurizer
JPH1199316A (en) Method of controlling sludge in waste water for wet flue gas desulfurizer
JP2547803B2 (en) Wet flue gas desulfurization equipment
JPH0531324A (en) Method for correcting factor affecting degree of desulfurization of desufurizer
JPS60235627A (en) Level controlling process of absorption tower in stack gas desulfurization apparatus for wet slaking gypsum production