JPS63294691A - Film electroluminescent element - Google Patents

Film electroluminescent element

Info

Publication number
JPS63294691A
JPS63294691A JP62130939A JP13093987A JPS63294691A JP S63294691 A JPS63294691 A JP S63294691A JP 62130939 A JP62130939 A JP 62130939A JP 13093987 A JP13093987 A JP 13093987A JP S63294691 A JPS63294691 A JP S63294691A
Authority
JP
Japan
Prior art keywords
layer
luminous
light
semiconductor substrate
conductive semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62130939A
Other languages
Japanese (ja)
Inventor
Shuji Sato
修治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP62130939A priority Critical patent/JPS63294691A/en
Publication of JPS63294691A publication Critical patent/JPS63294691A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower the extent of driving voltage as well as to aim at improvement in luminous efficiency by forming a luminous layer, emitting light according to voltage impression, on a conductive semiconductor substrate, while forming a transparent electrode on this luminous layer. CONSTITUTION:A first luminous base layer 8 is formed on a conductive semiconductor substrate 7 using an n-type GaAs substrate, making it function as an insulating layer of the conventional EL element, and a luminous layer 9, reflecting a form of the conductive semiconductor substrate 7 and emitting light according to voltage impression, is formed on this layer 8. A second luminous base layer 10 is formed on this luminous layer 9 and thereby this luminous layer 9 is set down to a laminating structural body held between these luminous base layers 8 and 10 of the same crystal form. With this constitution, the luminous layer 9 reflects a form of the conductive semiconductor substrate 7 and thereby it comes to such that is excellent in crystallinity so that driving voltage is lowered to some extent and improvement in luminous efficiency is contrivable.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、交流駆動の薄膜EL(エレクトロルミネセン
ス)素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an AC-driven thin film EL (electroluminescence) element.

(従来の技術) 一般に、この種の薄膜EL素子は、特公昭57−412
00号公報等に開示され第3図に示すように、二重絶縁
膜構造を有し、ガラス等の透明絶縁板から成る基板1 
(厚さ約2龍)上に蒸着法やスパッタリング法等の適当
な方法を用いてITO等の透明導電材料を素材とする透
明電極2(膜厚約2000人)を形成し、次いでこの上
に絶縁破壊を防ぐため510z+ AnzOs+ Yz
Os+ Tat05等の酸化物絶縁材料を素材とする第
1の絶縁層3(膜厚4000〜8000人)、ZnS等
の母体材料内にMn等の発光中心を添加した螢光材料を
素材とする発光層4 (膜厚3000〜6000人)、
第1の絶縁層3と同様な材料から成る第2の絶縁層5 
(膜厚4000〜8000人)及び前記透明電極2と対
向すると共に反射性を有する電極としてA党等の導電材
料を素材とする背面電極6(膜厚約2000人)をこの
順序で順次蒸着法やスパッタリング法等の適当な方法を
用いて積層形成して成るものであり、透明電極2と背面
電極6間に200v前後の交流電圧を印加すると電極2
.6間に発生する電界により発光層4が発光を行い、基
板1を通って外部へ照射される。
(Prior art) Generally, this type of thin film EL device is
As disclosed in Publication No. 00 and shown in FIG. 3, a substrate 1 having a double insulating film structure and consisting of a transparent insulating plate such as glass
A transparent electrode 2 (film thickness of about 2000 mm) made of a transparent conductive material such as ITO is formed on the transparent electrode 2 (about 2000 mm thick) using an appropriate method such as vapor deposition or sputtering. 510z+ AnzOs+ Yz to prevent dielectric breakdown
The first insulating layer 3 (film thickness: 4,000 to 8,000 layers) is made of an oxide insulating material such as Os+ Tat05, and the luminescent material is made of a fluorescent material in which a luminescent center such as Mn is added to a matrix material such as ZnS. Layer 4 (film thickness 3000-6000 people),
A second insulating layer 5 made of the same material as the first insulating layer 3
(film thickness: 4,000 to 8,000 layers), and a back electrode 6 (film thickness: approximately 2,000 layers) made of a conductive material such as A, as an electrode facing the transparent electrode 2 and having reflective properties, in this order. It is formed by laminating layers using an appropriate method such as or sputtering, and when an AC voltage of around 200V is applied between the transparent electrode 2 and the back electrode 6, the electrode 2
.. The light emitting layer 4 emits light due to the electric field generated between the two, and the light is emitted through the substrate 1 to the outside.

(発明が解決しようとする問題点) このようなEL素子は、発光層4にキャリアを発生又は
注入し、かかるキャリアを発光層4で加速して十分な運
動エネルギーを得て発光中心を衝突励起することにより
発光中心の核内遷移をもたらし固有の発光を得るもので
あり、このキャリアとして働く電子の平均自由行程は発
光N4の結晶性によって支配される。つまり、キャリア
の平均自由行程の長い発光層4すなわち結晶性の優れた
発光N4が駆動電圧を低下させることができ、発光効率
の向上を図ることができる。しかし、従来のEL素子は
、前述したように絶縁層3の上に、又は透明電極2の上
に直接発光N4を形成するものであり、発光N4の結晶
性はこれら下地の形態の影響を受けてしまい、優れた結
晶性を得ることが難しいと言う問題点があった。
(Problems to be Solved by the Invention) Such an EL element generates or injects carriers into the light-emitting layer 4, accelerates the carriers in the light-emitting layer 4, obtains sufficient kinetic energy, and collisionally excites the light-emitting center. This brings about intranuclear transition of the luminescent center to obtain unique luminescence, and the mean free path of the electrons acting as carriers is controlled by the crystallinity of the luminescent N4. In other words, the light-emitting layer 4 with a long mean free path of carriers, that is, the light-emitting layer N4 with excellent crystallinity, can reduce the driving voltage and improve the light-emitting efficiency. However, as mentioned above, in the conventional EL element, the light emitting layer N4 is formed directly on the insulating layer 3 or on the transparent electrode 2, and the crystallinity of the light emitting layer N4 is influenced by the morphology of these underlying layers. Therefore, there was a problem in that it was difficult to obtain excellent crystallinity.

本発明は、前記問題点に基づいて成されたものであり、
発光層の結晶性を優れたものにし、駆動電圧を低下させ
発光効率の向上を図ることのできる薄膜EL素子を提供
することを目的とするものである。
The present invention has been made based on the above problems, and
It is an object of the present invention to provide a thin film EL element that can improve the crystallinity of the light emitting layer, lower the driving voltage, and improve the light emitting efficiency.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、導電性半導体基板上に、電圧印加に応じて発
光を呈する発光層を形成すると共に、この発光層の上に
透明電極を形成するものである。
(Means for Solving the Problems) The present invention is to form a light-emitting layer that emits light in response to voltage application on a conductive semiconductor substrate, and to form a transparent electrode on this light-emitting layer. .

(作用) 発光層が導電性半導体基板の形態を反映し、結晶性が優
れたものになり、電子の平均自由行程を大きくすること
ができる。
(Function) The light-emitting layer reflects the form of the conductive semiconductor substrate, has excellent crystallinity, and can increase the mean free path of electrons.

(実施例) 以下、図面に基づいて本発明の一実施例を詳述する。第
1図において、7はキャリア濃度n=10” 〜10”
/cf11.抵抗率P 〜10−’−10−’Q ・c
a程度で厚みd = 200〜50011 mのn型G
aAs基板を用いた導電性半導体基板であり、この場合
、面方位が(100)面の基板を用いている。8はこの
導電性半導体基板7の片面に形成され、絶縁破壊を防ぐ
ための第1の発光母体層であり、ZnS等の発光母体材
料を分子線エピタキシー法(MBE法)等の適当な方法
を用いて膜厚1000〜5000人に成長して形成され
る。9は第1の発光母体層8の上に形成される発光層で
あり、ZnS等の発光母体材料内にMn等の発光中心を
0.3〜0.8%添加した螢光材料を素材として同様に
MBE法を用いて膜厚3000〜6000人に成長して
形成される。IOはこの発光層9の上に形成される第2
の発光母体層であり、前記第1の発光母体層8と同様に
1000〜5000人に成長して2の発光母体層10の
上に形成される透明電極であり、^U等の透明導電材料
を真空蒸着法により膜厚300〜700人にて形成され
る。12は最後に前記導電性半導体基板7の他面に形成
される金属電極であり、In−Ga(5χ)等の導電材
料を真空蒸着法により形成して成る。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings. In Fig. 1, 7 is the carrier concentration n=10" to 10"
/cf11. Resistivity P ~10-'-10-'Q ・c
N-type G with thickness d = 200 to 50011 m at about a
This is a conductive semiconductor substrate using an aAs substrate, and in this case, a substrate with a (100) plane orientation is used. Reference numeral 8 denotes a first luminescent matrix layer formed on one side of the conductive semiconductor substrate 7 to prevent dielectric breakdown. The film is grown to a film thickness of 1,000 to 5,000 layers. 9 is a light-emitting layer formed on the first light-emitting base layer 8, and is made of a fluorescent material in which 0.3 to 0.8% of a luminescent center such as Mn is added to a light-emitting base material such as ZnS. Similarly, the MBE method is used to grow the film to a thickness of 3,000 to 6,000 mm. IO is a second layer formed on this light emitting layer 9.
It is a light-emitting base layer of 1000 to 5000 like the first light-emitting base layer 8, and is a transparent electrode formed on the second light-emitting base layer 10, which is made of a transparent conductive material such as ^U. It is formed with a film thickness of 300 to 700 mm using a vacuum evaporation method. A metal electrode 12 is finally formed on the other surface of the conductive semiconductor substrate 7, and is made of a conductive material such as In-Ga (5χ) by vacuum evaporation.

以上のように構成される本発明の薄膜EL素子は、導電
性半導体基板7の上に第1の発光母体層8を形成し従来
のEL素子の絶1i13として機能させ、この上に導電
性半導体基板7の形態を反映した発光N9を形成すると
共に、この発光層9の上に第2の発光母体層10を形成
して発光層9を同じ結晶形態の発光母体ms、ioで挟
持した積層構造体としている。従来のEL素子のように
透明電極あるいは絶縁層の上に発光層を形成すると、例
えばZnS : Mnを用いるとこの発光層は<111
>配向をとりやすく、(111)面積層の薄膜EL素子
は局所的に双晶となりやすく優れた結晶性を得ることは
できない。しかし、本発明は(100)面の導電性半導
体基ll17を用いこの上に絶縁層として<100>配
向の第1の発光母体層8を形成し、この上に発光層9を
形成したため、この発光層9に導電性半導体基板7と第
1の発光母体N8の形態を反映させたEL素子となる。
In the thin film EL device of the present invention constructed as described above, the first light emitting base layer 8 is formed on the conductive semiconductor substrate 7 to function as an indispensable part of the conventional EL device. A laminated structure in which a light emitting layer N9 reflecting the form of the substrate 7 is formed, a second light emitting base layer 10 is formed on this light emitting layer 9, and the light emitting layer 9 is sandwiched between light emitting bases ms and io having the same crystal form. It is my body. When a light-emitting layer is formed on a transparent electrode or an insulating layer as in a conventional EL element, for example, when ZnS:Mn is used, this light-emitting layer has a thickness of <111
A thin film EL element with a (111) area layer tends to be locally twinned, making it impossible to obtain excellent crystallinity. However, in the present invention, a conductive semiconductor substrate 117 with a (100) plane is used, and a first light-emitting base layer 8 with a <100> orientation is formed as an insulating layer thereon, and a light-emitting layer 9 is formed on this. An EL element is obtained in which the light emitting layer 9 reflects the configurations of the conductive semiconductor substrate 7 and the first light emitting base N8.

さらに、この発光N9の上の第2の発光母体層10も導
電性半導体基板7の形態を反映できるため、このような
積層構造の発光層9を完全に<100)配向として形成
でき、優れた結晶性を得て電子の平均自由行程を大きく
している。第2図は透明電極11と金属電極12との間
に電圧を印加した時のエネルギーバンドを模式的に示し
ており、電圧印加により第1の発光母体N8の伝導帯1
3上の電子14あるいはこの第1の発光母体層8と発光
N9との境界に形成されたトラップに発生する電子14
が加速され発光層9に注入される。
Furthermore, since the second light-emitting base layer 10 on top of the light-emitting layer 10 can also reflect the morphology of the conductive semiconductor substrate 7, the light-emitting layer 9 having such a laminated structure can be formed with a completely <100) orientation, resulting in an excellent It obtains crystallinity and increases the mean free path of electrons. FIG. 2 schematically shows the energy band when a voltage is applied between the transparent electrode 11 and the metal electrode 12.
3 or electrons 14 generated in the traps formed at the boundary between the first luminescent host layer 8 and the luminescent layer N9.
is accelerated and injected into the light emitting layer 9.

この電子14は大きい平均自由行程の発光層9に形成さ
れた電界により十分に加速され大きな運動エネルギーを
得て発光中心を衝突励起する。従って、発光効率の良い
電子エネルギー分布が得られ、駆動電圧を低下させるこ
とができ、安定動作も可能となる。
These electrons 14 are sufficiently accelerated by the electric field formed in the luminescent layer 9 with a large mean free path, obtain large kinetic energy, and collide and excite the luminescent center. Therefore, an electron energy distribution with good luminous efficiency can be obtained, the driving voltage can be lowered, and stable operation can be achieved.

以上、本発明の一実施例について詳述したが、本発明の
要旨の範囲内で適宜変形可能である。例えば、前記実施
例では第1及び第2の発光母体層8.10により発光層
9を挟持する構造を示したが、これらの発光母体層は一
層あるいはなくとも良い。
Although one embodiment of the present invention has been described in detail above, it can be modified as appropriate within the scope of the gist of the present invention. For example, in the embodiment described above, a structure is shown in which the light emitting layer 9 is sandwiched between the first and second light emitting base layers 8 and 10, but these light emitting base layers may be one layer or may not be provided.

また、金属電極12は必ずしも形成せず導電性半導体基
板7より電極を引き出すこともできる。
Further, the metal electrode 12 is not necessarily formed, and the electrode can be drawn out from the conductive semiconductor substrate 7.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、導電性半導体基板
上に、電圧印加に応じて発光を呈する発光層を形成する
と共に、この発光層の上に透明電極を形成することによ
り、発光層の結晶性を優れたものにして、駆動電圧を低
下させ発光効率の向上を図ることのできる薄膜EL素子
を提供できる。
As detailed above, according to the present invention, a light-emitting layer that emits light in response to voltage application is formed on a conductive semiconductor substrate, and a transparent electrode is formed on this light-emitting layer. It is possible to provide a thin film EL element that has excellent crystallinity, lowers driving voltage, and improves luminous efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は同エ
ネルギーバンドを示す説明図、第3図は従来例を示す断
面図である。 7−導電性半導体基板 9−発光層 11−透明電極
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is an explanatory view showing the same energy band, and FIG. 3 is a sectional view showing a conventional example. 7-Conductive semiconductor substrate 9-Light emitting layer 11-Transparent electrode

Claims (1)

【特許請求の範囲】[Claims]  導電性半導体基板上に、電圧印加に応じて発光を呈す
る発光層を形成すると共に、この発光層の上に透明電極
を形成することを特徴とする薄膜EL素子。
A thin film EL device characterized by forming a light emitting layer that emits light in response to voltage application on a conductive semiconductor substrate, and forming a transparent electrode on the light emitting layer.
JP62130939A 1987-05-27 1987-05-27 Film electroluminescent element Pending JPS63294691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130939A JPS63294691A (en) 1987-05-27 1987-05-27 Film electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130939A JPS63294691A (en) 1987-05-27 1987-05-27 Film electroluminescent element

Publications (1)

Publication Number Publication Date
JPS63294691A true JPS63294691A (en) 1988-12-01

Family

ID=15046217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130939A Pending JPS63294691A (en) 1987-05-27 1987-05-27 Film electroluminescent element

Country Status (1)

Country Link
JP (1) JPS63294691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331997A1 (en) * 1988-03-05 1989-09-13 Stanley Electric Co., Ltd. Elongated electroluminescence element and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331997A1 (en) * 1988-03-05 1989-09-13 Stanley Electric Co., Ltd. Elongated electroluminescence element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH04357694A (en) Thin organic film el element
US7411343B2 (en) Inorganic electroluminescent device
US7061175B2 (en) Efficiency transparent cathode
JP2833282B2 (en) Electroluminescent display device and method of manufacturing the same
JPS5823191A (en) Thin film el element
JP2881212B2 (en) EL device
JPS63294691A (en) Film electroluminescent element
JPH1197183A (en) El pannel for illumination
JPS63294690A (en) Film electroluminescent element
KR100834820B1 (en) Organic light-emitting devices having the interface layer of aluminum oxynitride and their manufacturing methode
JP2714697B2 (en) EL device
JPH06111938A (en) Electroluminescence element
KR100235832B1 (en) Membrane electric field luminescent element
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
JPH0516158B2 (en)
JPH03141586A (en) Electroluminescent element
JPH01130495A (en) Film type electroluminescence element
KR940009498B1 (en) El display device
KR100205937B1 (en) Field emission device
JPS59154794A (en) Thin film el element
JPH03141587A (en) Electroluminescent element
JPH02220393A (en) Electroluminescence element
JPS6147097A (en) Electroluminescent element
JPS5832393A (en) Thin film electric field light emitting element
JPS58175293A (en) Electric field light emitting element