JPS63293510A - Laser radiating device - Google Patents

Laser radiating device

Info

Publication number
JPS63293510A
JPS63293510A JP12924587A JP12924587A JPS63293510A JP S63293510 A JPS63293510 A JP S63293510A JP 12924587 A JP12924587 A JP 12924587A JP 12924587 A JP12924587 A JP 12924587A JP S63293510 A JPS63293510 A JP S63293510A
Authority
JP
Japan
Prior art keywords
laser
fiber
diameter
light
light guiding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12924587A
Other languages
Japanese (ja)
Inventor
Akira Hasegawa
晃 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP12924587A priority Critical patent/JPS63293510A/en
Publication of JPS63293510A publication Critical patent/JPS63293510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To make the diameter of a radiated beam spot optimal according to the diameter of the core of a light guiding fiber and to raise safety by uniting a part of an afocal optical system with the light guiding fiber to form it to be interchangeable. CONSTITUTION:The back focus of a condenser lens 7 and the front focus of a condenser 8, which are arranged between a laser oscillator 1 and the light guiding fiber 3, are made to coincide to obtain the afocal system and the oscillator 1 is integrated 1 with the condenser 7 to obtain a laser main body side 9, then the condenser 8 is integrated with the fiber 3 to obtain a laser probe side 10. The laser light beam with the maximum intensity is radiated in parallel with the optical axis of the fiber 3 and the maximum incident light beam angle can be made small even in case of minimizing the diameter of an incident spot. And the sharpness of a laser scalpel can be improved by minimizing the diameter of the radiated beam. Moreover, at the time of using the fiber 3 with a small diameter, the optimal spot can be obtained by exchanging the laser probe side 10 and the safety can be raised.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医用としてはレーザーメスとして切開や止血
に用いられ、工業用としては工作装置として部品の加工
に用いられるレーザー照射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser irradiation device that is used for medical purposes as a laser scalpel for incision and hemostasis, and for industrial purposes as a machining device for processing parts.

〔従来の技術及び発明が解決しようとする問題点〕従来
のレーザー照射装置の光学系は、例えば第4図に示した
如く、レーザー発振器1と集光レンズ2と導光用ファイ
バー3とを順に配置して成るものであった。
[Prior art and problems to be solved by the invention] The optical system of a conventional laser irradiation device, for example, as shown in FIG. It was made up of an arrangement.

ところが、導光用ファイバー3は第5図に示した如くコ
ア4とそれを取り囲むクラフト5から成っているため、
集光レンズ2で決定される集光スポット径と導光用ファ
イバー3への最大入射光線角θ。は、導光用ファイバー
3のコア径とNAによって制限されてしまうという問題
があった。即ち、第6図において、レーザー光線の回折
等による開き角をθとすると、集光レンズ2によるスポ
ットPの直径dは、集光レンズ2の焦点距離をfとすれ
ば、 dIIIIθf         −・・−・・・−・
(イ)により決まる。又、最大入射光線角θ。はビーム
径と開き角θと集光レンズ2の焦点距離rにより決まる
が、 −にθ。        −・・−・−・−(ロ)とな
るのは明らかである。従って、細い導光用ファイバー3
に入射させるために焦点距1%lfを小さくして入射ス
ポット径を小さくしても、最大入射光線角θ。が導光用
ファイバー3のコア4の屈折率とクラッド5の屈折率よ
り定まるNA (NA=6τ77丁+”):no はコ
アの屈折率、n+はクラッドの屈折率)より小さくない
と、光が導光用ファイバー3の側面より抜は出てしまい
、危険である。従って、集光スボッ′ト径を小さくすべ
く最大入射光線角θ。を大にすると、導光用ファイバー
3のNAによる制限を受けてしまう。
However, since the light guide fiber 3 consists of a core 4 and a craft 5 surrounding it as shown in FIG.
The focal spot diameter determined by the condensing lens 2 and the maximum incident ray angle θ to the light guiding fiber 3. There was a problem in that it was limited by the core diameter and NA of the light guiding fiber 3. That is, in FIG. 6, if the aperture angle due to the diffraction of the laser beam is θ, then the diameter d of the spot P formed by the condenser lens 2 is dIIIθf −···−, where f is the focal length of the condenser lens 2.・・・-・
Determined by (a). Also, the maximum incident ray angle θ. is determined by the beam diameter, the aperture angle θ, and the focal length r of the condenser lens 2. It is clear that -・・−・−・− (b). Therefore, the thin light guiding fiber 3
Even if the focal length is reduced by 1% lf to make the incident spot diameter smaller, the maximum incident ray angle θ remains. is determined by the refractive index of the core 4 and the refractive index of the cladding 5 of the light-guiding fiber 3 (NA = 6τ77+''), where no is the refractive index of the core and n+ is the refractive index of the cladding), the light is is dangerous because it comes out from the side of the light guiding fiber 3. Therefore, if the maximum incident ray angle θ is increased in order to reduce the diameter of the condensing spot, the NA of the light guiding fiber 3 You will be subject to restrictions.

又、近年、様々なタイプの導光用ファイバーが要望され
ている0例えば、医用の外科用レーザーメスでは、特に
導光用ファイバーのコア径の大きさには問題ないが、第
7図に示した如くなるべ(出射光を平行光に近づけて出
射角が0°の光線を増やしそれをレンズ6で集光させる
ことにより照射ビームスポットP′をなるべく小さくし
て、レーザーメスの切れ味を良くしたいという要望があ
る。
In addition, in recent years, various types of light guide fibers have been requested. For example, in medical surgical laser scalpels, there is no problem with the core diameter of the light guide fiber, as shown in Fig. 7. (I want to make the irradiation beam spot P' as small as possible by bringing the emitted light closer to parallel light to increase the number of light beams with an emitted angle of 0° and converging them with lens 6, thereby improving the sharpness of the laser scalpel.) There is a request.

ところが、実開昭57−74005号公報に記載の導光
用ファイバーのように内視鏡の鉗子口に入れて使用する
場合は、非常に細い導光用ファイバーが望まれるもので
あり、その場合には入射スポット径を非常に小さくせね
ばならず、その為に第6図の集光レンズ2の焦点距離r
を小さくすると、最大入射光線角θ。が大きくなって入
射角の大きい光線の強度が増し、その結果出射光線にお
いても出射角の大きい光線の強度が増す。即ち、この場
合、導光用ファイバー3の入射端面3aにおける光の強
度と入射角度の関係(以後光の角度分布)は光軸をO”
とすると第8図のようになり、出射角の大きい光線の強
度が増した分布となる。
However, when the light guide fiber described in Japanese Utility Model Application Publication No. 57-74005 is used by inserting it into the forceps opening of an endoscope, a very thin light guide fiber is desired. The incident spot diameter must be made very small, and for this purpose the focal length r of the condenser lens 2 shown in Fig. 6 must be made very small.
By decreasing , the maximum incident ray angle θ. increases, the intensity of the light ray with a large incident angle increases, and as a result, the intensity of the light ray with a large exit angle also increases in the output light ray. That is, in this case, the relationship between the intensity of light and the angle of incidence (hereinafter referred to as the angular distribution of light) at the incident end surface 3a of the light guide fiber 3 is such that the optical axis is O''
If so, the distribution will be as shown in FIG. 8, where the intensity of light rays with a large exit angle is increased.

基本的に導光用ファイバー3内ではこの角度分布が保た
れるため、導光用ファイバー3の出射端面3bでの角度
分布も同様に第8図のようになる。
Since this angular distribution is basically maintained within the light guiding fiber 3, the angular distribution at the output end face 3b of the light guiding fiber 3 is also as shown in FIG. 8.

従って、第7図の照射ビームスポットP′が小さくなら
ず、このまま外科用レーザーメスとして使用すると切れ
味が非常に悪くなってしまう。
Therefore, the irradiation beam spot P' shown in FIG. 7 does not become small, and if used as a surgical laser scalpel as it is, the sharpness will become very poor.

又、実際の使用に際して導光用ファイバーは種々のもの
に交換されるが、上記従来例(第4図)の場合、集光レ
ンズ2と導光用ファイバー3との芯出し時の誤差を非常
に小さくしておかないと、クラッド5やクラフト5のま
わりのファイバ一端部支持部材等にレーザービームが照
射されるようになって非常に危険であるという問題もあ
った。
In addition, the light guiding fiber is replaced with various types during actual use, but in the case of the above conventional example (Fig. 4), the error in centering the condenser lens 2 and the light guiding fiber 3 is minimized. If the size is not kept small, there is a problem that the laser beam will be irradiated onto the cladding 5 and the support member for one end of the fiber around the craft 5, which is very dangerous.

本発明は、上記問題点に鑑み、使用する導光用ファイバ
ーのコア径に応じて照射ビームスポット径を最適なもの
とすることができ、而も安全性が高いレーザー照射装置
を提供することを目的とする。
In view of the above-mentioned problems, the present invention aims to provide a laser irradiation device that can optimize the irradiation beam spot diameter according to the core diameter of the light guide fiber used and is highly safe. purpose.

〔問題点を解決するための手段及び作用〕本発明による
レーザー照射装置は、レーザー発振器と集光光学系と導
光用ファイバーを順に配置して成るレーザー照射装置に
おいて、上記集光光学系がアフォーカル系であると共に
、上記集光光学系の一部と導光用ファイバーが一体で交
換可能であることにより、導光用ファイバーへの入射ス
ポット径を小さくしても最大入射光線角を小さくできて
O°入射光線を強くすることが出来ると共に、集光光学
系の一部と導光用ファイバーとの芯出しを行っておけば
集光光学系の一部と他部との芯出しに多少の誤差があっ
ても導光用ファイバーへの入射ずれが殆ど起こらないよ
うにしたものである。
[Means and effects for solving the problems] A laser irradiation device according to the present invention is a laser irradiation device comprising a laser oscillator, a condensing optical system, and a light guide fiber arranged in this order, in which the condensing optical system is attached to the laser irradiation device. In addition to being a focal system, part of the condensing optical system and the light guide fiber are replaceable as a unit, so even if the diameter of the incident spot on the light guide fiber is reduced, the maximum incident ray angle can be reduced. In addition, if you center a part of the condensing optical system and the light guiding fiber, it will be easier to center the part of the condensing optical system with other parts. Even if there is an error in

〔実施例〕〔Example〕

以下、図示した実施例に基づき上記従来例と同一の部材
には同一符号を付して本発明の詳細な説明する。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment, with the same reference numerals assigned to the same members as in the above-mentioned conventional example.

第1図は第1実施例の光学系を示しており、7及び8は
レーザー発振器1と導光用ファイバー3との間に配置せ
しめられた第1集光レンズ及び第2集光レンズであって
、これらは第1集光レンズ7の後側焦点と第2集光レン
ズ8の前側焦点を一致させることによりアフォーカル系
としての集光光学系を構成している。又、レーザー発振
器lと第1集光レンズ7とを一体化することによりレー
ザ一本体側9となし、第2集光レンズ8と導光用ファイ
バー3を一体化することによりレーザープローブ側10
となすと共に、レーザープローブ側10は着脱でき交換
可能となっている。
FIG. 1 shows the optical system of the first embodiment, and 7 and 8 are a first condenser lens and a second condenser lens arranged between the laser oscillator 1 and the light guiding fiber 3. By making the rear focus of the first condenser lens 7 and the front focus of the second condenser lens 8 coincide with each other, these constitute a condensing optical system as an afocal system. Also, by integrating the laser oscillator l and the first condensing lens 7, it becomes a laser body side 9, and by integrating the second condensing lens 8 and the light guiding fiber 3, it becomes a laser probe side 10.
In addition, the laser probe side 10 is detachable and replaceable.

本発明によるレーザー照射装置は上述の如く構成されて
おり、集光光学系がアフォーカル系であるので、レーザ
ー発振器1を発した光軸と平行な光即ちレーザー光線の
最大強度の光線は導光用ファイバー3に光軸と平行に入
射するようになる。
The laser irradiation device according to the present invention is configured as described above, and since the condensing optical system is an afocal system, the light parallel to the optical axis emitted from the laser oscillator 1, that is, the light beam with the maximum intensity of the laser beam, is used for light guiding. The light enters the fiber 3 parallel to the optical axis.

このため、導光用ファイバー3への入射スボ7ト径を小
さくしても最大入射光線角を小さくできて第2図に示し
た如くO°入射光線を強くすることができ、その結果出
射光線においてもO°出射光線を強くすることができる
。従って、導光用ファイバー3のコア径が小さくても照
射ビームスポットを小さくでき、特に内視鏡に取付けら
れる外科用レーザーメスとしての切れ味が非常に良くな
る。
Therefore, even if the diameter of the entrance slot 7 to the light guide fiber 3 is made smaller, the maximum incident ray angle can be made smaller, and the 0° incident ray can be made stronger as shown in Fig. 2, and as a result, the output ray Even in this case, the intensity of the 0° emitted light beam can be increased. Therefore, even if the core diameter of the light guide fiber 3 is small, the irradiation beam spot can be made small, and the sharpness of the surgical laser scalpel attached to an endoscope is particularly improved.

又、導光用ファイバー3への入射スポットの直径dは第
1集光レンズ7の焦点距離をfl、第2集光レンズ8の
焦点距離をf2とし、レーザー発振器1からのレーザー
ビームの直径をφとすると、d#φf t / f l
    ・−・・−・−・−(11より求まる。又、最
大入射光線角θ0は、レーザービームの片側の光線開き
角をθとすると、θ。−θf+/ft   −・・・−
・−・ (2)より求まる。
In addition, the diameter d of the incident spot on the light guide fiber 3 is determined by assuming that the focal length of the first condensing lens 7 is fl, the focal length of the second condensing lens 8 is f2, and the diameter of the laser beam from the laser oscillator 1 is If φ, then d#φf t / f l
・−・・−・−・−(Found from 11. Also, the maximum incident ray angle θ0 is θ.−θf+/ft −・−
・−・ Determined from (2).

従って、第1図(blに示すように第1図(alのプロ
ーブ側10の導光用ファイバー3よりも非常に細径の導
光用ファイバー3′を取付ける場合は、そのベアとなる
第2集光レンズ8′を、上記式F11及び(2)を用い
て最適の入射スポット径と最大入射光線角に対応する焦
点距離を持つものにしてやり、取付は時に第1集光レン
ズ7と第2集光レンズ8゛とがアフォーカル系を構成す
るようにすれば良い。
Therefore, when attaching a light guide fiber 3' having a much smaller diameter than the light guide fiber 3 on the probe side 10 of FIG. The condenser lens 8' is set to have a focal length corresponding to the optimum incident spot diameter and maximum incident ray angle using the above formulas F11 and (2), and is sometimes attached to the first condenser lens 7 and the second condenser lens 7. It is sufficient if the condenser lens 8' constitutes an afocal system.

かくして、手術用レーザーメスのような場合、第2集光
レンズの焦点距離を選ぶことによって種々の導光用ファ
イバーに対応させることができる。
Thus, in a case such as a surgical laser scalpel, by selecting the focal length of the second condensing lens, it can be made compatible with various light guide fibers.

ところで、極細の導光用ファイバーの場合には、入射ス
ポット径を小さくして入射させる必要があるが、本発明
装置の場合、第1集光レンズ7と第2集光レンズ8がア
フォーカル系を構成しているので、第1集光レンズ7と
第2集光レンズ8との間で光軸の平行ずれが生じた場合
第2集光レンズ8を通った光束はその出射光軸が第2集
光レンズ8の光軸と一致するように曲げられる。そのた
め、第2集光レンズ8と導光用ファイバー3との芯出し
を正確に行って一体化しておけば、レーザ一本体9側に
対するレーザープローブ側10の取付は誤差をさほど小
さく押さえておく必要はない、従って、安全性の高いレ
ーザー照射装置となる。
By the way, in the case of an ultra-fine light guide fiber, it is necessary to make the incident spot diameter smaller and enter it, but in the case of the device of the present invention, the first condenser lens 7 and the second condenser lens 8 are of an afocal type. Therefore, if a parallel deviation of the optical axes occurs between the first condensing lens 7 and the second condensing lens 8, the light beam passing through the second condensing lens 8 will have its output optical axis at the second condensing lens 8. 2. It is bent so as to coincide with the optical axis of the condenser lens 8. Therefore, if the second condensing lens 8 and the light guiding fiber 3 are accurately centered and integrated, it is necessary to keep the error small when attaching the laser probe side 10 to the laser main body 9 side. Therefore, it is a highly safe laser irradiation device.

第3図は第2実施例を示しており、これは集光光学系を
第1集光レンズ7と凹レンズである第2レンズ11とか
ら構成し、凸レンズと凹レンズとの組合せでアフォーカ
ル系を構成するようにしたものである。
FIG. 3 shows a second embodiment, in which the condensing optical system is composed of a first condensing lens 7 and a second concave lens 11, and an afocal system is formed by a combination of a convex lens and a concave lens. This is how it is configured.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によるレーザー照射装置は、使用す
る導光用ファイバーのコア径に応じて照射ビームスポッ
ト径を最適なものとすることができ、而も安全性が高い
という実用上重要な利点を有している。
As mentioned above, the laser irradiation device according to the present invention can optimize the irradiation beam spot diameter according to the core diameter of the light guide fiber used, and has the important practical advantages of being highly safe. have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるレーザー照射装置の第1実施例の
光学系を示す図、第2図は第1実施例における導光用フ
ァイバーへの入射光の角度分布を示す図、第3図は第2
実施例の光学系を示す図、第4図は従来例の光学系を示
す図、第5図は上記従来例の導光用ファイバーの断面図
、第6図は上記従来例の要部を示す図、第7図はレーザ
ーメスの出射側の光学系を示す図、第8図は上記従来例
において集光レンズの焦点距離を小さくした場合の導光
用ファイバーへの入射光の角度分布を示す図である。 1・・・・レーザー発振器、3・・・・導光用ファイバ
ー、7・・・・第1集光レンズ、8・・・・第2集光レ
ンズ、9・・・・レーザ一本体側、1o・・・・レーザ
ープローブ側、11・・・・第2レンズ。
Fig. 1 is a diagram showing the optical system of the first embodiment of the laser irradiation device according to the present invention, Fig. 2 is a diagram showing the angular distribution of incident light to the light guiding fiber in the first embodiment, and Fig. Second
FIG. 4 is a diagram showing the optical system of the embodiment, FIG. 4 is a diagram showing the optical system of the conventional example, FIG. 5 is a cross-sectional view of the light guiding fiber of the conventional example, and FIG. 6 is a main part of the conventional example. Figure 7 shows the optical system on the output side of the laser scalpel, and Figure 8 shows the angular distribution of light incident on the light guide fiber when the focal length of the condenser lens is made small in the conventional example above. It is a diagram. DESCRIPTION OF SYMBOLS 1... Laser oscillator, 3... Light guiding fiber, 7... First condensing lens, 8... Second condensing lens, 9... Laser body side, 1o... Laser probe side, 11... Second lens.

Claims (1)

【特許請求の範囲】[Claims] レーザー発振器と集光光学系と導光用ファイバーを順に
配置して成るレーザー照射装置において上記集光光学系
がアフォーカル系であると共に、上記集光光学系の一部
と導光用ファイバーが一体で交換可能であることを特徴
とするレーザー照射装置。
In a laser irradiation device comprising a laser oscillator, a condensing optical system, and a light guiding fiber arranged in this order, the condensing optical system is an afocal system, and a part of the condensing optical system and the light guiding fiber are integrated. A laser irradiation device characterized in that it is replaceable.
JP12924587A 1987-05-26 1987-05-26 Laser radiating device Pending JPS63293510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12924587A JPS63293510A (en) 1987-05-26 1987-05-26 Laser radiating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12924587A JPS63293510A (en) 1987-05-26 1987-05-26 Laser radiating device

Publications (1)

Publication Number Publication Date
JPS63293510A true JPS63293510A (en) 1988-11-30

Family

ID=15004788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12924587A Pending JPS63293510A (en) 1987-05-26 1987-05-26 Laser radiating device

Country Status (1)

Country Link
JP (1) JPS63293510A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078190A (en) * 2001-09-05 2003-03-14 Toshiba Corp Light transmitter and laser beam generator/transmitter and laser working device
US8520989B2 (en) 2010-03-19 2013-08-27 Corning Incorporated Fiber optic interface devices for electronic devices
US8622632B2 (en) 2010-03-19 2014-01-07 Corning Incorporated Small-form-factor fiber optic interface assemblies for electronic devices having a circuit board
US8651749B2 (en) 2010-03-19 2014-02-18 Corning Incorporated Fiber optic interface with translatable ferrule device
US8727637B2 (en) 2010-03-19 2014-05-20 Corning Incorporated Fiber optic interface devices for electronic devices
US9069142B2 (en) 2010-03-19 2015-06-30 Corning Incorporated Small-form-factor fiber optic interface devices with an internal lens
US9151912B2 (en) 2012-06-28 2015-10-06 Corning Cable Systems Llc Optical fiber segment holders including shielded optical fiber segments, connectors, and methods
US9151900B2 (en) 2010-12-07 2015-10-06 Corning Optical Communications LLC Optical couplings having coded magnetic arrays and devices incorporating the same
US9261651B2 (en) 2010-12-07 2016-02-16 Corning Optical Communications LLC Ferrule assemblies, connector assemblies, and optical couplings having coded magnetic arrays
US9304265B2 (en) 2012-07-26 2016-04-05 Corning Cable Systems Llc Fiber optic connectors employing moveable optical interfaces with fiber protection features and related components and methods
US9379817B2 (en) 2012-04-27 2016-06-28 Corning Optical Communications LLC Plug and play optical transceiver module for electronic devices
US9529159B2 (en) 2010-07-30 2016-12-27 Corning Optical Communications LLC Ferrules with complementary mating geometry and related fiber optic connectors
US9547139B2 (en) 2011-11-28 2017-01-17 Corning Optical Communications LLC Optical couplings having a coded magnetic array, and connector assemblies and electronic devices having the same
US9638873B2 (en) 2011-01-20 2017-05-02 Corning Incorporated Receptacle ferrule assemblies with gradient index lenses and fiber optic connectors using same
US9645329B2 (en) 2011-12-09 2017-05-09 Corning Optical Communications LLC Gradient index (GRIN) lens holders employing groove alignment feature(s) in recessed cover and single piece components, connectors, and methods
US9651743B2 (en) 2011-09-13 2017-05-16 Corning Optical Communications LLC Gradient index (GRIN) lens holders employing a recessed cover, and optical connectors and methods incorporating the same
US9753235B2 (en) 2011-12-09 2017-09-05 Corning Optical Communications LLC Gradient index (GRIN) lens holders employing groove alignment feature(s) and total internal reflection (TIR) surface, and related components, connectors, and methods
US10114174B2 (en) 2012-05-31 2018-10-30 Corning Optical Communications LLC Optical connectors and optical coupling systems having a translating element
US10191228B2 (en) 2014-09-23 2019-01-29 Corning Optical Communications LLC Optical connectors and complimentary optical receptacles having magnetic attachment
US10401572B2 (en) 2010-07-30 2019-09-03 Corning Optical Communications, Llc Fiber optic connectors including ferrules with complementary mating geometry and related fiber optic connectors
US10732361B2 (en) 2013-06-25 2020-08-04 Corning Optical Communications LLC Optical plug having a translating cover and a complimentary receptacle

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078190A (en) * 2001-09-05 2003-03-14 Toshiba Corp Light transmitter and laser beam generator/transmitter and laser working device
US8651749B2 (en) 2010-03-19 2014-02-18 Corning Incorporated Fiber optic interface with translatable ferrule device
US8622632B2 (en) 2010-03-19 2014-01-07 Corning Incorporated Small-form-factor fiber optic interface assemblies for electronic devices having a circuit board
US8727637B2 (en) 2010-03-19 2014-05-20 Corning Incorporated Fiber optic interface devices for electronic devices
US9069142B2 (en) 2010-03-19 2015-06-30 Corning Incorporated Small-form-factor fiber optic interface devices with an internal lens
US8520989B2 (en) 2010-03-19 2013-08-27 Corning Incorporated Fiber optic interface devices for electronic devices
US9377589B2 (en) 2010-03-19 2016-06-28 Corning Incorporated Small-form-factor fiber optic interface devices with an internal lens
US9477046B2 (en) 2010-03-19 2016-10-25 Corning Optical Communications LLC Fiber optic interface devices for electronic devices
US9529159B2 (en) 2010-07-30 2016-12-27 Corning Optical Communications LLC Ferrules with complementary mating geometry and related fiber optic connectors
US10401572B2 (en) 2010-07-30 2019-09-03 Corning Optical Communications, Llc Fiber optic connectors including ferrules with complementary mating geometry and related fiber optic connectors
US9151900B2 (en) 2010-12-07 2015-10-06 Corning Optical Communications LLC Optical couplings having coded magnetic arrays and devices incorporating the same
US9261651B2 (en) 2010-12-07 2016-02-16 Corning Optical Communications LLC Ferrule assemblies, connector assemblies, and optical couplings having coded magnetic arrays
US9638873B2 (en) 2011-01-20 2017-05-02 Corning Incorporated Receptacle ferrule assemblies with gradient index lenses and fiber optic connectors using same
US9651743B2 (en) 2011-09-13 2017-05-16 Corning Optical Communications LLC Gradient index (GRIN) lens holders employing a recessed cover, and optical connectors and methods incorporating the same
US10114177B2 (en) 2011-09-13 2018-10-30 Corning Optical Communications LLC Translating lens holder assemblies employing bore relief zones, and optical connectors incorporating the same
US9547139B2 (en) 2011-11-28 2017-01-17 Corning Optical Communications LLC Optical couplings having a coded magnetic array, and connector assemblies and electronic devices having the same
US9645329B2 (en) 2011-12-09 2017-05-09 Corning Optical Communications LLC Gradient index (GRIN) lens holders employing groove alignment feature(s) in recessed cover and single piece components, connectors, and methods
US9753235B2 (en) 2011-12-09 2017-09-05 Corning Optical Communications LLC Gradient index (GRIN) lens holders employing groove alignment feature(s) and total internal reflection (TIR) surface, and related components, connectors, and methods
US9379817B2 (en) 2012-04-27 2016-06-28 Corning Optical Communications LLC Plug and play optical transceiver module for electronic devices
US10114174B2 (en) 2012-05-31 2018-10-30 Corning Optical Communications LLC Optical connectors and optical coupling systems having a translating element
US9151912B2 (en) 2012-06-28 2015-10-06 Corning Cable Systems Llc Optical fiber segment holders including shielded optical fiber segments, connectors, and methods
US9507096B2 (en) 2012-07-26 2016-11-29 Corning Optical Communications LLC Fiber optic connectors employing moveable optical interfaces with fiber protection features and related components and methods
US9304265B2 (en) 2012-07-26 2016-04-05 Corning Cable Systems Llc Fiber optic connectors employing moveable optical interfaces with fiber protection features and related components and methods
US10732361B2 (en) 2013-06-25 2020-08-04 Corning Optical Communications LLC Optical plug having a translating cover and a complimentary receptacle
US10191228B2 (en) 2014-09-23 2019-01-29 Corning Optical Communications LLC Optical connectors and complimentary optical receptacles having magnetic attachment

Similar Documents

Publication Publication Date Title
JPS63293510A (en) Laser radiating device
US5300062A (en) Photocoagulator
US5260965A (en) Laser processing apparatus and laser processing method
US5751871A (en) Method for coupling of semiconductor lasers into optical fibers
US3456651A (en) Instrument for the medical treatment of human and animal tissue using lasers
US5225929A (en) Device for producing a light spot in a microscope
US3589799A (en) Optical system for illumination and viewing of an area
JPH0370497B2 (en)
JPS6036253Y2 (en) Dental medical laser handpiece
US5076685A (en) Apparatus for ophthalmological laser-therapy instruments
JPH09508306A (en) Corneal shaping equipment
JPH11218649A (en) Optical coupling device with beam shaping function and laser diode module
JP3254939B2 (en) Optical device for optical communication
JP2000126886A (en) Laser beam irradiation device
JPH0722601B2 (en) Laser equipment
WO2023058700A1 (en) Beam shaping lens, beam shaping element, light source device for endoscope, and endoscope
JPS58185145A (en) Laser processing apparatus
JPH0890272A (en) Laser beam machine
JPH06254112A (en) Optical solidifying device
JPH10133145A (en) Guide light system for laser irradiating device
JP2711458B2 (en) Laser therapy equipment
JPH01205895A (en) Laser beam projecting device
Rol et al. Fiber beam shaping and ophthalmic applications
JPH0428710Y2 (en)
JP2000275570A (en) Beam mode converting optical system