JPS63291980A - Ferroelectric liquid crystal element - Google Patents

Ferroelectric liquid crystal element

Info

Publication number
JPS63291980A
JPS63291980A JP12581887A JP12581887A JPS63291980A JP S63291980 A JPS63291980 A JP S63291980A JP 12581887 A JP12581887 A JP 12581887A JP 12581887 A JP12581887 A JP 12581887A JP S63291980 A JPS63291980 A JP S63291980A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
group
layer
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12581887A
Other languages
Japanese (ja)
Inventor
Masataka Yamashita
眞孝 山下
Takashi Iwaki
孝志 岩城
Gouji Toganou
門叶 剛司
Yoko Yamada
容子 山田
Chieko Hioki
日置 知恵子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12581887A priority Critical patent/JPS63291980A/en
Publication of JPS63291980A publication Critical patent/JPS63291980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To obtain a ferroelectric liquid crystal element having excellent low- temperature working characteristics, quick response, etc., by applying an orientation-controlling layer to a pair of substrates each furnished with a potential-imposing means and interposing a ferroelectric liquid crystal layer containing a specific liquid crystal ester compound between the substrates. CONSTITUTION:A ferroelectric liquid crystal layer 1 containing one or more kinds of liquid crystal ester compounds of formula I (R1 is preferably methyl, etc.; R2 is preferably ethyl, etc.; group of formula II is 1,4-phenylene group, etc.; n is 1-6) is inserted between a pair of glass substrates 2 having transparent electrode 3 (e.g. composed of a thin film of In2O3) and an orientation controlling layer 4 (e.g. produced by rubbing a thin polyimide layer with a gauze). The thickness of the liquid crystal layer is adjusted with a spacer 5. The transparent electrode 3 is provided with a lead wire 6 to enable the application of voltage with a power source 7. The glass substrates 2 are sandwiched with a pair of cross Nicol polarization plates 8 and a light source 9 is disposed at a side of the Nicol plate to obtain the objective ferroelectric liquid crystal element.

Description

【発明の詳細な説明】 皮!立1 本発明は、強誘電性液晶素子に関し、さらに詳しくは電
圧印加手段、配向制御層を設けた基板間に強誘電性液晶
の層を有する強誘電性液晶素子に係り、特に、特定のエ
ステル化合物を前述強誘電性液晶に含有させた強誘電性
液晶素子に関するものである。
[Detailed Description of the Invention] Skin! TECHNICAL FIELD The present invention relates to a ferroelectric liquid crystal element, and more particularly to a ferroelectric liquid crystal element having a layer of ferroelectric liquid crystal between substrates provided with voltage application means and an alignment control layer. The present invention relates to a ferroelectric liquid crystal element in which the aforementioned ferroelectric liquid crystal contains a compound.

豊」JL史 液晶は既に種々の光学変調素子として応用され、時に表
示素子として時計、電卓等に実用化されている。
Yutaka JL History Liquid crystals have already been applied as various optical modulation elements, and are sometimes put to practical use as display elements in watches, calculators, etc.

これは液晶素子が、消費電力が極めて少なく、また装置
の薄型、軽量化が可能であることと、更に表示素子とし
ては受光素子であるため長時間使用しても目の疲労が少
ないという特長によるものである。
This is due to the fact that liquid crystal elements consume extremely little power and can be made thinner and lighter, and furthermore, because the display element is a light-receiving element, it causes less eye fatigue even when used for long periods of time. It is something.

現在実用化されている液晶素子のほとんどは、例えば、
エム、シャット(M、5chadt)とダブり二一、ヘ
ルフリヒ(I,)Ielfrlch)著、”アプライド
、フィズイクス、レターズ18@4号(”^ppHed
 Physics Letters ” 、Vol、1
8.  No。
Most of the liquid crystal elements currently in practical use are, for example,
M, Schadt (M, 5chadt) and Daburi 21, Helfrich (I,) Ielfrlch), “Applied, Physics, Letters 18 @ No. 4 (”
Physics Letters”, Vol. 1
8. No.

4 ) (I971,LIS) 、P、127〜128
の「捩れネマチック液晶の電圧依存光学挙動」 (”V
oltage −Dependant  0ptica
l Actlvlty of a TwistedNe
matlc Liquid Crystal@)に記載
されたTN(ツィステッド・ネマチック)型の液晶を用
いるものである。
4) (I971, LIS), P, 127-128
“Voltage-dependent optical behavior of twisted nematic liquid crystals” (”V
oltage-Dependant 0ptica
Actlty of a TwistedNe
This uses a TN (twisted nematic) type liquid crystal described in Matlc Liquid Crystal@).

これらは、液晶の誘電的配列効果に基づいており、液晶
分子の誘電異方性のために平均分子軸方向が、加えられ
た電場により特定の方向に向く効果を利用している。こ
れらの素子の光学的な応答速度の限界は数ms@cであ
るといわれ、液晶素子の応用分野拡大への障害となって
いる0例えば大型平面ディスプレーへの応用では価格、
生産性などを考え合わせると、単純マトリクス方式によ
る駆動が最も有力である。単純マトリクス方式において
は、走査電極群に順次周期的にアドレス信号を選択印加
し、信号電極群には所定の情報信号をアドレス信号と同
期させて並列的に選択印加する時分割駆動方式が採用さ
れている。
These are based on the dielectric alignment effect of liquid crystals, and utilize the effect that the average molecular axis direction is oriented in a specific direction due to the dielectric anisotropy of liquid crystal molecules due to an applied electric field. It is said that the limit of the optical response speed of these elements is several ms@c, which is an obstacle to expanding the field of application of liquid crystal elements.For example, when applied to large flat displays, the price and
Considering productivity and other factors, driving using a simple matrix method is the most promising. In the simple matrix method, a time-division drive method is adopted in which address signals are selectively and periodically applied to a group of scanning electrodes in sequence, and predetermined information signals are selectively applied in parallel to a group of signal electrodes in synchronization with the address signal. ing.

しかし、この様な駆動方式の素子に前述したTN型の液
晶を採用すると、走査電極が選択され、信号電極が選択
されない領域或いは走査電極が選択されず、信号電極が
選択される領域(所謂“半選択点“)にも有限の電界が
かかつてしまう。
However, if the above-mentioned TN type liquid crystal is adopted as an element of such a driving method, there will be an area where the scanning electrode is selected and the signal electrode is not selected, or an area where the scanning electrode is not selected and the signal electrode is selected (so-called " A finite electric field is also generated at the half-selected point ().

選択点にかかる電圧と、半選択点にかかる電圧の差が充
分に大きく、液晶分子を電界に垂直に配列させるのに要
する電圧閾値がこの中間の電圧値に設定されるならば、
表示素子は正常に動作するわけであるが、走査線(N)
を増やして行なった場合、画面全体(iフレーム)を走
査する間に1つの選択点に有効な電界がかかっている時
間(duty比)が1/Nの割合で減少してしまう。
If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align the liquid crystal molecules perpendicular to the electric field is set to an intermediate voltage value,
The display element operates normally, but the scanning line (N)
If this is done by increasing the number of pixels, the time during which an effective electric field is applied to one selected point (duty ratio) while scanning the entire screen (i-frame) decreases at a rate of 1/N.

このために、くり返し走査を行なった場合の選択点と非
選択点にかかる実効値としての電圧差は、走査線数が増
えれば増える程小さくなり、結果的には画像コントラス
トの低下やクロストークが避は難い欠点となっている。
For this reason, when repeated scanning is performed, the effective voltage difference between selected points and non-selected points becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and crosstalk. This is a drawback that is difficult to avoid.

この様な現象は、双安定性を有さない液晶(電極面に対
し、液晶分子が水平に配向しているのが安定状態であり
、電界が有効に印加されている間のみ垂直に配向する)
を時間的蓄積効果を利用して駆動する(即ち、繰り返し
走査する)ときに生ずる本賞的には避は難い問題点であ
る。
This phenomenon is caused by liquid crystals that do not have bistability (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). )
This is an unavoidable problem that arises when driving using the temporal accumulation effect (that is, repeatedly scanning).

この点を改良するために、電圧平均化法、2周波駆動法
や、多重マトリクス法等が既に提案されているが、いず
れの方法でも不充分であり、液晶素子の大画面化や高密
度化は走査線数が充分に増やせないことによフて頭打ち
になっているのが現状である。
In order to improve this point, voltage averaging method, dual frequency drive method, multiple matrix method, etc. have already been proposed, but all of these methods are insufficient, and it is necessary to increase the screen size and density of liquid crystal elements. Currently, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.

低消費電力、受光型といった、液晶素子の特長を生かし
、なおかつ、エレクトロルミネッセンスなど発光型素子
に匹敵する応答性を確保するには、TN型液晶素子に変
わる新しい液晶素子の開発が不可欠である。そうした試
みの1つとして、双安定性を有する液晶素子の使用がC
1arkおよびLag@rwallにより提案されてい
る(特開昭56−107216号公報、米国特許第43
67924号明細書等)、双安定性液晶としては、一般
に、カイラルスメクチックC相(SmC”相)またはH
相(SmH宜)を有する強誘電性液晶が用いられる。
In order to take advantage of the features of liquid crystal elements such as low power consumption and light-receiving type, and to ensure responsiveness comparable to electroluminescent and other light-emitting elements, it is essential to develop a new liquid crystal element to replace the TN type liquid crystal element. One such attempt is the use of bistable liquid crystal elements.
1ark and Lag@rwall (Japanese Unexamined Patent Publication No. 56-107216, U.S. Pat. No. 43
67924), the bistable liquid crystal is generally a chiral smectic C phase (SmC'' phase) or an H
A ferroelectric liquid crystal having a phase (SmH) is used.

この強誘電性液晶は、電界に対して第1の光学的安定状
態と第2の光学的安定状態からなる双安定状態を有し、
従って前述のTN型の液晶で用いられた光学変調素子と
は異なり、例えば、一方の電界ベクトルに対して第1の
光学的安定状態に液晶が配向し、他方の電界ベクトルに
対しては12の光学的安定状態に液晶が配向される。ま
たこの型の液晶は、加えられる電界に応答して、上記2
つの安定状態のいずれかを取り、かつ、電界の印加のな
いときは、その状態を11持する性質(双安定性)を有
する。
This ferroelectric liquid crystal has a bistable state consisting of a first optically stable state and a second optically stable state with respect to an electric field,
Therefore, unlike the optical modulation element used in the above-mentioned TN type liquid crystal, for example, the liquid crystal is oriented in the first optically stable state for one electric field vector, and 12 for the other electric field vector. The liquid crystal is aligned in an optically stable state. In addition, this type of liquid crystal responds to the applied electric field by
It has a property (bistability) of taking one of three stable states and having 11 of these states when no electric field is applied.

以上の様な双安定性を有する特徴に加えて、強誘電性液
晶は高速応答性であるという優れた特徴を持つ、それは
、強誘電液晶の持つ自発分極と印加電場が直接作用して
、配向状態の転移を誘起するためであり、誘電率異方性
と電場の作用による応答速度より3〜4桁速い。
In addition to the above-mentioned feature of bistability, ferroelectric liquid crystals have the excellent feature of high-speed response, which is due to the direct interaction between the spontaneous polarization of ferroelectric liquid crystals and the applied electric field. This is to induce state transition, and the response speed is three to four orders of magnitude faster than the response speed due to the effect of dielectric anisotropy and electric field.

この様に強誘電性液晶は、きわめて優れた特性を潜在的
に有しており、この様な性質を利用することにより、上
述した従来のTN型液晶素子の問題点の多くに対して、
かなり来貢的な改善が得られる。特に、高速光学光シャ
ッターや、高密度、大画面ディスプレイへの応用が期待
される。
As described above, ferroelectric liquid crystals potentially have extremely excellent properties, and by utilizing these properties, many of the problems of conventional TN type liquid crystal elements mentioned above can be solved.
A considerable improvement can be obtained. In particular, it is expected to be applied to high-speed optical shutters and high-density, large-screen displays.

が  じょうとするり このため強誘電性液晶素子に用いる強誘電性を持つ液晶
材料に関しても広く研究がなされているが、現在まで報
告されている強誘電性液晶素子で、低温作動特性、高速
応答性等、緒特性を満足するもの京で至っているものは
ほとんどなく、実用化された強誘電性液晶素子は皆無で
ある。
For this reason, extensive research has been conducted on liquid crystal materials with ferroelectric properties used in ferroelectric liquid crystal devices, but the ferroelectric liquid crystal devices reported to date have low-temperature operating characteristics and high-speed response. There are almost no ferroelectric liquid crystal devices that have been developed that satisfy the basic characteristics such as performance, and there are no ferroelectric liquid crystal devices that have been put to practical use.

本発明の目的は前述の欠点または不利を解消した強誘電
性液晶素子を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a ferroelectric liquid crystal element which eliminates the above-mentioned drawbacks or disadvantages.

本発明の別の目的は、新規な強誘電性液晶組成物を提供
することにある。
Another object of the present invention is to provide a novel ferroelectric liquid crystal composition.

a を  するための 本発明のかかる目的は、それぞれ電圧印加手段を設けた
一対の基板の少なくとも一方に配向制御層を設け、該一
対の基板間に強誘電性液晶の層を有する強誘電性液晶素
子において、該強誘電性液晶が下記一般式CI)で示さ
れる液晶性エステル化合物を少なくとも1種以上含有す
るものであることを特徴とする強誘電性液晶素子によっ
て達成される。
The object of the present invention is to provide a ferroelectric liquid crystal with an alignment control layer provided on at least one of a pair of substrates each provided with a voltage applying means, and a layer of ferroelectric liquid crystal between the pair of substrates. This is achieved by a ferroelectric liquid crystal element characterized in that the ferroelectric liquid crystal contains at least one liquid crystal ester compound represented by the following general formula CI).

一般式(I) 上記一般式(I)において、R,は炭素数1〜18の置
換基を有していても良い分岐または直鎮のアルキル鎮状
基を示し、R2は置換基を有していても良い分岐または
直鎮の鎖状基を示す、R1の好ましい具体例としては、
メチル、エチル、プロピル、ブチル、ペンチル、ヘキシ
ル、イソプロピル等のアルキル基があげられる。また基
R3の好ましい具体例としては、メチル、エチル、プロ
ピル、ブチル、ペンチル、ヘキシル、イソプロピル等の
アルキル基、アセチル、プロピオニル、ブチニル、バレ
リル、バルミトイル、2−メチル−プロピオニル等のア
シル基、アセチルオキシ、プロピオニルオキシ、ブチニ
ルオキシ、2−メチル−プロピオニルオキシ等のアシル
オキシ基、メトキシ、エトキシ、プロポキシ、ブトキシ
、2メチル−ブトキシ等アルコキシ基、メトキシカルボ
ニル、エトキシカルボニル、ブトキシカルボニル、2−
メチル−ブトキシカルボニル等のアルコキシカルボニル
基、メトキシカルボニルオキシ、エトキシカルボニルオ
キシ、ブトキシカルボニルオキシ、2−メチル−ブトキ
シカルボニルオキシ等アルコキシカルボニルオキシ基が
あげられる。
General formula (I) In the above general formula (I), R represents a branched or straight alkyl group which may have a substituent having 1 to 18 carbon atoms, and R2 has a substituent. Preferred specific examples of R1, which may represent a branched or straight chain group, include:
Examples include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and isopropyl. Preferred specific examples of the group R3 include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and isopropyl; acyl groups such as acetyl, propionyl, butynyl, valeryl, valmitoyl, and 2-methyl-propionyl; acetyloxy; , acyloxy groups such as propionyloxy, butynyloxy, 2-methyl-propionyloxy, alkoxy groups such as methoxy, ethoxy, propoxy, butoxy, 2-methyl-butoxy, methoxycarbonyl, ethoxycarbonyl, butoxycarbonyl, 2-
Examples include alkoxycarbonyl groups such as methyl-butoxycarbonyl, and alkoxycarbonyloxy groups such as methoxycarbonyloxy, ethoxycarbonyloxy, butoxycarbonyloxy, and 2-methyl-butoxycarbonyloxy.

R1、R2として上記例示した基は、更なる置換基とし
て、フッ素、塩素、臭素等のハロゲン原子、メトキシ、
エトキシ、プロポキシ、ブトキシ等のアルコキシ基、ト
リフルオロメチル基、シアノ基等を有することができる
The groups exemplified above as R1 and R2 have further substituents such as halogen atoms such as fluorine, chlorine, and bromine, methoxy,
It can have an alkoxy group such as ethoxy, propoxy, butoxy, trifluoromethyl group, cyano group, etc.

(シ は置換基を有していても良い、1.4−フェニレ
ン基、ピリミジン−2,5−ジイル基を示し、これらの
基は、更なる置換基としてフッ素、塩素、臭素等のハロ
ゲン原子、メチル、エチル、プロピル、ブチル等のアル
キル基、メトキシ、エトキシ、プロポキシ等のアルコキ
シ基、トリフルオロメチル基、シアノ基等を有すること
ができる。
(S represents a 1,4-phenylene group or a pyrimidine-2,5-diyl group, which may have a substituent, and these groups may have a halogen atom such as fluorine, chlorine, or bromine as an additional substituent. , an alkyl group such as methyl, ethyl, propyl, butyl, an alkoxy group such as methoxy, ethoxy, propoxy, a trifluoromethyl group, a cyano group, etc.

nは1〜6の整数を示し、C末は不斉炭素原子であるこ
とを示す。
n represents an integer of 1 to 6, and the C-terminus represents an asymmetric carbon atom.

以下に、一般式(I)で示す化合物についての代表例を
挙げる。
Representative examples of the compound represented by general formula (I) are listed below.

HhtCs OCH(CHz )2 C−08,C1)
OCl0H21Hl、C,0CR(CHa )*  c
o盛OCa  Hiy(S)    (i: Ho  
 0 HIICI 0CH(’CH* )2 Co@番OC+
2H□(7)       CHs       0H
IICI 0(iH(’CH2)2 Co■数ca H
17(6g) Hx+CsO占H(CHz ) ! COヤ蔓OC+o
Hzr末 上記したような、本発明で用いるエステル化合物は、例
えば特開昭61−76438号に記載する方法により合
成可能であり、その代表的な合成例を示せば下記の通り
である。
HhtCs OCH (CHz )2 C-08, C1)
OCl0H21Hl,C,0CR(CHa)*c
o Sheng OCa Hiy (S) (i: Ho
0 HIICI 0CH('CH*)2 [email protected]+
2H□(7) CHs 0H
IICI 0(iH('CH2)2 Co ■ number ca H
17 (6g) Hx+CsO measurement H (CHz)! CO Ya Vine OC+o
The ester compound used in the present invention as described above can be synthesized, for example, by the method described in JP-A-61-76438, and a typical synthesis example thereof is as follows.

食JLLL(前記例示化合物(I7)の合成)30a1
7:)スコニ下記#ルボン@i、sg(a、Ommol
)を入れ、 冷却下、塩化チオニル30Ilfiを加え、攪拌しなが
ら室温まで昇温さ廿、さらに冷却管を取りつけ、外浴温
度70℃〜80℃で4時間加熱還流を行なりた1反応後
過剰の塩化チオニルを留去し、酸塩化物を得た。これを
トルエン151に溶解し、0〜5℃に冷却した下記フェ
ノール誘導体2.6g(I3msol) HO擬x防OCIo)(21 のピリジン溶液に滴下していった。その後、約2時間0
℃〜5℃で攪拌を続け、さらに室温にて16時間攪拌し
た0反応終了後、約200m1の氷水にあけ、ベンゼン
にて抽出を行ない、5%塩酸水溶液で3回洗った後、イ
オン交換水で1回、さらに水層のp)I値が中性になる
まで5%に2COs水溶液を加え、その後もう1度イオ
ン交換水で水洗を行なった。
Food JLLL (synthesis of the above-mentioned exemplary compound (I7)) 30a1
7:) Sconi below # Le Bon @ i, sg (a, Ommol
), 30 Ilfi of thionyl chloride was added under cooling, and the temperature was raised to room temperature while stirring.Furthermore, a cooling pipe was attached, and the mixture was heated under reflux at an external bath temperature of 70°C to 80°C for 4 hours. Thionyl chloride was distilled off to obtain an acid chloride. This was dissolved in toluene 151 and added dropwise to a pyridine solution of 2.6 g of the following phenol derivative (I3msol) HO pseudo-OCIo) (21) cooled to 0 to 5°C.
After the reaction was completed, stirring was continued at ℃ to 5℃ and further stirred for 16 hours at room temperature, the mixture was poured into about 200 ml of ice water, extracted with benzene, washed three times with 5% aqueous hydrochloric acid solution, and then poured into ion-exchanged water. Once again, a 5% aqueous solution of 2COs was added until the p)I value of the aqueous layer became neutral, and then washing was performed once again with ion-exchanged water.

有機層を取り出し、無水硫酸ナトリウムを用いて乾燥し
、溶媒留去して粗製物を得た。これを、屋開液としてれ
一ヘキサン/酢酸エチル;2o/1混合液を用いて、シ
リカゲルカラムクロマトグラフィーにて精製を行なった
The organic layer was taken out, dried using anhydrous sodium sulfate, and the solvent was distilled off to obtain a crude product. This was purified by silica gel column chromatography using a 20/1 mixture of hexane/ethyl acetate as a starting solution.

溶媒留去して得た結晶を、n−へキサンを用いて再結晶
して、精製目的物を得た。さらに室温にて減圧乾燥を行
ない、最終精製目的物を1.62g得た。収率は41%
であった。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, drying was performed under reduced pressure at room temperature to obtain 1.62 g of the final purified target product. Yield is 41%
Met.

I R(cab−’) : 2950.2920,2840,1740゜1600.
1490,1285.1250゜1150.1165.
1o95、825゜以上、代表的なエステル化合物の合
成法について述べたが、一般式(I)で示される他のエ
ステル化合物も同様にして合成される。
IR(cab-'): 2950.2920,2840,1740°1600.
1490, 1285.1250°1150.1165.
1o95, 825° and above, the synthesis method of a typical ester compound has been described, but other ester compounds represented by the general formula (I) can be synthesized in the same manner.

本発明による強誘電性液晶素子は、前記一般式で示され
るエステル化合物1f!以上と他の強誘電性液晶化合物
1fi1以上とを適当な割合で混合せしめ、これを真空
中または常圧中、等方性液体温度まで加熱し、素子セル
中に封入し、徐々に冷却して強誘電性液晶層を形成させ
ることにより得られる。
The ferroelectric liquid crystal element according to the present invention is an ester compound 1f! represented by the above general formula. The above and another ferroelectric liquid crystal compound 1fi1 or more are mixed in an appropriate ratio, heated in vacuum or normal pressure to isotropic liquid temperature, sealed in an element cell, and gradually cooled. It is obtained by forming a ferroelectric liquid crystal layer.

本発明に用いる、他の強誘電性液晶化合物として、下記
の化合物をあげることができる。
Other ferroelectric liquid crystal compounds used in the present invention include the following compounds.

本発明の液晶性化合物と、1種以上の上述強誘電性液晶
化合物(以下、強誘電性液晶材料と略す)との配合割合
は、強誘電性液晶材料100!量部当り、本発明の液晶
性化合物を1〜500!量部とすることが好ましい、ま
た、本発明の液晶性化合物を2種以上用いる場合も強誘
電性液晶材料との配合割合は、前述した強誘電性液晶材
料100重量部当り、本発明の液晶性化合物の2種以上
の合計量を1〜500重量部とすることが好ましい。
The compounding ratio of the liquid crystal compound of the present invention and one or more of the above-mentioned ferroelectric liquid crystal compounds (hereinafter abbreviated as ferroelectric liquid crystal material) is 100% of the ferroelectric liquid crystal material! 1 to 500 parts of the liquid crystalline compound of the present invention! Furthermore, when two or more types of liquid crystalline compounds of the present invention are used, the blending ratio with the ferroelectric liquid crystal material is as follows: per 100 parts by weight of the above-mentioned ferroelectric liquid crystal material, It is preferable that the total amount of two or more types of sexual compounds is 1 to 500 parts by weight.

第1図は、強誘電性液晶素子の構成を説明するための、
強誘電性液晶層を有する液晶表示素子の一例の厚さ方向
模式断面図である。
FIG. 1 is a diagram for explaining the structure of a ferroelectric liquid crystal element.
1 is a schematic cross-sectional view in the thickness direction of an example of a liquid crystal display element having a ferroelectric liquid crystal layer.

第1図を参照して、液晶表示素子は、それぞれ透明電極
3および配向制御層4を設けた一対のガラス基板2間に
強誘電性液晶層1を配置し且つその層厚をスペーサ5で
設定してなるものであり、一対の透明電極3間にリード
線6を介して電源7より電圧を印加可能に接続する。ま
た一対の基板2は、一対のクロスニコル偏光板8により
挟持され、その一方の外側には光源9が配置される。
Referring to FIG. 1, the liquid crystal display element has a ferroelectric liquid crystal layer 1 disposed between a pair of glass substrates 2 each provided with a transparent electrode 3 and an alignment control layer 4, and the layer thickness is set by a spacer 5. A voltage can be applied from a power source 7 via a lead wire 6 between a pair of transparent electrodes 3. Further, the pair of substrates 2 are sandwiched between a pair of crossed Nicol polarizing plates 8, and a light source 9 is arranged on the outside of one of them.

すなわち2枚のガラス基板2には、それぞれI n20
3.5n02あるいはI T O(Indlum−Tl
n 0xid@)等の薄膜から成る透明電極3が被覆さ
れている。その上にポリイミドの様な高分子の薄膜をガ
ーゼやアセテート植毛布等でラビングして、液晶をラビ
ング方向に配列するための配向制御層4が形成されてい
る。またこの配向制御層4としては、例えばシリコン窒
化物、水素を含有するシリコン窒化物、シリコン炭化物
、水素を含有するシリコン炭化物、シリコン酸化物、硼
素窒化物、水素を含有する硼素窒化物、セリウム酸化物
、アルミニウム酸化物、ジルコニウム酸化物、チタン酸
化物やフッ化マグネシウムなどの無機物貫層を形成し、
その上に、ポリビニルアルコール、ポリイミド、ポリア
ミドイミド、ポリエステルイミド、ポリバラキシレン、
ポリエステル、ポリカーボネート、ポリビニルアセター
ル、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアミド、ポ
リスチレン、セルロース樹脂、メラミン樹脂、ユリャ樹
脂、アクリル樹脂やフォトレジスト樹脂などの有機物室
を層形成した2層構造であってもよく、また無機物質配
向制御層あるいは有機物置配向制御層単層であっても良
い、この配向制御膜4が無機系ならば蒸着法などで形成
でき、有機系ならば、有機物室を溶解させた溶液または
その前駆体溶液(溶剤にo、i〜20重量%、好ましく
は0.2〜10重量%)を用いて、スピンナー塗布法、
浸漬塗布法、スクリーン印刷法、スプレー塗布法、ロー
ル塗布法等で塗布し、所定の硬化条件下(例えば加熱)
下で硬化させて形成することができる。配向制御層の厚
みは、通常30人〜5000人、好ましくは50人〜3
000人が適している。
That is, the two glass substrates 2 each have an I n20
3.5n02 or ITO(Indlum-Tl
A transparent electrode 3 made of a thin film such as n 0 oxid@) is coated thereon. Thereon, a thin film of a polymer such as polyimide is rubbed with gauze, acetate flocked cloth, or the like to form an alignment control layer 4 for aligning the liquid crystals in the rubbing direction. The orientation control layer 4 may be made of, for example, silicon nitride, hydrogen-containing silicon nitride, silicon carbide, hydrogen-containing silicon carbide, silicon oxide, boron nitride, hydrogen-containing boron nitride, or cerium oxide. Inorganic substances such as aluminum oxide, zirconium oxide, titanium oxide and magnesium fluoride are formed,
In addition, polyvinyl alcohol, polyimide, polyamideimide, polyesterimide, polyvaraxylene,
It may have a two-layer structure in which organic material chambers such as polyester, polycarbonate, polyvinyl acetal, polyvinyl chloride, polyvinyl acetate, polyamide, polystyrene, cellulose resin, melamine resin, Yulia resin, acrylic resin, and photoresist resin are formed. In addition, it may be a single layer of an inorganic material orientation control layer or an organic material orientation control layer.If this orientation control film 4 is inorganic, it can be formed by a vapor deposition method, or if it is organic, it can be formed by a solution containing an organic material. or a spinner coating method using a precursor solution thereof (o, i to 20% by weight, preferably 0.2 to 10% by weight in a solvent),
It is applied by dip coating method, screen printing method, spray coating method, roll coating method, etc., and is cured under predetermined curing conditions (e.g. heating).
It can be formed by curing at the bottom. The thickness of the orientation control layer is usually 30 to 5000, preferably 50 to 3.
000 people is suitable.

この2枚のガラス基板2は、例えばエポキシ樹脂等のス
クリーン印刷により設けたストライブ状のスペーサー5
によって任意の間隔に保たれている。また、このような
ストライブ・スペーサの代りに、例えば、所定の直径を
持つシリカビーズ、アルミナビーズをスペーサーとして
ガラス基板2枚で挟持し、周囲をシール材、例えばエポ
キシ系接着材を用いて密封してもよい。その他、スペー
サーとして高分子フィルムやガラスファイバー等を用い
ても良い、この2枚のガラス基板の間に強誘電性液晶4
が封入されている。
These two glass substrates 2 have stripe-shaped spacers 5 formed by screen printing of epoxy resin or the like.
are kept at arbitrary intervals. In addition, instead of such strip spacers, for example, silica beads or alumina beads having a predetermined diameter may be used as spacers and sandwiched between two glass substrates, and the surrounding area may be sealed using a sealing material such as an epoxy adhesive. You may. In addition, a polymer film, glass fiber, etc. may be used as a spacer, and the ferroelectric liquid crystal 4 is placed between these two glass substrates.
is included.

強誘電性液晶層4は、一般には0.5〜20μ、好まし
くは1μ〜5μの厚さに設定される。
The ferroelectric liquid crystal layer 4 is generally set to have a thickness of 0.5 to 20 microns, preferably 1 micron to 5 microns.

透明電極3はリード線によって外部電源7に接続されて
いる。またガラス基板2の外側には、互いの偏光軸を例
えば直交クロスニコル状態とした一対の偏光板8が貼り
合わせである。第1図の例は、透過型であり、光源9を
備えている。
The transparent electrode 3 is connected to an external power source 7 by a lead wire. Further, a pair of polarizing plates 8 are bonded to the outside of the glass substrate 2, with the polarization axes of each polarizing plate being in a crossed Nicol state, for example. The example shown in FIG. 1 is of a transmission type and includes a light source 9.

第2図は、強誘電性液晶素子の動作説明のために、セル
の例を模式的に描いたものである。21aと、21t+
は、それぞれIn203 %5no2あるいはI T 
O(Indlum −Tfn 0xide)等の薄膜か
らなる透明電極で被覆された基板(ガラス板)であり、
その間に液晶分子層22がガラス面に垂直になるよう配
向したSmC”相又はSmH”相の液晶が封入されてい
る。太線で示した線23が液晶分子を表わしており、こ
の液晶分子23はその分子に直交した方向に双極子モー
メント(P工)14を有している。基板21aと21b
上の電極間に一定の閾値以上の電圧を印加すると、液晶
分子23のらせん構造がほどけ、双極子モーメント(P
工)24がすべて電界方向に向くよう、液晶分子23は
配向方向を変えることができる。液晶分子23は、細長
い形状を有しており、その長袖方向と短軸方向で屈折率
異方性を示し、従って例えばガラス面の上下に互いにク
ロスニフルの偏光子を置けば、電圧印加極性によって光
学特性が変わる液晶光学変調素子となることは、容易に
理解される。
FIG. 2 schematically depicts an example of a cell for explaining the operation of a ferroelectric liquid crystal element. 21a and 21t+
are In203%5no2 or I T
It is a substrate (glass plate) covered with a transparent electrode made of a thin film such as O (Indlum-Tfn Oxide),
In between, liquid crystal of SmC" phase or SmH" phase, which is oriented such that the liquid crystal molecular layer 22 is perpendicular to the glass surface, is sealed. A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (P) 14 in a direction perpendicular to the molecule. Substrates 21a and 21b
When a voltage higher than a certain threshold is applied between the upper electrodes, the helical structure of the liquid crystal molecules 23 is unraveled, and the dipole moment (P
(4) The alignment direction of the liquid crystal molecules 23 can be changed so that all of the liquid crystal molecules 24 are oriented in the direction of the electric field. The liquid crystal molecules 23 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and the short axis direction. Therefore, for example, if cross-niffle polarizers are placed above and below the glass surface, the optical It is easily understood that this becomes a liquid crystal optical modulation element whose characteristics change.

本発明の光学変調素子で好ましく用いられる液晶セルは
、その厚さを充分に薄く(例えば10μ以下)すること
ができる、このように液晶層が薄くなるにしたがい、第
3図に示すように電界を印加していない状態でも液晶分
子のらせん構造がほどけ、その双極子モーメントPaま
たはPbは上向き(34a)又は下向き(34b)のど
ちらかの状態をとる。このようなセルに、第3図に示す
如く一定の閾値以上の極性の異る電界Ea又はEbを電
圧印加手段31aと31bにより付与すると、双極子モ
ーメントは、電界Ea又はEbの電界ベクトルに対応し
て上向き34a又は下向き34bと向きを変え、それに
応じて液晶分子は、第1の安定状態33aかあるいは第
2の安定状態33bの何れか1方に配向する。
The liquid crystal cell preferably used in the optical modulation element of the present invention can be made sufficiently thin (for example, 10μ or less).As the liquid crystal layer becomes thinner, the electric field increases as shown in FIG. Even when no voltage is applied, the helical structure of the liquid crystal molecules is unraveled, and the dipole moment Pa or Pb is either upward (34a) or downward (34b). When an electric field Ea or Eb of different polarity above a certain threshold value is applied to such a cell by the voltage applying means 31a and 31b as shown in FIG. 3, the dipole moment corresponds to the electric field vector of the electric field Ea or Eb. Then, the liquid crystal molecules are oriented in either the first stable state 33a or the second stable state 33b.

このような強誘電性を光学変調素子として用いることの
利点は、先にも述べたが2つある。
As mentioned earlier, there are two advantages to using such ferroelectricity as an optical modulation element.

その11は、応答速度が極めて速いことであり、第2は
液晶分子の配向が双安定性を有することである。′M2
の点を、例えば第3図によって更に説明すると、電界E
aを印加すると液晶分子は第1の安定状態33aに配向
するが、この状態は電界を切っても安定である。又、逆
向きの電界Ebを印加すると、液晶分子は第2の安定状
態Z3bに配向1してその分子の向きを変えるが、やは
り電界を切りてもこの状態に留っている。又、与える電
界EaあるいはEbが一定の閾値を越えない限り、それ
ぞれ前の配向状態にやはり維持されている。このような
応答速度の速さと、双安定性が有効に実現されるにはセ
ルとしては出来るだけ薄い方が好ましく、一般的には0
.5μ〜20μ、好ましくは1μ〜5μが適している。
Eleventh is that the response speed is extremely fast, and second is that the alignment of liquid crystal molecules has bistability. 'M2
To further explain this point with reference to FIG. 3, for example, the electric field E
When a is applied, the liquid crystal molecules are aligned in a first stable state 33a, and this state remains stable even when the electric field is turned off. Furthermore, when an electric field Eb in the opposite direction is applied, the liquid crystal molecules are oriented 1 to the second stable state Z3b and change their orientation, but they remain in this state even after the electric field is turned off. Further, as long as the applied electric field Ea or Eb does not exceed a certain threshold value, the previous orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable for the cell to be as thin as possible, and generally it is 0.
.. 5μ to 20μ, preferably 1μ to 5μ is suitable.

以下、実施例により本発明の素子ならびに用いる液晶化
合物について更に詳細に説明するが、本発明はこれらの
実施例に限定されるものではない、下記の例において「
部」は、いずれも重量部を示す。
Hereinafter, the device of the present invention and the liquid crystal compound used will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.
All "parts" indicate parts by weight.

大IL上 2枚の0.7ms+厚のガラス板を用意し、それぞれの
ガラス板上にITO@を形成し、電圧印加電極を作成し
、さらにこの上にsio、を蒸暑させ絶縁層とした。
Two glass plates with a thickness of 0.7 ms+ were prepared on the large IL, ITO@ was formed on each glass plate to create a voltage application electrode, and sio was further heated on top of this to form an insulating layer.

さらにその上にポリイミド樹脂前駆体[東しく株)SP
−51012%ジメチルアセトアミド溶液を、回転数2
000 r、p、mのスピンナーで15秒間塗布した。
Furthermore, on top of that, polyimide resin precursor [Toshiku Co., Ltd.]
-51012% dimethylacetamide solution at 2 rotations.
000 r, p, m spinner for 15 seconds.

成膜後、60分間、300tで加熱縮合焼!ItIA理
を施した。この時の塗膜の膜厚は、約700人でありた
After film formation, heat condensation baking at 300 tons for 60 minutes! ItIA treatment was performed. The thickness of the coating film at this time was about 700.

この焼成後の被膜には、アセテート植毛布によるラビン
グ処理がなされ、その後、イソプロピルアルコール液で
洗浄し、平均粒径2μmのアルミナビーズを一方のガラ
ス板上に散布した後、それぞれのラビング処理軸が互い
に平行となる様にし、接着シール剤[リクソンボンド(
チッソ(株))]を用いてガラス板をはり合わせ、60
分間100℃にて加熱乾燥しセルを作成した。このセル
のセル厚をベレック位相板によって測定したところ、約
2μmであった。
This fired coating was rubbed with acetate flocked cloth, then washed with isopropyl alcohol solution, and alumina beads with an average particle size of 2 μm were sprinkled on one glass plate, and each rubbed axis was Place them parallel to each other and apply adhesive sealant [Rixon Bond (
Chisso Co., Ltd.] was used to bond the glass plates together, and
A cell was prepared by heating and drying at 100° C. for minutes. The cell thickness of this cell was measured using a Berek phase plate and was found to be approximately 2 μm.

次に、本発明の前記例示化合物(8)と下記構造式で示
される強誘電性液晶化合物を下記の割合で混合した。
Next, the exemplary compound (8) of the present invention and a ferroelectric liquid crystal compound represented by the following structural formula were mixed in the following ratio.

例示化合物(8)               15
部混合物を、等方相下、均一混合液体状態で、前述の方
法で作製したセル内に真空注入した0等方相から5.0
℃/hで20℃まで徐冷することにより、強誘電性液晶
素子を作成した。
Exemplary compound (8) 15
The mixture was vacuum injected into the cell prepared by the method described above in a homogeneous mixed liquid state under an isotropic phase.
A ferroelectric liquid crystal element was prepared by slowly cooling the mixture to 20° C. at a rate of ° C./h.

この強誘電性液晶素子を使ってピーク・トウ・ピーク電
圧20Vの電圧印加により直交ニコル下での光学的な応
答(透過光量変化O〜90%)を検知して応答速度(光
学応答速度)を測定した。
Using this ferroelectric liquid crystal element, the optical response under crossed Nicols (transmitted light amount change 0~90%) is detected by applying a peak-to-peak voltage of 20V, and the response speed (optical response speed) is measured. It was measured.

その結果を次に示す。The results are shown below.

385 μsec 、 330 μs@c 、 275
 μsec 。
385 μsec, 330 μs@c, 275
μsec.

40℃ 245μsec 。40℃ 245 μsec.

匿腹亘ユ 実施例1で使用した例示化合物(8)を強誘電性液晶層
に含有させなかった以外は全〈実施例1と同様の方法で
強誘電性液晶素子を作成し光学応答速度を測定した。そ
の結果を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 1, except that the exemplified compound (8) used in Example 1 was not included in the ferroelectric liquid crystal layer, and the optical response speed was It was measured. The results are shown below.

420 μsec 、 380 μsec 、 325
 μsec m医ILス 実施例1で使用した例示化合物(8)以外の強誘電性液
晶化合物2f!に代えて、下記構造式で示す、強誘電性
液晶化合物を下記の割合で用い、例示化合物(8)を1
5重量部用いたほかは、実施例1と同様の方法で強誘電
性液晶素子を作成し、実施例1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
420 μsec, 380 μsec, 325
μsec m Medical IL S Ferroelectric liquid crystal compound 2f other than the exemplified compound (8) used in Example 1! Instead, a ferroelectric liquid crystal compound shown by the following structural formula was used in the following proportions, and exemplified compound (8) was added to 1
A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that 5 parts by weight was used, and the optical response speed was measured in the same manner as in Example 1. The results are shown below.

15℃    35℃    50℃ 690 μsec 、 245 μsec 、 145
 μsec 。
15℃ 35℃ 50℃ 690 μsec, 245 μsec, 145
μsec.

止Jlユ 実施例2で使用した例示化合物(8)を強誘電性液晶層
に含有させなかフた他は実施例2と同様の方法で強誘電
性液晶素子を作成し、実施例1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 2, except that the exemplified compound (8) used in Example 2 was not included in the ferroelectric liquid crystal layer. The optical response speed was measured using the method described above. The results are shown below.

20℃    25℃    35℃ 1100μsec 、 730 μsec 、 510
 μsec 。
20℃ 25℃ 35℃ 1100μsec, 730μsec, 510
μsec.

50℃    60℃    80℃ 230 μsec %170 μsec % 100 
μsec mK亙」ユ 実施例1で使用した例示化合物(8)以外の強誘電性液
晶化合物2種に代えて、下記構造式で示す、強誘電性液
晶化合物を下記割合で用い、例示化合物(8)を15重
量部用いたほかは、実施例1と同様の方法で強誘電性液
晶素子を作成し、実施例1と同様の方法で光学応答速度
を測定した。
50℃ 60℃ 80℃ 230 μsec %170 μsec % 100
In place of the two ferroelectric liquid crystal compounds other than Exemplified Compound (8) used in Example 1, ferroelectric liquid crystal compounds represented by the following structural formula were used in the following proportions, and Exemplified Compound (8) was used in Example 1. ) was used in the same manner as in Example 1, and the optical response speed was measured in the same manner as in Example 1.

その結果を次に示す。The results are shown below.

15℃       25℃       45℃32
00μsec  、  1950μsec  、  1
150μsec  。
15℃ 25℃ 45℃32
00μsec, 1950μsec, 1
150μsec.

ル」し伍」。Le'shigo'.

実施例3で使用した例示化合物(8)を強誘電性液晶層
に含有させなかった他は実施例3と同様の方法で強誘電
性液晶素子を作成し、実施例1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 3, except that the exemplified compound (8) used in Example 3 was not contained in the ferroelectric liquid crystal layer, and an optical element was prepared in the same manner as in Example 1. The response speed was measured. The results are shown below.

20℃    25℃    35℃ 5400μsec 、 3600μsec 、 290
0μSeCs45℃ 1800μsec 。
20℃ 25℃ 35℃ 5400μsec, 3600μsec, 290
0μSeCs45℃ 1800μsec.

東五亘1 実施例1で使用した例示化合物(8)以外の強誘電性液
晶化合物2ffIに代えて、下記構造式で示す、強誘電
性液晶化合物を用い、例示化合物(8)15!!量部を
用いたほかは、実施例1と同様の方法で強誘電性液晶素
子を作成し、実施例1と同様の方法で光学応答速度を測
定した。その結果を次に示す。
Azuma Gohan 1 In place of 2ffI, a ferroelectric liquid crystal compound other than exemplified compound (8) used in Example 1, a ferroelectric liquid crystal compound shown by the following structural formula was used to prepare exemplified compound (8) 15! ! A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that the same amount was used, and the optical response speed was measured in the same manner as in Example 1. The results are shown below.

100部 55℃    65℃   75℃ 120 μsec 、 90μsec 、 55μse
c 。
100 parts 55℃ 65℃ 75℃ 120 μsec, 90 μsec, 55 μsec
c.

1旦月1 実施例4で使用した例示化合物(8)を強誘電性液晶層
に含有させなかった他は実施例4と同様の方法で強誘電
性液晶素子を作成し、実施例1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
January 1 A ferroelectric liquid crystal element was prepared in the same manner as in Example 4, except that the exemplified compound (8) used in Example 4 was not contained in the ferroelectric liquid crystal layer, and the same method as in Example 1 was made. The optical response speed was measured using the method described above. The results are shown below.

75℃ 100μsec 医」1九二 実施例1で使用した例示化合物(8)以外の強誘電性液
晶化合物2Nに代えて、下記構造式で示す、強誘電性液
晶化合物を各重量部で用い、例示化合物(8)を15重
量部用いたほかは、実施例1と同様の方法で強誘電性液
晶素子を作成し、実施例1と同様の方法で光学応答速度
を測定した。
75°C 100 μsec 192 In place of the ferroelectric liquid crystal compound 2N other than the exemplified compound (8) used in Example 1, each part by weight of a ferroelectric liquid crystal compound shown by the following structural formula was used, A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that 15 parts by weight of compound (8) was used, and the optical response speed was measured in the same manner as in Example 1.

その結果を次に示す。The results are shown below.

25℃    35℃    45℃ 1050μsec 、 850 μsec 、 550
 μsec 。
25℃ 35℃ 45℃ 1050μsec, 850μsec, 550
μsec.

区且1 実施例5で使用した例示化合物(8)を強誘電性液晶層
に含有させなかつた他は実施例5と同様の方法で強誘電
性液晶素子を作成し、実施例1と同様の方法で応答速度
を測定した。その結果を次に示す。
Section 1 A ferroelectric liquid crystal element was prepared in the same manner as in Example 5, except that the exemplified compound (8) used in Example 5 was not contained in the ferroelectric liquid crystal layer, and the same method as in Example 1 was used. The response speed was measured using the method. The results are shown below.

35℃    45℃    50℃ l5OOμsec 、 1ooOμsec 、 800
 At5ec 。
35℃ 45℃ 50℃ 15OOμsec, 1ooOμsec, 800
At5ec.

夾」11互 実施例1で使用した例示化合物(8)以外の強誘電性液
晶化合物2f!に代えて、下記構造式で示す、強誘電性
液晶化合物を各重量部で用い、例示化合物(8)を15
重量部用いたほかは、実施例1と同様の方法で強誘電性
液晶素子を作成し、実施例1と同様の方法で光学応答速
度を測定した。
Ferroelectric liquid crystal compound 2f other than the exemplified compound (8) used in Example 1! Instead of, each part by weight of a ferroelectric liquid crystal compound shown by the following structural formula was used, and 15% of exemplified compound (8) was used.
A ferroelectric liquid crystal device was prepared in the same manner as in Example 1, except that parts by weight were used, and the optical response speed was measured in the same manner as in Example 1.

その結果を次に示す。The results are shown below.

820 μsec 、 350 μsec 、 200
 μsec 。
820 μsec, 350 μsec, 200
μsec.

庄J口I旦 実施例6で使用した例示化合物(8)を強誘電性液晶層
に含有させなかフた他は実施例6と同様の方法で強誘電
性液晶素子を作成し、実施例1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 6 except that the exemplary compound (8) used in Example 6 was not included in the ferroelectric liquid crystal layer. The optical response speed was measured in the same manner. The results are shown below.

5℃    20℃    35℃ 900 μSec % S[lOμS6Cs 4110
 μSec及五亘1 実施例1で使用したポリイミド樹脂前駆体2%ジメチル
アセトアミド溶液に代えて、ポリビニルアルコール樹脂
[クラリ(株)製PUA−117]2%水溶液を用いた
他は全く同様の方法で強誘電性液晶素子を作成し、実施
例1と同様の方法で、光学応答速度を測定した。その結
果を次に示す。
5℃ 20℃ 35℃ 900 μSec % S[lOμS6Cs 4110
μSec and 5.1 The same method was used except that instead of the 2% dimethylacetamide solution of polyimide resin precursor used in Example 1, a 2% aqueous solution of polyvinyl alcohol resin [PUA-117 manufactured by Kurari Co., Ltd.] was used. A ferroelectric liquid crystal element was produced, and the optical response speed was measured in the same manner as in Example 1. The results are shown below.

15℃    20t:     30t:380 μ
sec 、 355 μsec 、 285 μsec
 。
15℃ 20t: 30t: 380μ
sec, 355 μsec, 285 μsec
.

40℃ 255μsec 。40℃ 255μsec.

A」11且 実施例1で使用した5in2を用いずにポリイミド樹脂
だけで絶縁性配向制御層を作成した以外は、全〈実施例
1と同様の方法で強誘電性液晶素子を作成し、実施例1
と同様の方法で光学応答速度を測定した。その結果を次
に示す。
A'11 A ferroelectric liquid crystal element was created and carried out in the same manner as in Example 1, except that the insulating alignment control layer was created only with polyimide resin without using the 5in2 used in Example 1. Example 1
The optical response speed was measured in the same manner. The results are shown below.

15℃    20℃    30℃ 370 μsec 、 340 μsec 、 270
 μsec 。
15℃ 20℃ 30℃ 370 μsec, 340 μsec, 270
μsec.

40℃ 240 p sec 。40℃ 240 psec.

10〜31 実施例2で用いた例示化合物(8)に代えて、表1に示
す例示化合物を下表1に示す量で使用した以外は、実施
例2と全く同様の方法で強誘電性液晶素子を作成し、光
学応答速度を測定した。その結果をまとめて表1に示す
10-31 A ferroelectric liquid crystal was prepared in exactly the same manner as in Example 2, except that the exemplified compounds shown in Table 1 were used in the amounts shown in Table 1 below in place of the exemplified compound (8) used in Example 2. A device was created and the optical response speed was measured. The results are summarized in Table 1.

表1 λ1目り丸見 上記実施例より明らかな様に、本発明によれば低温作動
特性、高速応答性の改善された、強誘電性液晶素子を実
現できる。
Table 1 λ1 Full view As is clear from the above examples, according to the present invention, a ferroelectric liquid crystal element with improved low temperature operating characteristics and high speed response can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は強誘電性液晶を用いた、液晶表示素子の1例の
断面概略図、第2図および第3図は、強誘電液晶素子の
動作説明のために素子セルの一例を模式的に表わす斜視
図である。 1:強誘電液晶層、2ニガラス基板、3:透明電極、4
:配列制御膜、5ニスペーサ−16:リード線、7:電
源、8:偏光板、9:光源、I・は入射光、夏は透過光
、21a:基板、21b:基板、22:強誘電液晶層、
23:液晶分子、24:双極子モーメント(P↓)、3
1a:電圧印加手段、31b:電圧印加手段、33a:
第1の安定状態、33b=第2の安定状態、34a:上
向きの双極子モーメント、34b:下向き双極子モーメ
ント、Ea:上向きの電界、Eb:下向きの電界。 第1図
Figure 1 is a schematic cross-sectional view of an example of a liquid crystal display element using ferroelectric liquid crystal, and Figures 2 and 3 are schematic diagrams of an example of an element cell to explain the operation of a ferroelectric liquid crystal element. FIG. 1: Ferroelectric liquid crystal layer, 2 glass substrate, 3: transparent electrode, 4
: Array control film, 5 spacer - 16: Lead wire, 7: Power source, 8: Polarizing plate, 9: Light source, I. is incident light, transmitted light in summer, 21a: Substrate, 21b: Substrate, 22: Ferroelectric liquid crystal layer,
23: Liquid crystal molecule, 24: Dipole moment (P↓), 3
1a: voltage application means, 31b: voltage application means, 33a:
First stable state, 33b = second stable state, 34a: upward dipole moment, 34b: downward dipole moment, Ea: upward electric field, Eb: downward electric field. Figure 1

Claims (1)

【特許請求の範囲】 1、それぞれ電圧印加手段を設けた一対の基板の少なく
とも一方に配向制御層を設け、該一対の基板間に強誘電
性液晶の層を有する強誘電性液晶素子において、該強誘
電性液晶が下記一般式( I )で示される液晶性エステ
ル化合物を少なくとも1種以上含有するものであること
を特徴とする強誘電性液晶素子。 一般式( I ) ▲数式、化学式、表等があります▼ (但し、式中R_1は炭素数1〜18の置換基を有して
いても良い分岐または直鎖のアルキル鎖状基を示し、R
_2は置換基を有していても良い分岐または直鎖の鎖状
基を示し、▲数式、化学式、表等があります▼は置換基
を有していても良い1,4−フェニレン基またはピリミ
ジン−2,5−ジイル基を示し、nは1〜6の整数を示
し、C^2は不斉炭素を示す。) 2、一般式( I )においてR_2が置換基を有してい
ても良い分岐または直鎖のアルキル基、または置換基を
有していても良い分岐または直鎖のアルキル基を含むア
シル基、アシルオキシ基、アルコキシ基、アルコキシカ
ルボニル基、アルコキシカルボニルオキシ基から選ばれ
ることを特徴とする特許請求の範囲第1項記載の強誘電
性液晶素子。 3、一般式( I )において、R_1、R_2の置換基
がハロゲン原子、アルコキシ基、トリフルオロメチル基
、シアノ基から選ばれることを特徴とする特許請求の範
囲第1項記載の強誘電性液晶素子。 4、一般式( I )において▲数式、化学式、表等があ
ります▼の置換基が、ハロゲン原子、アルキル基、アル
コキシ基、トリフルオロメチル基、シアノ基から選ばれ
ることを特徴とする特許請求の範囲第1項記載の強誘電
性液晶素子。 5、液晶光変調素子である特許請求の範囲第1項記載の
強誘電性液晶素子。 6、液晶表示素子である、特許請求の範囲第1項記載の
強誘電性液晶素子。
[Scope of Claims] 1. A ferroelectric liquid crystal element in which an alignment control layer is provided on at least one of a pair of substrates each provided with a voltage applying means, and a layer of ferroelectric liquid crystal is provided between the pair of substrates. A ferroelectric liquid crystal element, characterized in that the ferroelectric liquid crystal contains at least one liquid crystal ester compound represented by the following general formula (I). General formula (I) ▲ Numerical formulas, chemical formulas, tables, etc. are available▼ (However, in the formula, R_1 represents a branched or straight-chain alkyl chain group that may have a substituent having 1 to 18 carbon atoms, and R
_2 indicates a branched or straight chain group that may have a substituent, and ▲ includes a mathematical formula, chemical formula, table, etc. ▼ indicates a 1,4-phenylene group or pyrimidine that may have a substituent It represents a -2,5-diyl group, n represents an integer of 1 to 6, and C^2 represents an asymmetric carbon. ) 2. In general formula (I), R_2 is a branched or straight-chain alkyl group that may have a substituent, or an acyl group containing a branched or straight-chain alkyl group that may have a substituent, The ferroelectric liquid crystal device according to claim 1, characterized in that the ferroelectric liquid crystal element is selected from acyloxy groups, alkoxy groups, alkoxycarbonyl groups, and alkoxycarbonyloxy groups. 3. The ferroelectric liquid crystal according to claim 1, wherein in the general formula (I), the substituents for R_1 and R_2 are selected from a halogen atom, an alkoxy group, a trifluoromethyl group, and a cyano group. element. 4. A patent claim characterized in that in general formula (I), the substituent represented by ▲ has a mathematical formula, chemical formula, table, etc. ▼ is selected from a halogen atom, an alkyl group, an alkoxy group, a trifluoromethyl group, and a cyano group. A ferroelectric liquid crystal element according to scope 1. 5. The ferroelectric liquid crystal device according to claim 1, which is a liquid crystal light modulation device. 6. The ferroelectric liquid crystal element according to claim 1, which is a liquid crystal display element.
JP12581887A 1987-05-25 1987-05-25 Ferroelectric liquid crystal element Pending JPS63291980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12581887A JPS63291980A (en) 1987-05-25 1987-05-25 Ferroelectric liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12581887A JPS63291980A (en) 1987-05-25 1987-05-25 Ferroelectric liquid crystal element

Publications (1)

Publication Number Publication Date
JPS63291980A true JPS63291980A (en) 1988-11-29

Family

ID=14919692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12581887A Pending JPS63291980A (en) 1987-05-25 1987-05-25 Ferroelectric liquid crystal element

Country Status (1)

Country Link
JP (1) JPS63291980A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123890A (en) * 1987-11-06 1989-05-16 Chisso Corp Ferroelectric liquid crystal composition
US6608332B2 (en) 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
US6614179B1 (en) 1996-07-29 2003-09-02 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light LED and phosphor components

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123890A (en) * 1987-11-06 1989-05-16 Chisso Corp Ferroelectric liquid crystal composition
US6608332B2 (en) 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
US6614179B1 (en) 1996-07-29 2003-09-02 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light LED and phosphor components
US7026756B2 (en) 1996-07-29 2006-04-11 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light LED and phosphor components
US7071616B2 (en) 1996-07-29 2006-07-04 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light led and phosphor components
US7126274B2 (en) 1996-07-29 2006-10-24 Nichia Corporation Light emitting device with blue light LED and phosphor components
US7215074B2 (en) 1996-07-29 2007-05-08 Nichia Corporation Light emitting device with blue light led and phosphor components
US7329988B2 (en) 1996-07-29 2008-02-12 Nichia Corporation Light emitting device with blue light LED and phosphor components
US7362048B2 (en) 1996-07-29 2008-04-22 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light led and phosphor components
US7531960B2 (en) 1996-07-29 2009-05-12 Nichia Corporation Light emitting device with blue light LED and phosphor components
US7682848B2 (en) 1996-07-29 2010-03-23 Nichia Corporation Light emitting device with blue light LED and phosphor components
US7855092B2 (en) 1996-07-29 2010-12-21 Nichia Corporation Device for emitting white-color light
US7901959B2 (en) 1996-07-29 2011-03-08 Nichia Corporation Liquid crystal display and back light having a light emitting diode
US7915631B2 (en) 1996-07-29 2011-03-29 Nichia Corporation Light emitting device and display
US7969090B2 (en) 1996-07-29 2011-06-28 Nichia Corporation Light emitting device and display
US7968866B2 (en) 1996-07-29 2011-06-28 Nichia Corporation Light emitting device and display

Similar Documents

Publication Publication Date Title
JP2801269B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2952053B2 (en) Optically active compound, liquid crystal composition containing the same, method of using the same, liquid crystal element using the same, and display device
JP2691946B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2899064B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP3095927B2 (en) Optically active compound, liquid crystal composition containing the same, method of using the same, liquid crystal element and display device using the same
JP2832028B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP3176073B2 (en) Liquid crystal element
JP2819332B2 (en) Liquid crystal compound and liquid crystal composition containing the same
JPS63254182A (en) Ferroelectric liquid crystal element
JPS63137986A (en) Ferroelectric liquid crystal device
JPH06104827B2 (en) Ferroelectric liquid crystal element
JPH0629424B2 (en) Ferroelectric chiral smectic liquid crystal composition and liquid crystal device containing the same
JPS63291980A (en) Ferroelectric liquid crystal element
JP3093507B2 (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, display method and display device using them
JP2749822B2 (en) Liquid crystal composition and liquid crystal device containing the same
JPH04300871A (en) Optically active compound, liquid crystal composition containing the compound, liquid crystal element containing the composition and display and display device using the element or the like
JPS63246346A (en) Liquid crystal compound and liquid crystal composition containing said compound
JP2791039B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2692986B2 (en) Liquid crystalline compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2770953B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2756263B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2759459B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2510681B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2881079B2 (en) Liquid crystal composition, liquid crystal element using the same, display method and display device thereof
JPH04264052A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same and method for display and display device using the same