JPS63291653A - Manufacture of superconducting material of oxide - Google Patents

Manufacture of superconducting material of oxide

Info

Publication number
JPS63291653A
JPS63291653A JP62126692A JP12669287A JPS63291653A JP S63291653 A JPS63291653 A JP S63291653A JP 62126692 A JP62126692 A JP 62126692A JP 12669287 A JP12669287 A JP 12669287A JP S63291653 A JPS63291653 A JP S63291653A
Authority
JP
Japan
Prior art keywords
superconducting
powder
oxide
container
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62126692A
Other languages
Japanese (ja)
Other versions
JPH0438457B2 (en
Inventor
Michio Takaoka
道雄 高岡
Tsukasa Kono
河野 宰
Tsuneaki Motai
恒明 馬渡
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Hiroshi Yamanouchi
山之内 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62126692A priority Critical patent/JPS63291653A/en
Publication of JPS63291653A publication Critical patent/JPS63291653A/en
Publication of JPH0438457B2 publication Critical patent/JPH0438457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field

Abstract

PURPOSE:To eliminate powder which is responsible for generation of imperfect superconducting substance and thereby enable a superconducting material with which only perfect superconducting substance is generated by allowing superconducting powder of oxide under an applied magnetic field at less than the critical temperature of a superconductor of oxide for selection. CONSTITUTION:First, superconducting powder 11 is charged into liquid nitrogen at the left-hand bottom of a container 10, and a magnet is allowed to move from left to right. At that time, some of the superconducting powder 11 charged into liquid nitrogen becomes a superconductor showing an inverse magnetism. Therefore, such powder is allowed afloat by magnetic force generated by the magnet 12. In addition, the powder moves under magnetic attraction to the right-hand side of the container 10 simultaneous with the movement of the magnet 12. After this, when the magnet 12 is moved to the right-hand side of the container 10, only superconducting powder 11 moved to the right-hand side of the container 10 is attracted and captured. In this way, only powder 11 which becomes a perfect superconductor can be selected.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、超電導線や超電導素子の製造に用いられる酸
化物系超電導材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for producing an oxide-based superconducting material used for producing superconducting wires and superconducting elements.

「従来技術」 近来、常電導状態から超電導状態に遷移する臨界温度(
Tc)が液体窒素温度以上の高い値を示す酸化物系の超
電導材料が種々発見されつつある。
"Prior art" Recently, the critical temperature at which the normal conductive state transitions to the superconducting state (
Various oxide-based superconducting materials are being discovered that exhibit Tc) values higher than the liquid nitrogen temperature.

この種の超電導材料は、液体ヘリウムによる冷却が必要
であった従来の合金系超電導体や化合物系超電導体に比
較して、遥かに有利な冷却条件で使用できるために、実
用上極めて有望な超電導材料とされている。
This type of superconducting material can be used under much more favorable cooling conditions than conventional alloy-based superconductors and compound-based superconductors, which require cooling with liquid helium, making it an extremely promising superconductor in practical use. It is considered as a material.

従来、この種の酸化物系超電導材料の中でLa−9r−
Cu−0系の超電導材料を製造するには、La酸化物と
Sr炭酸塩と酸化銅粉末を混合して所定の形状に加圧成
形し、加熱処理を施して焼結し、更にはこれを粉末化す
ることにより超電導材料を得ている。また、Y −B 
a−Cu−0系の超電導材料を製造するには、Y酸化物
とBa炭酸塩と酸化銅粉末を混合し、所定の形状に加圧
成形した後に加熱処理を施して焼結し、更にはこれを粉
末化して超電導材料を得ている。
Conventionally, among this type of oxide-based superconducting materials, La-9r-
To produce Cu-0-based superconducting materials, La oxide, Sr carbonate, and copper oxide powder are mixed, pressure-molded into a predetermined shape, heat-treated and sintered, and then Superconducting materials are obtained by powdering them. Also, Y-B
To produce a-Cu-0-based superconducting material, Y oxide, Ba carbonate, and copper oxide powder are mixed, pressure-molded into a predetermined shape, and then heat-treated and sintered. This is powdered to obtain superconducting materials.

「発明が解決しようとする問題点」 ところが、前述のように熱処理を施して得られた超電導
体を微粉状に粉砕して粉末状の超電導材料を製造した場
合、微粉体粒子の総てが超電導体となっていないことが
判明した。これは以下に説明する理由によるものと推定
している。
"Problems to be Solved by the Invention" However, when a powdered superconducting material is produced by pulverizing a superconductor obtained by heat treatment into fine powder as described above, all of the fine powder particles become superconducting. It turned out that it was not a body. This is presumed to be due to the reasons explained below.

まず、前述のように酸化物や炭酸塩に熱処理を施して超
電導材料を製造する場合には、混合された酸化物粉末と
炭酸塩が熱分解され、次に炭素等の不要成分がガス化さ
れて除去され、次いで超電導体の構成元素どうしが反応
して超電導体が生成される。ところが、原料粉末の熱分
解と不要成分のガス化による除去作用とが原料粉末成形
体の全体で均一になされないために、成形体の内部の生
成条件の有利な部分において選択的に超電導物質が生成
されることになり、その他の部分には不完全な超電導物
質が生成されるために、成形体の全体に均一に超電導物
質が生成されないものと推定している。
First, when producing superconducting materials by heat-treating oxides and carbonates as described above, the mixed oxide powder and carbonate are thermally decomposed, and then unnecessary components such as carbon are gasified. The constituent elements of the superconductor then react with each other to produce a superconductor. However, because the thermal decomposition of the raw material powder and the removal action by gasification of unnecessary components are not performed uniformly throughout the raw material powder compact, the superconducting material is selectively removed in areas where the formation conditions are favorable inside the compact. It is assumed that the superconducting material is not uniformly produced throughout the molded body because the superconducting material is incompletely produced in other parts.

本発明は、前記背景に鑑みてなされたもので、超電導物
質が全体に均一に生成された超電導材料を得ることがで
きる製造方法を提供することを目的とする。
The present invention has been made in view of the above background, and an object of the present invention is to provide a manufacturing method capable of obtaining a superconducting material in which a superconducting substance is uniformly generated throughout.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、酸化物系超電
粉末を超電導体の臨界温度以下の温度で磁場をかけて浮
遊させ、浮遊した粉末のみを回収するものである。
"Means for Solving the Problems" In order to solve the problems mentioned above, the present invention provides a method for suspending oxide-based superelectric powder by applying a magnetic field at a temperature below the critical temperature of the superconductor, and only dissolving the suspended powder. The purpose is to collect

「作用 」 超電導物質が生成されている粉体は完全反磁性を示すた
めに、臨界温度以下に冷却して粉末に磁場をかけた場合
、超電導物質が生成された粉体のみが浮遊する。従って
磁場中で浮遊した粉体のみを選別すると超電導物質が均
一に生成された高品質の粉末状超電導材料を得ることが
できる。
``Operation'' Powder containing superconducting substances exhibits complete diamagnetic properties, so when the powder is cooled below a critical temperature and a magnetic field is applied to the powder, only the powder containing superconducting substances becomes suspended. Therefore, by selecting only the powder suspended in a magnetic field, it is possible to obtain a high-quality powdered superconducting material in which superconducting substances are uniformly produced.

「実施例」 以下に本発明を更に詳細に説明する。"Example" The present invention will be explained in more detail below.

・ 本発明方法を実施してA −B −Cu−0系の超
電導材料(ただし、AはLa、Ce、Y、Sc、Yb等
の周期律表ula族元素の1種以上を示し、BはSr、
Ba等のアルカリ土類金属元素の1種以上を示す)を製
造する場合には、まず、前記ma族元素の化合物粉末(
nla族元素の酸化物粉末、塩化物粉末、炭酸塩等)と
アルカリ土類金属の化合物粉末と酸化銅の粉末を用意し
て、これらを目的とする超電導材料の組成となるように
混合する。
- A-B-Cu-0 system superconducting material obtained by carrying out the method of the present invention (where A represents one or more elements of the ULA group of the periodic table, such as La, Ce, Y, Sc, Yb, etc., and B represents Sr.
When producing one or more alkaline earth metal elements such as Ba), first, the compound powder of the Ma group element (
NLA group element oxide powder, chloride powder, carbonate, etc.), alkaline earth metal compound powder, and copper oxide powder are prepared and mixed to form the composition of the intended superconducting material.

次に前記粉末を圧粉成形して例えば第1図に示すように
貫通孔lを有する円柱状の成形体2を得る。
Next, the powder is compacted to obtain, for example, a cylindrical molded body 2 having through holes 1 as shown in FIG.

この成形体2において、貫通孔Iの直径dは、成形体の
直径りに対して、d= 1/3D −1150Dの範囲
が好ましく、また、貫通孔Iの体積は成形体2の体積に
対して30%以下にすることが望ましい。
In this molded body 2, the diameter d of the through hole I is preferably in the range of d = 1/3D - 1150D with respect to the diameter of the molded body, and the volume of the through hole I is It is desirable to keep it below 30%.

ここで、貫通孔lの体積が30%を超えるようであると
成形体20体積の比較して得られる超電導材料の量が少
なくなる。
Here, if the volume of the through hole 1 exceeds 30%, the amount of superconducting material obtained by comparing the volume of the molded body 20 will be reduced.

次にこの成形体に超電導物質を生成させる加熱処理を施
す。成形体2の加熱処理は、生成する酸化物系超電導材
料の種類により適宜設定されるか、前述したA −B 
−Cu−0系の超電導材料を生成するには、700〜1
300℃に1〜300時間加熱するものとする。また、
この熱処理は、真空雰囲気、あるいはアルゴンガス雰囲
気等の不活性ガス雰囲気、または、酸素ガス雰囲気、塩
素ガス雰囲気、フッ素ガス雰囲気、あるいは、これらの
混合ガス雰囲気で行うことが好ましい。
Next, this molded body is subjected to a heat treatment to generate a superconducting substance. The heat treatment of the molded body 2 may be appropriately set depending on the type of oxide superconducting material to be produced, or may be performed by
-700 to 1 to produce a Cu-0-based superconducting material
It shall be heated to 300°C for 1 to 300 hours. Also,
This heat treatment is preferably performed in a vacuum atmosphere, an inert gas atmosphere such as an argon gas atmosphere, an oxygen gas atmosphere, a chlorine gas atmosphere, a fluorine gas atmosphere, or a mixed gas atmosphere thereof.

この加熱処理によって成形体2からは原料粉末中に含ま
れる水蒸気や成分元素のガスが成形体2の外面と貫通孔
lから効率良く放出されたり、必要成分元素のガスが吸
収され、成形体2の内部で各成分が反応して超電導物質
が生成される。なお、面記加熱処理時には、各元素の気
体が貫通孔!から円滑に排出されたり、吸収されるため
に、成形体2の全体に、より均一に超電導物質を生成さ
せることができる。なお、前記のように各元素の気体を
貫通孔lから排出したり、吸収できるために、大きな成
形体2を形成した場合であっても、成形体の内部まで十
分に反応を生じさせることができる。即ち、大きな成形
体を用いて超電導材料を、製造可能となり、製造効率を
向上できる効果がある。
Through this heat treatment, water vapor contained in the raw material powder and gases of component elements are efficiently released from the molded body 2 from the outer surface of the molded body 2 and the gases of the component elements, and gases of necessary component elements are absorbed, and the molded body 2 Each component reacts inside the superconductor to produce a superconducting material. In addition, during the surface heat treatment, the gases of each element penetrate through the holes! Since the superconducting material is smoothly discharged or absorbed from the superconducting material, the superconducting material can be generated more uniformly throughout the molded body 2. In addition, since the gases of each element can be discharged and absorbed through the through holes 1 as described above, even when a large molded body 2 is formed, it is not possible to cause a sufficient reaction to reach the inside of the molded body. can. That is, the superconducting material can be manufactured using a large molded body, which has the effect of improving manufacturing efficiency.

そして、前記成形体2を加熱処理後に粉砕することによ
って粉末状の超電導材料を得る。この粉末状の超電導材
料にあっては、微視的に見ると完全な超電導物質が生成
されている粉末と、不完全な超電導物質が生成されてい
る粉末とが混在している。
Then, a powdered superconducting material is obtained by crushing the molded body 2 after heat treatment. When viewed microscopically, this powdered superconducting material contains a mixture of powder in which a perfect superconducting substance is produced and powder in which an incomplete superconducting substance is produced.

そこで次に、この粉末状の超電導材料を臨界温度以下の
温度に冷却するとともに、磁場をかける。
Next, this powdered superconducting material is cooled to a temperature below the critical temperature and a magnetic field is applied.

ここで磁場中の粉末状の超電導材料において、完全な超
電導物質が生成されている粉末は完全反磁性を示すため
に浮遊し、不完全な超電導物質が生成されている粉末は
浮遊しない。従ってこの浮遊した粉末のみを選別すると
完全な超電導物質のみが生成されている高品質の超電導
材料を得ることができる。なお、磁場中で浮遊しない超
電導材料は、再び他の原料粉末と混合して成形体を作成
し、熱処理して再度超電導材料の製造に使用することが
できる。
Here, in powdered superconducting material in a magnetic field, powder in which perfect superconducting material is produced exhibits perfect diamagnetic properties and floats, while powder in which incomplete superconducting material is produced does not float. Therefore, by selecting only this suspended powder, it is possible to obtain a high-quality superconducting material in which only perfect superconducting substances are produced. Note that a superconducting material that does not float in a magnetic field can be mixed with other raw material powders again to create a molded body, heat-treated, and used again for manufacturing the superconducting material.

第3図は、超電導粉末に磁場を作用させて選別する装置
の一例を示すものである。
FIG. 3 shows an example of an apparatus for sorting superconducting powder by applying a magnetic field to it.

この例の装置は、断面U字状の容器IOの内部に液体窒
素が満たされるとともに、容器lOの左底部に選別すべ
き超電導粉末11が投入され、容W t Oの下方に容
器10に沿って左右に移動自在に磁石12が設けられ、
容器IOの右底部に吸引管13が挿入されて構成されて
いる。
In the apparatus of this example, a container IO having a U-shaped cross section is filled with liquid nitrogen, superconducting powder 11 to be sorted is put into the left bottom part of the container IO, and the superconducting powder 11 is placed below the volume W t O along the container 10. A magnet 12 is provided so as to be movable left and right.
A suction tube 13 is inserted into the right bottom of the container IO.

この例の装置によって超電導粉末を選別するには、容器
IOの左底部の液体窒素内に超電導粉末11を投入しく
後に磁石12を図面に示す位置から右側に移動させる。
To sort superconducting powder using the apparatus of this example, the superconducting powder 11 is introduced into liquid nitrogen at the bottom left of the container IO, and then the magnet 12 is moved to the right from the position shown in the drawing.

液体窒素に投入された超電導粉末11の中で超電導体と
なっているものは完全反磁性を示すために磁石12が発
生させる磁力によって浮遊し、更に、磁石12の移動と
同時に容器!0の右側に弾かれて移動する。
The superconducting powder 11 placed in the liquid nitrogen exhibits perfect diamagnetic properties, so it floats due to the magnetic force generated by the magnet 12, and at the same time as the magnet 12 moves, the container! It moves to the right side of 0.

容510の右端部に磁石12を移動させたならば、容器
lOの右端部に移動した超電導粉末11のみを吸引管1
3で吸引して補集する。以上の操作によって完全に超電
導体となっている粉末のみを選別することができる。こ
のように選別された超電導粉末は選別を行っていない超
電導粉末に比較して臨界電流が10〜50%高いもので
あった。
When the magnet 12 is moved to the right end of the container 510, only the superconducting powder 11 that has moved to the right end of the container 10 is transferred to the suction tube 1.
3. Suction and collect. By the above operations, only powders that are completely superconducting can be selected. The superconducting powder thus selected had a critical current that was 10 to 50% higher than that of the superconducting powder that had not been selected.

以上のように得られた酸化物系の超電導材料は、臨界温
度が液体窒素温度以上の値を示す優れた超電導材料であ
り、従来の合金系超電導材料や化合物系超電導材料に比
較して格段に有利な冷却条件で使用することができる。
The oxide-based superconducting material obtained as described above is an excellent superconducting material whose critical temperature is higher than the liquid nitrogen temperature, and is significantly superior to conventional alloy-based superconducting materials and compound-based superconducting materials. Can be used under favorable cooling conditions.

更にこのようにして得られた超電導材料は、超電導マグ
ネット材料、あるいは、超電導線材の材料、超電導テー
プ用材料等、幅広く種々の超電導体用材料として用いる
ことができる。
Furthermore, the superconducting material thus obtained can be used as a wide variety of superconductor materials, such as superconducting magnet materials, superconducting wire materials, and superconducting tape materials.

なお、前述のように得られた超電導材料の粉末を金属管
に充填して加圧圧縮することにより超電導線を得ること
ができる。この超電導線にあっては、内部に充填する超
電導材料が完全な超電導物質からなる高品質のものであ
るために、臨界電流密度が高く、優れた超電導特性を発
揮する。
Note that a superconducting wire can be obtained by filling a metal tube with the superconducting material powder obtained as described above and compressing it under pressure. This superconducting wire has a high critical current density and exhibits excellent superconducting properties because the superconducting material filled inside is of high quality and is made entirely of superconducting material.

ところで、前記超電導粉末の製造に使用する成形体は、
第2図に示すように多数の貫通孔l・・・を形成した成
形体3を用いても良く、成形体の形状も円柱状以外の形
状であっても差し支えない。なおまた、前述のように選
別に供される超電導粉末を製造する方法には、原料粉末
を一旦溶融固化した後に熱処理する方法、あるいは、原
料粉末を攪拌しながら焼成したものを粉末化する方法な
ど、種々の方法があり、これらの方法で製造した超電導
粉末を選別するために用いることができる。
By the way, the compact used for manufacturing the superconducting powder is
As shown in FIG. 2, a molded body 3 having a large number of through holes 1 may be used, and the shape of the molded body may also be other than a columnar shape. Furthermore, methods for manufacturing superconducting powder to be subjected to sorting as described above include a method in which the raw material powder is once melted and solidified and then heat treated, or a method in which the raw material powder is fired while stirring and then pulverized. There are various methods, and these methods can be used to select superconducting powder produced.

一方、A −B −Cu−0系の超電導材料において、
へ元素を1IIa族元素の2つ以上の元素から構成し、
B元素をアルカリ土類金属元素の2つ以上から構成する
ものにおいては、ms族元素の化合物粉末を2種類以上
と、アルカリ土類金属元素の化合物粉末を2種類以上と
、酸化銅粉末または銅粉末を所定の比率に混合して焼結
した後に粉砕し、本発明方法を実施すれば良い。
On the other hand, in the A-B-Cu-0-based superconducting material,
The element is composed of two or more elements of group 1IIa elements,
In the case where element B is composed of two or more alkaline earth metal elements, two or more types of compound powders of MS group elements, two or more types of compound powders of alkaline earth metal elements, and copper oxide powder or copper The method of the present invention may be carried out by mixing the powders in a predetermined ratio, sintering them, and then pulverizing them.

「発明の効果」 以上説明したように本発明は、酸化物系超電導粉末にそ
の臨界温度以下の温度で磁場をかけて超電導物質が生成
されている粉末のみを浮遊させて選別するために、不完
全な超電導物質が生成されている粉末を除去し、完全な
超電導物質のみが生成されている超電導材料を得ること
ができる。この結果選別しない超電導材料に比較して本
発明を実施して得られた超電導材料は、臨界電流が10
〜50%高く、高品質の超電導製品を得ることができた
"Effects of the Invention" As explained above, the present invention applies a magnetic field to oxide-based superconducting powder at a temperature below its critical temperature to suspend and select only the powder in which superconducting substances are produced. By removing the powder in which a perfect superconducting substance has been produced, it is possible to obtain a superconducting material in which only a perfect superconducting substance has been produced. As a result, the superconducting material obtained by implementing the present invention has a critical current of 10
~50% higher and higher quality superconducting products could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する際に使用する成形体の一
例を示す斜視図、第2図は同成形体の他の例を示す斜視
図、第3図は超電導粉末を選別する装置の一例を示す断
面図である。 ■・・・・・・貫通孔、   2.3・・・・・・成形
体、lO・・・・・・容器、   11・・・・・・超
電導粉末、12・・・・・・磁石、   13・・・・
・・吸引管。
Fig. 1 is a perspective view showing an example of a compact used in carrying out the method of the present invention, Fig. 2 is a perspective view showing another example of the compact, and Fig. 3 is a perspective view of an apparatus for sorting superconducting powder. It is a sectional view showing an example. ■...Through hole, 2.3... Molded object, lO... Container, 11... Superconducting powder, 12... Magnet, 13...
...Suction tube.

Claims (1)

【特許請求の範囲】[Claims] 酸化物系超電導粉末を酸化物系超電導体の臨界温度以下
の温度で磁場をかけて浮遊させ、浮遊した粉末のみを回
収することを特徴とする酸化物系超電導材料の製造方法
A method for producing an oxide-based superconducting material, which comprises suspending oxide-based superconducting powder by applying a magnetic field at a temperature below the critical temperature of the oxide-based superconductor, and recovering only the suspended powder.
JP62126692A 1987-05-23 1987-05-23 Manufacture of superconducting material of oxide Granted JPS63291653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62126692A JPS63291653A (en) 1987-05-23 1987-05-23 Manufacture of superconducting material of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62126692A JPS63291653A (en) 1987-05-23 1987-05-23 Manufacture of superconducting material of oxide

Publications (2)

Publication Number Publication Date
JPS63291653A true JPS63291653A (en) 1988-11-29
JPH0438457B2 JPH0438457B2 (en) 1992-06-24

Family

ID=14941485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62126692A Granted JPS63291653A (en) 1987-05-23 1987-05-23 Manufacture of superconducting material of oxide

Country Status (1)

Country Link
JP (1) JPS63291653A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302967A (en) * 1987-06-01 1988-12-09 Semiconductor Energy Lab Co Ltd Sorting of oxide superconducting material
JPH01183404A (en) * 1988-01-14 1989-07-21 Tatsuta Electric Wire & Cable Co Ltd Method for selecting superconducting ceramic powder
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302967A (en) * 1987-06-01 1988-12-09 Semiconductor Energy Lab Co Ltd Sorting of oxide superconducting material
JPH0616864B2 (en) * 1987-06-01 1994-03-09 株式会社半導体エネルギー研究所 Selection method of oxide superconducting materials
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles
JPH01183404A (en) * 1988-01-14 1989-07-21 Tatsuta Electric Wire & Cable Co Ltd Method for selecting superconducting ceramic powder
JPH0446883B2 (en) * 1988-01-14 1992-07-31 Tatsuta Densen Kk

Also Published As

Publication number Publication date
JPH0438457B2 (en) 1992-06-24

Similar Documents

Publication Publication Date Title
US4975411A (en) Superconductors and methods of making same
JP3110451B2 (en) High critical current orientated grained Y-Ba-Cu-O superconductor and method for producing the same
Sale et al. Citrate gel processing of oxide superconductors
US5306700A (en) Dense melt-based ceramic superconductors
JPH0764627B2 (en) Method for manufacturing melt-generated superconductor
JPS63291653A (en) Manufacture of superconducting material of oxide
WO1992017407A1 (en) Oxide superconductor and production thereof
US5064808A (en) Method of manufacturing oxide superconductors using self-propagating high-temperature synthesis
EP0315977A2 (en) Superconductor material comprising a three-component metallic oxide
US5652199A (en) Method of manufacturing oxide superconductor
JP2812465B2 (en) Manufacturing method of oxide superconductor
KR20180118617A (en) METHOD FOR MANUFACTURING CARBON COMPOSITE MATERIAL
EP0329929B1 (en) Improvements to the manufacturing processes of high magnetic susceptibility ceramic superconductors
RU2091880C1 (en) Method for producing high-temperature superconducting parts
Chen et al. Laser fabrication of Pb doped Bi-Sr-Ca-Cu-O superconductor
JPH0737442A (en) Oxide superconductor and preparation of superconductor thereof
JPH0193403A (en) Production of ceramic-based superconducting material and apparatus therefor
EP0644600A2 (en) Oxide superconductor and method of manufacturing the same
JPH01164730A (en) Superconducting material and its production
JPS63279523A (en) Manufacture of compound superconductive wire
JPH01251514A (en) Superconductive wire and manufacture thereof
Okazaki et al. The Processing of Superconducting Composite Materials by Electro-Discharge Compaction
KR0133455B1 (en) Manufacture of superconductor by using neodymium:yttrium alumina garnet laser
JP2821568B2 (en) Method for producing superconducting whisker composite
JPS63319209A (en) Production of superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees