JPS63289768A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPS63289768A
JPS63289768A JP12311187A JP12311187A JPS63289768A JP S63289768 A JPS63289768 A JP S63289768A JP 12311187 A JP12311187 A JP 12311187A JP 12311187 A JP12311187 A JP 12311187A JP S63289768 A JPS63289768 A JP S63289768A
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
electrolyte
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12311187A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Toshihiko Saito
斎藤 俊彦
Takaaki Ikemachi
隆明 池町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12311187A priority Critical patent/JPS63289768A/en
Publication of JPS63289768A publication Critical patent/JPS63289768A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Abstract

PURPOSE:To make the electric resistance of a solid electrolyte and the surface resistance between the solid electrolyte and an electrode small by making the solid electrolyte and at least one of a positive or negative electrode closely join together in a folding form. CONSTITUTION:An electricity generating element 3 consists of a solid electrolyte 5, a negative electrode 6 which is closely joined to the surface of the electrolyte 5, and a positive electrode 7 which is closely joined to the back surface of the electrolyte 5. The element 3 thus constituted is formed by being deformed into a folding form with a press metallic mold after the negative electrode and the positive electrode are closely joined to the surface and back of the electrolyte 5. Then the element 3 is held between a positive electrode collector 8 and a negative electrode collector 9, and it is put into a battery can 1 and sealed with a metallic lid 2. The manufacture of a battery is thus completed. By this arrangement the joining area between the electrolyte and the electrodes 6 and 7 for a unit volume of the element 3 is increased. Therefore the electric resistance of the electrolyte 5 and the surface resistance between the electrolyte 5 and electrodes 6 and 7 are made small. In other words the internal resistance of a battery is made small.

Description

【発明の詳細な説明】 皮栗上皇科別分夏 本発明は、高分子系の固体電解質を使用した固体電解質
電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid electrolyte battery using a polymer solid electrolyte.

従来■返血 固体電解質電池は、液体を全く含まないため、液体電解
質を用いる電池のような漏液現象が生じず、また電解質
と電極との接触も固体−固体間接触であるため、化学的
にも安定しており、保存等において信頼性が高く、近年
特に開発が進められてきている。
Conventional blood return solid electrolyte batteries do not contain any liquid, so they do not leak like batteries that use liquid electrolytes, and the contact between the electrolyte and electrodes is solid-solid contact, so there is no chemical It is stable and highly reliable in storage, etc., and has been particularly developed in recent years.

第6図はこの種の固体電解質電池の従来例を示した断面
図である。すなわち、該固体電解質電池は、偏平状の固
体電解質51の表裏両面に正極52及び負極53を接合
させて発電要素54を形成すると共に、該発電要素54
は正負夫々の集電体55.56を介して正極端子兼用の
電池缶57及び負極端子兼用の金属蓋58と電気的に接
続されている。59は絶縁バッキングである。
FIG. 6 is a sectional view showing a conventional example of this type of solid electrolyte battery. That is, in the solid electrolyte battery, a positive electrode 52 and a negative electrode 53 are joined to the front and back surfaces of a flat solid electrolyte 51 to form a power generating element 54.
are electrically connected to a battery can 57 which also serves as a positive terminal and a metal lid 58 which also serves as a negative terminal via positive and negative current collectors 55 and 56, respectively. 59 is an insulating backing.

日が解゛ しようとする間 寺 ところで、上記固体電解質電池に使用されている固体電
解質は、室温においてそのイオン導電率が液体電解質の
イオン導電率よりも低いという欠点がある。つまり、固
体電解質はその電気抵抗が液体電解質の電気抵抗よりも
大きいのである。このため固体電解質電池においては電
池の取り出し電流が小さくなり、放電持続時間も短くな
るため、電池寿命が短かいという問題点があった。
By the way, the solid electrolyte used in the solid electrolyte battery described above has a drawback in that its ionic conductivity is lower than that of the liquid electrolyte at room temperature. In other words, the electrical resistance of a solid electrolyte is greater than that of a liquid electrolyte. For this reason, solid electrolyte batteries have a problem in that the battery life is short because the current taken out of the battery is small and the discharge duration is also short.

また、最近になって高分子系の固体電解質を使用したも
ののなかには室温においてイオン導電率が10”’〜1
0−’S/cm程度の比較的大きいものが開発されてき
ており、しがも高分子系であるため薄膜化が容易となり
固体電解質層の電気抵抗を小さくすることが可能となっ
てきたが、それとても未だ社会のニーズに合うだけの取
り出し電流を得るには不充分であるという問題点があっ
た。
In addition, some products that have recently used polymeric solid electrolytes have an ionic conductivity of 10'' to 1 at room temperature.
Comparatively large electrolyte materials with a diameter of about 0-'S/cm have been developed, and because they are polymer-based, they can be easily made into thin films, making it possible to reduce the electrical resistance of the solid electrolyte layer. However, there was a problem in that it was still insufficient to obtain an extraction current sufficient to meet the needs of society.

本発明は従来のこのような問題点を解決して、電池特性
を向上させた固体電解質電池を提供することを目的とす
る。
An object of the present invention is to solve these conventional problems and provide a solid electrolyte battery with improved battery characteristics.

問題点を解決するための 上記目的を達成するために本発明は、正極と、負極と、
正負両極間に介挿された高分子系固体電解質とで発電要
素を構成した固体電解質電池において、上記正極又は上
記負極の少なくとも一方と上記固体電解質とが、褶曲状
に密着接合されていることを要旨としている。
In order to achieve the above object of solving the problems, the present invention provides a positive electrode, a negative electrode,
In a solid electrolyte battery in which a power generation element is composed of a polymeric solid electrolyte interposed between positive and negative electrodes, at least one of the positive electrode or the negative electrode and the solid electrolyte are tightly joined in a folded shape. This is the summary.

立−−−里 上記構成によれば、正極又は負極の少な(とも一方と上
記固体電解質とが褶曲状に密着接合されたので、発電要
素の単位体積当りにおいて、固体電解質と電極との接合
面積が従来に比し増大する。
According to the above configuration, since either the positive electrode or the negative electrode (one of which is closely joined to the solid electrolyte in a folded manner), the bonding area between the solid electrolyte and the electrode per unit volume of the power generation element is small. increases compared to before.

従って固体電解質の電気抵抗及び固体電解質と電極との
界面抵抗が小さくなり、固体電解質電池の内部抵抗も減
少するため、取り出し電流が大きくなり、放電持続時間
も長(なって電池特性の優れた固体電解質電池を得るこ
とができる。
Therefore, the electric resistance of the solid electrolyte and the interfacial resistance between the solid electrolyte and the electrodes are reduced, and the internal resistance of the solid electrolyte battery is also reduced, resulting in a larger extraction current and longer discharge duration (which makes solid electrolytes with excellent battery characteristics An electrolyte battery can be obtained.

実−践一斑 以下、本発明を実施例に基づき詳説する。A bit of practice Hereinafter, the present invention will be explained in detail based on examples.

第1図は本発明の一例としての固体電解質電池であって
、1は正極端子兼用の電池缶、2は負極端子兼用の金属
蓋、3は発電要素、4は絶縁バッキングである。
FIG. 1 shows a solid electrolyte battery as an example of the present invention, in which 1 is a battery can that also serves as a positive terminal, 2 is a metal lid that also serves as a negative terminal, 3 is a power generation element, and 4 is an insulating backing.

上記発電要素3は、高分子系の化合物からなる褶曲状に
形成された固体電解質5と、該固体電解質5の表面側に
密着接合された負極6と、該固体電解質5の裏面側に密
着接合された正極7とで構成される。8は5IJS、N
i等の金属で形成された正極集電体であって、上記電池
缶1と上記正極7とを電気的に接続するものである。ま
た、9はSUS、Ni等の金属で形成された負極集電体
であり、上記負極6と金属M2とを電気的に接続してい
る。
The power generation element 3 includes a solid electrolyte 5 made of a polymeric compound formed in a folded shape, a negative electrode 6 closely bonded to the front side of the solid electrolyte 5, and a negative electrode 6 tightly bonded to the back side of the solid electrolyte 5. and the positive electrode 7. 8 is 5IJS, N
This is a positive electrode current collector made of a metal such as I, and electrically connects the battery can 1 and the positive electrode 7. Further, 9 is a negative electrode current collector made of metal such as SUS or Ni, and electrically connects the negative electrode 6 and metal M2.

本実施例では、上記正極7は二酸化マンガンを使用し、
上記負極6はリチウムを使用している。
In this embodiment, the positive electrode 7 uses manganese dioxide,
The negative electrode 6 uses lithium.

本実施例に係る固体電解質電池は上記のような形状をな
し、次にその製造方法について説明する。
The solid electrolyte battery according to this example has the shape described above, and the manufacturing method thereof will be described next.

■高分子系固体電解質5の作製 高分子系の固体電解質は、高分子化合物と無機化合物を
複合して得られる。この実施例では高分子化合物として
ポリエチレンオキサイド(PEO)、無機化合物として
過塩素酸リチウム(LiC104)を使用した。
(2) Preparation of polymer solid electrolyte 5 A polymer solid electrolyte is obtained by combining a polymer compound and an inorganic compound. In this example, polyethylene oxide (PEO) was used as the polymer compound, and lithium perchlorate (LiC104) was used as the inorganic compound.

まず、LiClO4をアセトニトリル(CH3CN)に
溶かし、0.5M LiC10,/CH3CN溶液を作
製する。ここで、LiC10,は市販のLiClO4を
真空加熱乾燥処理したもの、CH,CNは市販のC)1
.cNを蒸留乾燥したものを使用した。
First, LiClO4 is dissolved in acetonitrile (CH3CN) to prepare a 0.5M LiCl0,/CH3CN solution. Here, LiC10, is commercially available LiClO4 subjected to vacuum heating drying treatment, and CH, CN are commercially available C)1
.. cN was distilled and dried.

次いで、エチレンオキサイド(EO)と過塩素酸リチウ
ムの比がE O: LiC10n= 6 : 1となる
ように、0.5M LiC104/C)I:+CN溶液
にPEO(分子量80.000)を混入混練し、ゲル状
物質を作製する。
Next, PEO (molecular weight 80.000) was mixed and kneaded into the 0.5M LiC104/C)I:+CN solution so that the ratio of ethylene oxide (EO) to lithium perchlorate was EO:LiC10n=6:1. and prepare a gel-like substance.

尚、0.5M LiCl0a/Cl:+CN溶液がPE
Oに充分漫遇していない場合はCH3CNをさらに加え
るとよい。
Note that the 0.5M LiCl0a/Cl:+CN solution is PE
If you are not using enough O, you may want to add more CH3CN.

次にこのゲル状物質を雰囲気温度60℃にて真空乾燥を
行なって脱溶剤処理を施しく乾燥時間3時間) 、CH
,CNを上記ゲル状物質から殆ど除去する。
Next, this gel-like substance was vacuum dried at an ambient temperature of 60°C to remove the solvent, and the drying time was 3 hours), CH
, CN is almost removed from the gel-like material.

しかる後ローラで圧延し、厚みT+=0.2mmのシー
トを作製する。この厚みT、=0.2mmのシートが固
体電解質の素材となるものである。尚、このシートは導
電率が約10−&S/cmであり、優れた導電性を有す
る。
Thereafter, it is rolled with rollers to produce a sheet having a thickness of T+=0.2 mm. This sheet with a thickness T = 0.2 mm is the material of the solid electrolyte. Incidentally, this sheet has an electrical conductivity of about 10-&S/cm, and has excellent electrical conductivity.

■正極7の作製 まず、配合比が重量%でP E O: LiC10,:
 C)+3cN=75:5:20となるように、■で得
られた0、5MLiC10</CHsCN溶液にPEO
を混入混練してゲル状物質を作製する。次いで正極活物
質である二酸化マンガンに電子導電剤としてグラファイ
トを混合した混合物を作製し、該混合物と上記ゲル状物
質とを混合する。しかる後■と同様、ローラで圧延し、
厚みTz=0.2mmのシートを作製する。この厚みT
z=0.2mmのシートが正極の素材となるものである
■Preparation of positive electrode 7 First, the blending ratio is P E O: LiC10,: by weight%.
C) PEO was added to the 0,5M LiC10</CHsCN solution obtained in step 2 so that +3cN=75:5:20.
A gel-like substance is prepared by mixing and kneading. Next, a mixture is prepared by mixing manganese dioxide, which is a positive electrode active material, with graphite, which is an electron conductive agent, and the mixture is mixed with the above-mentioned gel material. After that, roll it with a roller as in ■,
A sheet with a thickness Tz=0.2 mm is produced. This thickness T
The sheet with z=0.2 mm is the material for the positive electrode.

■電池組立 電池内に湿気が混入しないように電池組立は乾燥アルゴ
ンガスや乾燥空気等の乾燥雰囲気中で行なう。電池組立
に先立ってまず発電要素3を作製する。すなわち、■で
得られた厚さT”+=0.2mmのシートを直径16m
mの大きさで打抜き、これに直径14mmに打ち抜いた
厚さT 3= 0.2mmの厚みの金属リチウムを表面
側に重合させると共に、■で得られた厚さTt=0.2
mmのシートを直径14mmに打抜き、裏面側に接合す
る。しかる後、プレス金型を使用して褶曲状に変形させ
発電要素3を作製する。その後固体電解質5と正負両極
6.7との密着性を高めるため、60℃にて約5時間の
加熱処理を該発電要素3に施す。第2図は該発電要素3
の要部を示す拡大断面図である。この実施例においては
、褶曲状に形成された発電要素3のピッチPは1 、0
mmである。
■Battery assembly To prevent moisture from entering the battery, perform battery assembly in a dry atmosphere such as dry argon gas or dry air. Prior to battery assembly, the power generation element 3 is first manufactured. In other words, the sheet with a thickness T"+=0.2 mm obtained in
A die was punched out to a size of m, and then a die of 14 mm in diameter was punched out to a thickness of T3 = 0.2 mm, and metal lithium was polymerized on the surface side, and the thickness obtained in step (3) was Tt = 0.2.
A 14 mm diameter sheet is punched out and bonded to the back side. Thereafter, the power generating element 3 is produced by deforming it into a folded shape using a press mold. Thereafter, in order to improve the adhesion between the solid electrolyte 5 and the positive and negative electrodes 6.7, the power generating element 3 is subjected to a heat treatment at 60° C. for about 5 hours. Figure 2 shows the power generation element 3.
FIG. In this embodiment, the pitch P of the power generation element 3 formed in a folded shape is 1,0.
It is mm.

次いで、この発電要素3を正極集電体8と負極集電体9
との間に挟持して電池缶1に入れ、金属蓋2で封口し、
本実施例に係る電池の作製が終了する(第1図参照)。
Next, this power generation element 3 is connected to a positive electrode current collector 8 and a negative electrode current collector 9.
Place the battery in a battery can 1, seal it with a metal lid 2,
The production of the battery according to this example is completed (see FIG. 1).

この電池をAとする。This battery is called A.

第1表は電池Aの内部抵抗を従来例(第60参照:この
電池を電池Bとする)との比較において示したものであ
る。尚、測定は周波数IKHzで行ない、測定温度は4
0℃であった。
Table 1 shows the internal resistance of Battery A in comparison with a conventional example (see No. 60: this battery is referred to as Battery B). The measurement was performed at a frequency of IKHz, and the measurement temperature was 4.
It was 0°C.

第1表 この表からも明らかなように本発明の電池Aは、発電要
素3が褶曲状に形成されたので、発電要素3の単位体積
当たりの固体電解質と正負両極の接合面積が従来の電池
Bに比し増大し、内部抵抗が小さくなる。従って内部抵
抗が小さくなった分だけ取り出し電流も大きくなるとい
うことになる。
Table 1 As is clear from this table, in the battery A of the present invention, the power generation element 3 is formed in a folded shape, so that the junction area between the solid electrolyte and the positive and negative electrodes per unit volume of the power generation element 3 is smaller than that of the conventional battery. It increases compared to B, and the internal resistance becomes smaller. Therefore, as the internal resistance becomes smaller, the extraction current also becomes larger.

また第3図は電池Aと電池Bの放電特性を示した図であ
る。この図から明らかなように本発明の電池Aは従来の
電池Bに比し内部抵抗が小さくなった分だけ放電持続時
間が長くなり良好な電池特性が得られた。
Further, FIG. 3 is a diagram showing the discharge characteristics of battery A and battery B. As is clear from this figure, the battery A of the present invention had a lower internal resistance than the conventional battery B, so the discharge duration was longer, and good battery characteristics were obtained.

第4図は第2の実施例を示したものであって、褶曲状に
形成された正極7の表面全域に薄膜状の固体電解質5を
真空蒸着により形成し、該固体電解質5の表面側にリチ
ウムを密着接合させたものである。この第2の実施例に
係る固体電解質電池は以下のように製造される。
FIG. 4 shows a second embodiment, in which a thin film-like solid electrolyte 5 is formed by vacuum deposition over the entire surface of a positive electrode 7 formed in a folded shape. It is made by closely bonding lithium. The solid electrolyte battery according to this second example is manufactured as follows.

■正極7の作製 第1実施例と同様にして二酸化マンガンを主成分とする
正極用のシート(厚み0.2mm)を作製し、該シート
を所定の大きさに打ち抜いて後、プレス加工を施して褶
曲状に形成し、正極とする。
■Preparation of positive electrode 7 A positive electrode sheet (thickness 0.2 mm) containing manganese dioxide as the main component was prepared in the same manner as in the first embodiment, and after punching out the sheet to a predetermined size, press processing was performed. The positive electrode is formed into a folded shape.

■高分子系固体電解質5の作製 ■で得られた正極を基板としてPEO及びトリフルオロ
メタンスルホン酸リチウム(LiChSOz)を同時に
真空蒸着し、膜厚約40μの固体電解質5の膜層を形成
する。
(2) Preparation of polymeric solid electrolyte 5 Using the positive electrode obtained in (2) as a substrate, PEO and lithium trifluoromethanesulfonate (LiChSOz) are simultaneously vacuum-deposited to form a film layer of solid electrolyte 5 with a thickness of approximately 40 μm.

■電池組立 予め所望の形状にプレス成形されたリチウム金属を固体
電解質の表面側に密着接合させて発電要素3を形成する
。次いで前記第1実施例と同様、該発電要素3に加熱処
理を施して後、該発電要素3を電池缶1に入れ、金属蓋
2で封口して、電池の作製は完了する。このようにして
製造された第2の実施例に係る電池を電池Cとする。
(2) Battery Assembly Lithium metal, which has been press-molded in advance into a desired shape, is closely bonded to the surface of the solid electrolyte to form the power generation element 3. Next, as in the first embodiment, the power generating element 3 is subjected to a heat treatment, and then the power generating element 3 is placed in the battery can 1 and sealed with the metal lid 2, thereby completing the production of the battery. The battery according to the second example manufactured in this manner is referred to as battery C.

第2表は電池Cの内部抵抗を従来の偏平状の発電要素の
もの(この電池を電池りとする)との比較において示し
たものである。尚、電池りの固体電解質も上述と同様、
真空蒸着により行われたものである。また、測定は周波
数I K Hzで行ない、測定温度は40℃であった。
Table 2 shows the internal resistance of Battery C in comparison with that of a conventional flat power generation element (this battery is used as a battery). As mentioned above, the solid electrolyte of the battery is also
This was done by vacuum evaporation. Further, the measurement was performed at a frequency of I KHz, and the measurement temperature was 40°C.

第2表 この表からも明らかなように本発明の電池Cは、発電要
素3が褶曲状に形成されたので、発電要素3の単位体積
当たりの固体電解質と正負両極の接合面積が従来の電池
りに比し増大したため、内部抵抗が小さくなる。従って
内部抵抗が小さくなった分だけ取り出し電流も大きくな
ることとなる。
Table 2 As is clear from this table, in the battery C of the present invention, the power generation element 3 is formed in a folded shape, so that the junction area between the solid electrolyte and the positive and negative electrodes per unit volume of the power generation element 3 is smaller than that of the conventional battery. Since the internal resistance has increased compared to the previous one, the internal resistance has become smaller. Therefore, as the internal resistance becomes smaller, the extraction current also becomes larger.

また第5図は電池Cと電池りの放電特性を示した図であ
る。この図から明らかなように本発明の電池Cは従来の
電池りに比し内部抵抗が小さくなった分だけ放電持続時
間が長く良好な電池特性が得られた。
Further, FIG. 5 is a diagram showing the discharge characteristics of battery C and battery cell. As is clear from this figure, the battery C of the present invention had a lower internal resistance than the conventional battery, so that the discharge duration was longer and good battery characteristics were obtained.

尚、本発明は上記実施例に限定されることはなく要旨を
逸脱しない範囲においての変形は自由である。本発明は
正極又は負極の少な(とも何れか一方が褶曲状に形成さ
れた固体電解質と密着すれば効果が認められる。従って
一方の掻を従来と同様偏平状に形成してもよい。特に上
記第2実施例においてリチウム負極のみを偏平状とする
ことは製造を容易にするという効果がある。また例えば
高分子化合物にしてもPEOに限定されることはな(ポ
リプロピレンオキサイド(PPO)であってもよい。ま
た液高分子化合物に複合される無機化合物についても上
記実施例に限定されず、例えばホウフッ化すチウム(L
iBF*)等であってもよいことはいうまでもない。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and may be freely modified without departing from the scope of the invention. The present invention is effective if either the positive electrode or the negative electrode is in close contact with the solid electrolyte formed in a folded shape.Therefore, one of the electrodes may be formed into a flat shape as in the past.In particular, the above-mentioned In the second embodiment, making only the lithium negative electrode into a flat shape has the effect of facilitating manufacturing.Also, for example, the polymer compound is not limited to PEO (polypropylene oxide (PPO)). In addition, the inorganic compound to be combined with the liquid polymer compound is not limited to the above examples, and for example, lithium borofluoride (L
Needless to say, it may be iBF*) or the like.

発1Fと立米 以上詳述したように本発明の固体電解質電池は、正極又
は負極の少なくとも一方と固体電解質とが、褶曲状に密
着接合されたので、発電要素の単位体積当りの固体電解
質と電極との接合面積が増大し、内部抵抗が減少して放
電特性も向上し、耐久性の優れたものとなるという効果
がある。
As described in detail above, in the solid electrolyte battery of the present invention, at least one of the positive electrode or the negative electrode and the solid electrolyte are tightly joined in a folded manner, so that the solid electrolyte and electrode per unit volume of the power generating element are This has the effect of increasing the bonding area with the material, reducing internal resistance, improving discharge characteristics, and providing excellent durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例(第1の実施例)としての固
体電解質電池を示す断面図、第2図は発電要素の要部断
面図、第3図は第1の実施例の放電特性を示す特性図、
第4図は第2の実施例の固体電解質電池の断面図、第5
図は第2の実施例の放電特性を示す特性図、第6図は従
来の固体電解質電池を示す断面図である。 3・・・発電要素、5・・・固体電解質、6・・・負極
、7・・・正極。 第1図 第3図 衣−吟藺 (hr) 第4図 第5図 匁1 ! @ (hr)
Fig. 1 is a sectional view showing a solid electrolyte battery as an example (first embodiment) of the present invention, Fig. 2 is a sectional view of main parts of a power generation element, and Fig. 3 is a discharge diagram of the first embodiment. Characteristic diagram showing the characteristics,
Figure 4 is a cross-sectional view of the solid electrolyte battery of the second embodiment;
The figure is a characteristic diagram showing the discharge characteristics of the second embodiment, and FIG. 6 is a sectional view showing a conventional solid electrolyte battery. 3... Power generation element, 5... Solid electrolyte, 6... Negative electrode, 7... Positive electrode. Figure 1 Figure 3 Clothes - Gingai (hr) Figure 4 Figure 5 Momme 1! @ (hr)

Claims (1)

【特許請求の範囲】[Claims] (1)正極と、負極と、正負両極間に介挿された高分子
系固体電解質とで発電要素を構成した固体電解質電池に
おいて、 上記正極又は上記負極の少なくとも一方と上記固体電解
質とが、褶曲状に密着接合されたことを特徴とする固体
電解質電池。
(1) In a solid electrolyte battery in which a power generation element is composed of a positive electrode, a negative electrode, and a polymeric solid electrolyte interposed between the positive and negative electrodes, at least one of the positive electrode or the negative electrode and the solid electrolyte are folded. A solid electrolyte battery characterized by being closely bonded in a shape.
JP12311187A 1987-05-20 1987-05-20 Solid electrolyte battery Pending JPS63289768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12311187A JPS63289768A (en) 1987-05-20 1987-05-20 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12311187A JPS63289768A (en) 1987-05-20 1987-05-20 Solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPS63289768A true JPS63289768A (en) 1988-11-28

Family

ID=14852448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12311187A Pending JPS63289768A (en) 1987-05-20 1987-05-20 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS63289768A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066913A (en) * 2000-10-20 2007-03-15 Massachusetts Inst Of Technol <Mit> Battery having electrode of controlled porosity in mesh shape
US7988746B2 (en) 2000-10-20 2011-08-02 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8088512B2 (en) 2001-07-27 2012-01-03 A123 Systems, Inc. Self organizing battery structure method
WO2012042764A1 (en) * 2010-09-29 2012-04-05 パナソニック株式会社 Lithium primary battery and manufacturing method for same
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875779A (en) * 1981-10-30 1983-05-07 Toshiba Corp Solid electrolyte cell
JPS614167A (en) * 1984-06-18 1986-01-10 Fuji Elelctrochem Co Ltd Flat-type nonaqueous electrolyte cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875779A (en) * 1981-10-30 1983-05-07 Toshiba Corp Solid electrolyte cell
JPS614167A (en) * 1984-06-18 1986-01-10 Fuji Elelctrochem Co Ltd Flat-type nonaqueous electrolyte cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277975B2 (en) 2000-10-20 2012-10-02 Massachusetts Intitute Of Technology Reticulated and controlled porosity battery structures
US8206469B2 (en) 2000-10-20 2012-06-26 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
JP2011253820A (en) * 2000-10-20 2011-12-15 Massachusetts Institute Of Technology Battery having electrode of controlled porosity in mesh shape
US8241789B2 (en) 2000-10-20 2012-08-14 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US8168326B2 (en) 2000-10-20 2012-05-01 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8206468B2 (en) 2000-10-20 2012-06-26 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
JP2007066913A (en) * 2000-10-20 2007-03-15 Massachusetts Inst Of Technol <Mit> Battery having electrode of controlled porosity in mesh shape
JP2012182141A (en) * 2000-10-20 2012-09-20 Massachusetts Institute Of Technology Battery having mesh electrode with controlled porosity
US7988746B2 (en) 2000-10-20 2011-08-02 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US8088512B2 (en) 2001-07-27 2012-01-03 A123 Systems, Inc. Self organizing battery structure method
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
CN102959776A (en) * 2010-09-29 2013-03-06 松下电器产业株式会社 Lithium primary battery and manufacturing method for same
JP5551259B2 (en) * 2010-09-29 2014-07-16 パナソニック株式会社 Lithium primary battery and manufacturing method thereof
US9017865B2 (en) 2010-09-29 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Lithium primary battery and method of producing same
CN102959776B (en) * 2010-09-29 2016-02-24 松下知识产权经营株式会社 Lithium primary battery and manufacture method thereof
WO2012042764A1 (en) * 2010-09-29 2012-04-05 パナソニック株式会社 Lithium primary battery and manufacturing method for same
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields

Similar Documents

Publication Publication Date Title
US6181545B1 (en) Supercapacitor structure
US4080728A (en) Method of making flat battery
US5587253A (en) Low resistance rechargeable lithium-ion battery
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
JP2013065560A (en) Paste-like masses for electrochemical elements, and layers and electrochemical elements obtained from the same
JPH10302756A (en) Thin battery
WO1995031836A1 (en) Rechargeable lithium battery construction
JPH0722023B2 (en) Method for manufacturing solid state electrochemical cell
WO2000013252A1 (en) Method for producing nonaqueous gel electrolyte cell
JPH10255850A (en) Stacked lithium ion cell and manufacture therefor
JPH0362447A (en) Electrochemical cell module
JPH11242953A (en) Battery having roughened electrode terminal
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JP3260310B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
JPS63289768A (en) Solid electrolyte battery
US6472105B2 (en) Bonding agent for cells and cell using the same
JPS63298980A (en) Solid electrolyte battery
JPH11121043A (en) Manufacture of polymer secondary battery
JPS5991674A (en) Manufacture of battery
JP2680578B2 (en) Solid electrolyte battery
JPH0576138B2 (en)
JPH0381270B2 (en)
CA1082305A (en) Flat battery
JP2552393B2 (en) Lithium battery
JPS62229760A (en) Manufacture of flat type battery