JPS63289439A - Pulp density measuring apparatus - Google Patents

Pulp density measuring apparatus

Info

Publication number
JPS63289439A
JPS63289439A JP12348187A JP12348187A JPS63289439A JP S63289439 A JPS63289439 A JP S63289439A JP 12348187 A JP12348187 A JP 12348187A JP 12348187 A JP12348187 A JP 12348187A JP S63289439 A JPS63289439 A JP S63289439A
Authority
JP
Japan
Prior art keywords
pipe
pulp
receiving antenna
amount
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12348187A
Other languages
Japanese (ja)
Inventor
Isamu Okubo
勇 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP12348187A priority Critical patent/JPS63289439A/en
Publication of JPS63289439A publication Critical patent/JPS63289439A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly accurate measurement in real time on line with a relatively simple construction, by making a microwave irradiate and pierce a piping through which a pulp suspension flows to detect changes in attenuation thereof. CONSTITUTION:A teflon lining 2 is applied on the inner wall of a metal pipe 1 through which a pulp suspension flows. Extended tubes 3 and 4 are set on the pipe 1 facing each other in the direction of skewly piercing the pipe 1. An oscillation antenna 5 for microwaves, a matching device 6 and a first receiving antenna 7 are provided on the side of the extended tube 3 while a second receiving antenna 8 for microwaves and a matching device 9 are provided on the side of the extended tube 4. A microwave from a microwave oscillator 10 composed of a magnetron or the like is oscillate toward the second receiving antenna 8 piercing skewly the pipe 1 with the oscillation antenna 5 through a waveguide tube 11. A computing means 14 receives a reception output of the first receiving antenna 7 and that of the second receiving antenna 8 to measure the amount of water in the pipe 1 and calculates the amount of pulp based thereon to indicate the density of pulp on an indicator 15.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、パルプ懸濁液が流れる配管中のバルブl&H
量(パルプ濃度)を測定する手段に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention is directed to valves L&H in piping through which pulp suspension flows.
The present invention relates to a means for measuring the amount (pulp concentration).

〈従来技術〉 従来、パルプ濃度を測定する手段としては、a)剪断応
力を検出する方式 b)光学式の濃度検出方式 がよく知られている。
<Prior Art> Conventionally, as means for measuring pulp density, a) a method of detecting shear stress, and b) an optical density detection method are well known.

〈発明が解決しようとする問題点〉 しかしながら、これら方式は流速の影響を受ける難点が
ある。また、光学方式では色相の影響があり、さらに配
管中のパルプの挙動の影響も受けやすい。
<Problems to be Solved by the Invention> However, these systems have the disadvantage of being affected by the flow velocity. Furthermore, the optical method is affected by the hue and is also susceptible to the behavior of the pulp in the piping.

本発明は従来方式のこれらの問題点を解消したパルプ濃
度測定装置の提供を目的とする。
An object of the present invention is to provide a pulp density measuring device that solves these problems of the conventional method.

く問題点を解決するための手段〉 本発明の構成上の特徴は、パルプ懸濁液が流れる配管に
外部より極超短波を照射9貫通させ、その減資量の変化
を検出して配管内部の水量を測定し、その測定結果より
パルプの繊維量を算出する点にある。
Means for Solving the Problems> The structural feature of the present invention is to irradiate the pipe through which the pulp suspension flows with extremely high frequency waves from the outside, detect the change in the amount of reduced capital, and determine the amount of water inside the pipe. The purpose of this method is to measure the amount of fiber in the pulp and calculate the amount of fiber in the pulp from the measurement results.

く作用〉 パルプ懸濁液が流れる配管に外部より極超短波が照射1
貫通され、その減衰量の変化より配管内部の水量が測定
され、その測定結果よりパルプのsui量を算出される
Effect> Extremely high frequency waves are irradiated from the outside onto the pipe through which the pulp suspension flows 1
The amount of water inside the pipe is measured based on the change in the amount of attenuation, and the sui amount of the pulp is calculated from the measurement result.

〈実施例〉 第1図に基いて本発明の詳細な説明する。1はパルプ懸
濁液Pが流れるフランジ部を有する金属パイプであり、
内壁にはテフロンライニン灼施されており、耐蝕性を向
上させている。
<Example> The present invention will be explained in detail based on FIG. 1 is a metal pipe having a flange portion through which the pulp suspension P flows;
The inner walls are lined with Teflon to improve corrosion resistance.

3及び4は、パイプを斜めに貫く方向に対向する延長管
体であり、パイプの金属部を貫いてテフロンライニング
を介してパルプ懸濁液Pに接している。
Reference numerals 3 and 4 designate extension pipe bodies that face each other in a direction that extends diagonally through the pipe, and which penetrate the metal part of the pipe and are in contact with the pulp suspension P via a Teflon lining.

延長管体3側において、5は極超短波の発信アンテナ、
6はマツチング装置、7は第1受信アンテナである。
On the extension pipe body 3 side, 5 is an extremely high frequency transmitting antenna;
6 is a matching device, and 7 is a first receiving antenna.

延長管体4側において、8は極超短波の第2受信アンテ
ナ、9はマツチング装置である。
On the side of the extension tube 4, 8 is a second receiving antenna for extremely high frequency waves, and 9 is a matching device.

10はマグネトロンな、どで実現される極超短波発振器
であり、導波管11を介して極超短波の電磁波を発信ア
ンテナよりパイプを斜めに貫いて第2受信アンテナ8に
向けて矢印へ方向に発信させる。
Reference numeral 10 denotes an ultrahigh-frequency oscillator realized with a magnetron or the like, which emits ultrahigh-frequency electromagnetic waves through a waveguide 11 from a transmitting antenna, diagonally penetrating the pipe, and toward the second receiving antenna 8 in the direction of the arrow. let

第1受信アンテナ7の受信出力e1は出力安定装置12
に入力され、この値が一定値となるように極超短波発信
器10の発振出力を制御する。
The reception output e1 of the first reception antenna 7 is output from the output stabilizer 12.
The oscillation output of the extremely high frequency oscillator 10 is controlled so that this value becomes a constant value.

13は極超短波発信装置10に対する電源ユニットであ
る。
13 is a power supply unit for the extremely high frequency transmitting device 10.

14は演算手段であり、第1受信アンテナ7の受信出力
e1及び第2受信アンテナ8の受信出力e2を受けてパ
イプ1内の水の量を測定し、これに基づいてパルプ量e
pを算出して指示計器15にバルブ濃度を指示させ、又
は他の機器16に伝送する。
14 is a calculation means which measures the amount of water in the pipe 1 by receiving the reception output e1 of the first reception antenna 7 and the reception output e2 of the second reception antenna 8, and calculates the pulp amount e based on this.
p is calculated to cause the indicator 15 to indicate the valve concentration or to transmit it to another device 16.

この様な構成において、受信出力e、と02の差は、パ
イプ1内の水及びパルプ繊維による極超、  短波エネ
ルギーの減衰を測定することになり、水に比較して格段
に減衰量が大きいパルプmt/#の存在により、elと
−e 2の差は大きく変化する。
In such a configuration, the difference between the received outputs e and 02 is a measurement of the attenuation of extremely short wave energy due to the water and pulp fibers in the pipe 1, and the amount of attenuation is much larger than that of water. Due to the presence of pulp mt/#, the difference between el and -e 2 changes significantly.

第2図は減衰による測定′例を示す特性図であり、管内
が水のみの場合は周波数f、が共振点で、A点が02と
して測定される。このとき、管内に数%のパルプ懸濁液
が含まれている場合は同一共振周波数では8点が02と
して検出され、その差ΔeがmM量に関連した減衰量と
なる。管内に、パルプ繊維が含まれている場合は共振点
のずれが発生し、共j辰点f2に同調させると8点は0
点に移動するので、この場合はA点と0点の差Δe′が
繊維量に関連した減衰量となる。
FIG. 2 is a characteristic diagram showing an example of measurement by attenuation. When there is only water in the pipe, the frequency f is the resonance point and the point A is measured as 02. At this time, if several percent of the pulp suspension is contained in the tube, eight points are detected as 02 at the same resonance frequency, and the difference Δe becomes the attenuation amount related to the amount of mM. If the pipe contains pulp fibers, the resonance point will shift, and when tuned to the resonance point f2, the 8 points will be 0.
In this case, the difference Δe' between point A and point 0 is the attenuation amount related to the fiber amount.

第3図(A)はパルプ懸濁液の測定値epの変化例、(
B)はこの測定値に対応するパイプ1内のパルプ懸濁液
の濃度例を示すものであり、測定期間T1はパルプ懸濁
液P、はほとんど水であり、水だけの減衰が生じ、この
減衰量を基準レベルとしてパルプ8!I!¥O%とする
Figure 3 (A) shows an example of changes in the measured value ep of pulp suspension, (
B) shows an example of the concentration of the pulp suspension in the pipe 1 corresponding to this measured value. During the measurement period T1, the pulp suspension P is mostly water, and attenuation occurs only due to water, and this Pulp 8 with attenuation as the reference level! I! ¥0%.

測定期間T2は高濃度の懸濁液P2の測定期間であり、
パルプ繊組による減衰が太き(、測定期間T1を基準と
した減衰量の算出によりパルプ濃度epが大きく増加し
ている。
The measurement period T2 is a measurement period for the highly concentrated suspension P2,
The attenuation due to the pulp fibers is large (calculation of the attenuation amount based on the measurement period T1 shows that the pulp concentration ep has increased greatly.

測定期間T3は中濃度の懸濁液P3の測定期間であり、
パルプ繊維による減衰が中位であり、測定期間T1を基
準とした減衰量の算出によりパルプ濃度epが中程度に
増加している。
The measurement period T3 is a measurement period for a medium concentration suspension P3,
The attenuation due to the pulp fibers is moderate, and the pulp concentration ep has increased to a moderate degree based on the calculation of the attenuation amount based on the measurement period T1.

本発明の濃度測定の原理は、水とパルプm維のマイクロ
波に対する吸収率の差を利用するものであり、本質的に
流体の速度に対する影響を受けない測定が可能である。
The principle of concentration measurement according to the present invention is to utilize the difference in absorption rate of water and pulp m fibers to microwaves, and measurement can be performed essentially without being affected by the velocity of the fluid.

〈発明の効果〉 以上説明したように、本発明によれば流速の影響を受け
ないパルプ濃度計を比較的簡単な構成で、しかもパイプ
内にセンサーを挿入したり、光学的な測定のための流体
サンプル手段を必要としないオンラインリアルタイムの
高精痕なパルプ濃度測定を可能とするものであり、紙パ
ルプの計装の大きなネックであったパルプの濃度測定手
段の改善□に大きく貢献することができる。
<Effects of the Invention> As explained above, according to the present invention, a pulp density meter that is not affected by flow rate can be constructed with a relatively simple structure, and it is also possible to insert a sensor into a pipe or use it for optical measurement. This enables online, real-time, high-precision pulp concentration measurement without the need for fluid sample means, and will greatly contribute to the improvement of pulp concentration measurement methods, which have been a major bottleneck in paper pulp instrumentation. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図、第2図はパルプ
繊維による減衰特性の説明図、第3図はその動作説明図
である。 1・・・パイプ  2・・パテフロンライニング  3
゜4・・・延長管体  5・・・発信アンテナ  6,
9・・・マツチング装置  7・・・第1受信アンテナ
  8・・・第2受信アンテナ  10極超短波発振装
置11・・・導波管  12・・・出力安定装置  1
3・・・電源ユニット  14・・・演算手段  15
指示計器
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of the damping characteristics by pulp fibers, and FIG. 3 is an explanatory diagram of its operation. 1... Pipe 2... Putty flon lining 3
゜4... Extension pipe body 5... Transmission antenna 6,
9... Matching device 7... First receiving antenna 8... Second receiving antenna 10-pole ultrahigh frequency oscillator 11... Waveguide 12... Output stabilizer 1
3...Power supply unit 14...Calculating means 15
indicating instrument

Claims (1)

【特許請求の範囲】[Claims] パルプ懸濁液が流れる配管に外部より極超短波を照射、
貫通させ、その減衰量の変化を検出して配管内部の水量
を測定し、その測定結果よりパルプの繊維量を算出する
ことを特徴とするパルプ濃度測定装置。
Ultrahigh frequency waves are irradiated from the outside to the piping through which the pulp suspension flows.
A pulp concentration measuring device characterized by measuring the amount of water inside the pipe by penetrating the pipe, detecting a change in the amount of attenuation, and calculating the amount of fiber in the pulp from the measurement result.
JP12348187A 1987-05-20 1987-05-20 Pulp density measuring apparatus Pending JPS63289439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12348187A JPS63289439A (en) 1987-05-20 1987-05-20 Pulp density measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12348187A JPS63289439A (en) 1987-05-20 1987-05-20 Pulp density measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63289439A true JPS63289439A (en) 1988-11-25

Family

ID=14861699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12348187A Pending JPS63289439A (en) 1987-05-20 1987-05-20 Pulp density measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63289439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026310A1 (en) * 1997-11-13 1999-05-27 Carnegie Mellon University Wireless signal distribution in a building hvac system
US5977851A (en) * 1997-11-13 1999-11-02 Carnegie Mellon University Wireless signal distribution in a building HVAC system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026310A1 (en) * 1997-11-13 1999-05-27 Carnegie Mellon University Wireless signal distribution in a building hvac system
US5977851A (en) * 1997-11-13 1999-11-02 Carnegie Mellon University Wireless signal distribution in a building HVAC system
US5994984A (en) * 1997-11-13 1999-11-30 Carnegie Mellon University Wireless signal distribution in a building HVAC system

Similar Documents

Publication Publication Date Title
EP0598720B1 (en) Nonintrusive flow sensing system
US4598593A (en) Acoustic cross-correlation flowmeter for solid-gas flow
FI67627B (en) PROCEDURE FOR THE ORGANIZATION OF THE PROCESSING OF STRUCTURES AND THE EXTENSION OF GENERATION OF THE GENOM UTNYTTJANDET AV ULTRALJUD
CA2677516A1 (en) Apparatus for determining transverse velocity or temperature of a fluid in a pipe
WO1988008516A1 (en) Ultrasonic fluid flowmeter
US3911726A (en) Ultrasonic method for measuring of parameters of liquids
WO1994017373A1 (en) Procedure for determining material flow rate
JPS63289439A (en) Pulp density measuring apparatus
SU838552A1 (en) Device for measuring undissolved gas concentration in liquid
JPS5919814A (en) Microwave flow meter
US3204455A (en) Ultrasonic flowmeter
JPH11183404A (en) Densitometer
JPS5527935A (en) Ultrasonic wave flow meter
JPH0324607B2 (en)
SU1717638A1 (en) Device for measuring sugar syrup density in pipelines
SU1710930A1 (en) Method of determining leakage point in pipeline
RU2120111C1 (en) Flowmeter
JPS5983004A (en) Method for measuring thickness of wall of refractories for fused metal container
JPH03167418A (en) Clad-thickness measuring apparatus
JP2758679B2 (en) Ultrasonic flow meter
CN207703665U (en) A kind of fluid density detecting instrument
JPH0735589A (en) Flowrate and flow concentration measuring device
JP3542173B2 (en) Ultrasonic flaw detection method
JP2002139456A (en) Sludge concentration meter
JPS59133431A (en) Apparatus for measuring powder flow rate using microwave