JPS6328816A - Coating method of converter slag - Google Patents

Coating method of converter slag

Info

Publication number
JPS6328816A
JPS6328816A JP17087086A JP17087086A JPS6328816A JP S6328816 A JPS6328816 A JP S6328816A JP 17087086 A JP17087086 A JP 17087086A JP 17087086 A JP17087086 A JP 17087086A JP S6328816 A JPS6328816 A JP S6328816A
Authority
JP
Japan
Prior art keywords
converter
water
slag
repair
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17087086A
Other languages
Japanese (ja)
Inventor
Naoharu Kokaki
幸加木 直治
Isao Kobayashi
功 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17087086A priority Critical patent/JPS6328816A/en
Publication of JPS6328816A publication Critical patent/JPS6328816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To prevent the rate of operation of a converter from being lowered by repair by tapping molten steel from the converter, adding a granular refractory to remaining molten slag, coating the resulting coating material by oscillation to repair the eroded part, cooling the material by water sprinkling and blowing compressed air to remove steam in a short time. CONSTITUTION:Molten steel is tapped from a converter by tilting the converter, a granular refractory is added to molten slag having high flowability and remaining in the converter kept at 90 deg. tilt angle and the resulting coating material is coated by oscillation to repair the eroded part of the refractory lining of the converter. After water is sprinkled so as to accelerate the cooling of the coating material, compressed air is blown from a bottom tuyere 8 to exhaust steam generated by the water cooling together with a flow 7 of air formed by heat convection from the throat of the converter and the tap hole by forced draft 9 in a shot time. Thus, the next refining operation by blowing can be started in a short time without causing an accident such as steam explosion and the rate of operation of the converter is increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は転炉のスラグコーティング法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for slag coating a converter.

(従来の技術) 従来の転炉スラグコーティング技術としては例えば特公
昭5O−40364r転炉の補修法」に見られる如く、
流動性のある転炉滓1重量部に対し、モ均直径30皿以
下に調整した耐火物又は耐火原料α2〜LO重量部を配
合し念ものを溶損部分に付着させたのち冷却固化せしめ
ることを特徴とするものである。この技術は補修にあた
って、流動性のある転炉滓注下放置して放冷にまかせ冷
却固化して補修を完了するものであった◇ この方法は大量の補修を行う場合、スラグの熱容量が大
きい念めに、スラグが容易に冷却固化されず固化するに
は、長時間を必要とした。この長時間の放冷は転炉稼動
率の低下となジ大きな生産障害となるばかりでなく、転
炉内壁において補修部以外の蓄熱された熱量が大量に放
出され大きな熱ロスとなる。又、冷却固化のための所要
時間を短くするには流動性スラグへの配合材の大量使用
が必須となシコスト的に褥策でない。
(Prior Art) As a conventional converter slag coating technology, for example, as seen in the Japanese Patent Publication No. 5O-40364r Converter Repair Method,
Mix 1 part by weight of fluid converter slag with 2 to LO parts by weight of refractory or refractory raw material adjusted to a uniform diameter of 30 plates or less, adhere the material to the melted part, and then cool and solidify. It is characterized by: When repairing, this technique involves pouring fluidized converter slag and leaving it to cool until it cools and solidifies to complete the repair.◇ This method is useful when repairing a large amount of slag, since the heat capacity of the slag is large. As a precaution, the slag was not easily cooled and solidified, and it took a long time to solidify. This long period of cooling does not only reduce the operating rate of the converter and cause a major production problem, but also causes a large amount of heat stored in the inner wall of the converter other than the repaired portion to be released, resulting in a large heat loss. In addition, in order to shorten the time required for cooling and solidifying, it is essential to use a large amount of compounding material in the fluid slag, which is not a cost-effective solution.

この技術に関連し先に本出題人は特願昭60−1786
19「転炉スラグコーティング法」で転炉スラグ水冷コ
ーティング法の基本理念について出願したが、本発明は
、この技術においてスプレー散水後の水分蒸発時間を早
め、炉の立ち上げを早める方法の新知見に関するものを
開発しようとするものである。
Related to this technology, the present author previously applied for a patent application in 1786, 1986.
No. 19 "Converter slag coating method" was applied for the basic concept of the converter slag water-cooled coating method, and the present invention is based on new knowledge of a method for speeding up the water evaporation time after spray watering in this technology and speeding up the start-up of the furnace. The aim is to develop something related to

(発明が解決しようとする問題点ン 本発明は、特願昭60−178619のコーティング法
の欠点を補うものであり、スプレー散水後の水分蒸発を
早め、コーティング作業の短時間化を狙っ念ものである
(Problems to be Solved by the Invention) The present invention compensates for the drawbacks of the coating method disclosed in Japanese Patent Application No. 60-178619, and aims to speed up water evaporation after spray watering and shorten the time required for coating. It is.

(問題点を解決するための手段) 本発明は転炉出鋼後残スラグに必要に応じて固化剤を添
加して首振りコーテイング後、該コーティング層にスプ
レー散水を行い、該コーティング層を冷却固化する際の
水分蒸発に関するものである。
(Means for Solving the Problems) The present invention adds a solidifying agent to the slag remaining after steel tapping in a converter, coats it with a swing, and then sprays water onto the coating layer to cool the coating layer. This relates to water evaporation during solidification.

この散水時の水分蒸発は、該スラグコーティング層及び
転炉耐火物の保有熱量によって蒸発が進行する。もちろ
んこの蒸発は、該スラグコーティング層の冷却固化と同
時に進行するものであるが一部は散水後も水分蒸発現象
が生じている。
The water evaporation during this water sprinkling progresses depending on the amount of heat retained in the slag coating layer and the converter refractory. Of course, this evaporation proceeds simultaneously with the cooling and solidification of the slag coating layer, but some water evaporation still occurs even after watering.

本発明はこの散水後の水分蒸発現象を促進するため、転
炉内の通気を積堅的に生じさせ、水分蒸発の時間を早め
ようとするものである。
In order to promote the water evaporation phenomenon after water sprinkling, the present invention aims to speed up the water evaporation time by steadily creating ventilation inside the converter.

(作用) 転炉における耐火物の損傷は化学的損耗物理的損耗に溶
鋼温度条件が加味されて生じている。特に装入壁におい
ては物理的損耗が大部分を占める。
(Function) Damage to refractories in converters is caused by chemical wear, physical wear, and molten steel temperature conditions. In particular, physical wear and tear occupies a large portion of the charging wall.

すなわちスクラップ装入、溶銑装入時の機械的な衝突・
衝撃による煉瓦の破壊損耗である。
In other words, mechanical collisions and
The bricks were destroyed and worn out due to the impact.

この補修方法は強固な保獲層を早く安く成形せしめるた
めに通常のスラグコーテイング後にスプレー散水する方
式が有効であるが、本発明は、このスプレー散水方式を
よ夕発展せしめたもので、散水後の水分蒸発を促進させ
ることによシ、さらに早く安全に操業を可能としたもの
である。
For this repair method, it is effective to spray water after applying the usual slag coating in order to form a strong retention layer quickly and cheaply, but the present invention is a further development of this spray watering method. By accelerating the evaporation of water, it is possible to operate more quickly and safely.

水分蒸発の必要性は水蒸気爆発の防止から必須条件とな
る。すなわち、コーティング、スプレー散水後転炉内に
残水分が存在し何らかの原因で、例えば転炉傾動によシ
、高温の炉内付着スラグが残水分を覆う状態となれば、
残水分は高温水蒸気としてガス化し、この時の容積膨張
17oO〜1800倍でいわゆる水蒸気爆発を起こす。
The necessity of water evaporation is an essential condition for preventing steam explosions. In other words, if there is residual moisture in the converter after coating or spray watering, and for some reason, for example due to tilting of the converter, the high temperature slag inside the furnace covers the residual moisture.
The remaining moisture is gasified as high-temperature steam, and a so-called steam explosion occurs when the volume expands 17 to 1800 times.

この残水分の水蒸気爆発は溶銑装入時も同様に起こる。This steam explosion of residual water occurs similarly when hot metal is charged.

従って、残水分は絶対に存在してはならないのである。Therefore, there must be absolutely no residual moisture present.

従来はこの残水分の蒸発は、蒸発時間と称して放置する
ことによシその蒸発を待って転炉吹錬を実施していた。
Conventionally, the evaporation of this residual water was carried out by waiting for the evaporation by leaving it for a period of time, which is called evaporation time, and then performing converter blowing.

ところでこの水分蒸発は転炉煉瓦の蓄熱によるふく射受
熱乾燥、該スラグコーティング層の蓄熱による伝導受熱
乾燥によって生じる現象であるが、蒸発時間が長いとい
う欠点がある。(例えば1時間〜2時間)蒸発時間が長
いということは転炉稼働率を著しく、低下させ、転炉生
産性が悪くなる。
By the way, this moisture evaporation is a phenomenon caused by radiant heat-receiving drying due to heat storage in the converter bricks and conductive heat-receiving drying due to heat storage in the slag coating layer, but it has the disadvantage that the evaporation time is long. A long evaporation time (for example, 1 to 2 hours) significantly lowers the converter operating rate, resulting in poor converter productivity.

そこで本発明は、この蒸発時間を短時間に完了させるべ
く、項部的な転炉内通風促進法を提供するものである。
Therefore, the present invention provides a method for promoting ventilation inside a converter in a manner that allows the evaporation time to be completed in a short time.

通常、出鋼、排滓後の転炉内は横倒し位置において熱対
流により第4図に示す様な気体の流れ(7)が生じてい
る。
Normally, a gas flow (7) as shown in FIG. 4 occurs due to thermal convection in a converter in a sideways position after tapping and slag removal.

すなわち、転炉1を装入側90に傾動した場合、炉口4
の下方、面積3分の1から、大気が炉内に侵入、下方の
炉壁に沿って炉底3に達し、上方の炉壁に沿って、出鋼
孔2、炉口4の上方、面積3分の2から熱対流7が排出
される。
That is, when the converter 1 is tilted toward the charging side 90, the furnace opening 4
Air enters the furnace from one-third of the area below, reaches the furnace bottom 3 along the lower furnace wall, and flows along the upper furnace wall, above the tapping hole 2 and the furnace mouth 4. Heat convection 7 is discharged from two thirds.

この熱対流は以下の理由によって発生しているC転炉1
内の高温雰囲気は、大気に比べて軽いため出鋼孔2、炉
口4の上方から排出され、これによりドラフト現象で炉
口4の下方から、大気が侵入する。この侵入した大気は
転炉煉瓦の保有熱量により、高温となり、以下順次同様
のサイクルで対流が生じる。なお図中5は放熱板、6は
操業床である。
This heat convection occurs due to the following reasons: C converter 1
Since the high-temperature atmosphere inside the furnace is lighter than the atmosphere, it is discharged from above the tapping hole 2 and the furnace mouth 4, and as a result, the atmosphere enters from below the furnace mouth 4 due to a draft phenomenon. This invading atmosphere becomes high in temperature due to the amount of heat held by the converter bricks, and convection occurs in the same cycle. In the figure, 5 is a heat sink, and 6 is an operating floor.

ところでスプレー散水後の転炉内で前述した熱対流は、
転炉煉瓦、該スラグコーティング層の熱保有量が少なく
なったことにより、非常に弱い流れとなシ、水分蒸発に
対する寄与は隋微である。
By the way, the heat convection mentioned above inside the converter after spraying water is
Due to the reduced heat retention capacity of the converter bricks and the slag coating layer, the flow is very weak and its contribution to water evaporation is negligible.

第2図は通気による水分蒸発時間に及ぼす影響を測定す
るための試験製蓋である。容器11中シて湿潤スラグ(
水分10fl) 12を入れ、底から一定温度で加熱1
3し、上部からスラグ表面に向けて通風14して試験し
た。
Figure 2 shows a test lid for measuring the effect of ventilation on water evaporation time. Pour wet slag into container 11 (
Add water (10 fl) 12 and heat from the bottom at a constant temperature 1
3, and then tested by blowing air 14 from the top toward the slag surface.

第3図に第2図に示す設備でテストした通気による水分
蒸発時間の一例を示す0すなわち、通風なしに比べて通
風することによシ、蒸発時間は短くなる。
FIG. 3 shows an example of the water evaporation time due to ventilation tested using the equipment shown in FIG. 2. In other words, the evaporation time is shorter with ventilation than without ventilation.

又、ある通風量(速度)以上になると、その効果は減少
してくることから経済的な最適点が存在する。
Moreover, since the effect decreases above a certain ventilation amount (velocity), there is an economical optimum point.

この通風による蒸発(乾燥)促進のメカニズムは次の通
シである。
The mechanism of promoting evaporation (drying) by ventilation is as follows.

一般に乾燥速度Rは次式で表わされる。Generally, the drying rate R is expressed by the following formula.

R=K (pl−PO)  −(1) ここで R=乾燥速度 に=係数(材質粒度etcで一定) Pi=材料表面の分圧 Po=大気中の水蒸気分圧 湿潤材料でもちゃ熱源でもある高温スラグにおいて、ス
ラグ表面から水分が蒸発するにつれて転P内の大気中水
蒸気分圧Poが高くなる。
R = K (pl-PO) - (1) where R = drying rate = coefficient (constant depending on material particle size, etc.) Pi = partial pressure on material surface Po = partial pressure of water vapor in the atmosphere Wet material is also a heat source In the high-temperature slag, as moisture evaporates from the slag surface, the atmospheric water vapor partial pressure Po within the slag P increases.

従って上記(1)式において、スラグの表面分圧P1が
一定とすれば乾燥速度Rは喧が小さくなり、乾燥速度が
遅くなる。そこで転炉内の水蒸気分圧p。
Therefore, in the above equation (1), if the surface partial pressure P1 of the slag is constant, the drying rate R becomes smaller and the drying rate becomes slower. Therefore, the water vapor partial pressure in the converter is p.

が高い大気を換気し、水蒸気分圧の低い大気もしくは、
その池のガス体を常時通風すれば乾燥速度Rは早くなる
Ventilate the atmosphere with high water vapor pressure and ventilate the atmosphere with low water vapor partial pressure or
If the gas in the pond is constantly ventilated, the drying rate R will increase.

一方具体的な通風の方案として、種々検討の結果、既存
のLD−OB炉の底吹羽口ノズルからの通風が最も有効
であった。
On the other hand, as a specific ventilation method, as a result of various studies, ventilation from the bottom blowing tuyere nozzle of the existing LD-OB furnace was found to be the most effective.

通風の方法として、出鋼孔からの吸引、炉口の上方面積
3分の2からの吸引は、新しい設備が必要であり、しか
も耐熱用の吸引ブロア等が必須となシ経済的に得策でな
い。
As a method of ventilation, suction from the tapping hole or suction from the upper two-thirds of the area of the furnace mouth requires new equipment and is not economically advisable as it requires a heat-resistant suction blower, etc. .

又、炉口の下方面積3分の1からの吹き込みも新しい設
備が必要で、蒸発面をすべて通風しようとすれば、大が
かシな設備と々シ、設置スペース上の問題がある。
In addition, new equipment is required to blow air from the lower one-third of the area of the furnace mouth, and if the entire evaporation surface is to be ventilated, the equipment will be large and there will be problems in terms of installation space.

従って第1図に示すように、既存のLD−OB炉底吹羽
ロノズル配管に圧縮空気(圧空)を継ぎ、炉底の羽口、
ノズル部8から吹込み気体10 を通風することによっ
て簡便で、安価な設備が可能となる。図中9は強制通風
である。尚、使用する気体としては特に制約はないが、
通常の大気がコスト的に有利に使用される。又、本発明
は底吹羽口からの気体吹込みによる蒸発促進効果を基本
とするが、前述の出鋼孔又は炉口上部からの吸引・炉口
下部への吹込みを設備費、スペース等が許せば併用する
ことによって更に大きな効果を得ることも可能である。
Therefore, as shown in Figure 1, compressed air (compressed air) is connected to the existing LD-OB furnace bottom blower nozzle piping, and the
By ventilating the blown gas 10 from the nozzle part 8, simple and inexpensive equipment becomes possible. 9 in the figure is forced ventilation. There are no particular restrictions on the gas to be used, but
Ordinary atmosphere is cost-effectively used. In addition, although the present invention is based on the evaporation promotion effect by blowing gas from the bottom blowing tuyere, the above-mentioned suction from the tapping hole or the upper part of the furnace mouth and the injection into the lower part of the furnace mouth do not require equipment cost, space, etc. If allowed, even greater effects can be obtained by using them together.

(実施例) 純酸素250T転炉において、吹錬出鋼完了後、炉内に
スラグ25  を残こし固化剤の石灰石6T、煉瓦6T
ヲ炉内スラグ上に投入した。
(Example) In a pure oxygen 250T converter, after completion of blow-finishing, slag 25% was left in the furnace, and solidifying agent limestone 6T and brick 6T were used.
It was placed on top of the slag in the furnace.

首振プローティングでこの固化剤をスラグと混合し、転
炉装入角度90  にて放置し念。
This solidifying agent was mixed with the slag using oscillatory plating and left at a converter charging angle of 90 degrees.

その後、この放置したスラグが充分に固化したと確認後
、スプレー散水を開始した。
After confirming that the left slag had solidified sufficiently, water spraying was started.

スプレー散水パターンは水量を200115+で10分
間、さらに水量50t/分で20分間とし、合計水量は
3000 t、散水時間は、30分であった。
The spray watering pattern was such that the water amount was 200115+ for 10 minutes, and the water amount was 50 t/min for 20 minutes, the total water amount was 3000 t, and the watering time was 30 minutes.

散水完了後、LD−OBの底吹羽口ノズル孔4本中、上
部2本から、圧空2000 Nm /Hrをブローした
。この時のスラグ表面付近の流速はa5m/Secであ
った。水分の蒸発は10分で完了した。
After the water sprinkling was completed, compressed air of 2000 Nm/Hr was blown from the top two of the four bottom blowing tuyere nozzle holes of the LD-OB. The flow velocity near the slag surface at this time was a5 m/Sec. Evaporation of water was completed in 10 minutes.

その後、通常の吹錬作業に移ジ、水蒸気爆発もなく、正
常な操業を実施した。
Thereafter, normal blowing work was carried out, and normal operations were carried out without any steam explosions.

ちなみに圧空プローなしの場合、スラグ表面付近の流速
はα5m/Secであυ、水分の蒸発は約70分を要し
ていた。
By the way, in the case without a compressed air blower, the flow velocity near the slag surface was α5 m/Sec, and it took about 70 minutes for water to evaporate.

以上の如く、新しく高価な設清を設けることなく、散水
後の蒸発時間を約60分短縮することにより転炉稼働率
の向上が図れ、生産能力が2〜3チ増加した。
As described above, by shortening the evaporation time after water sprinkling by about 60 minutes without installing new and expensive cooling equipment, the operating rate of the converter can be improved and the production capacity increased by 2 to 3 inches.

又、短時間コーティングが可能なことから、スラグコー
ティング頻度が多〈実施出来る様になり煉瓦材質のグレ
ードダウン実施、寿命延長に伴い、炉材原嗅価約20チ
のコストダウンが得られた。
In addition, since coating can be carried out in a short time, slag coating can be carried out more frequently, and as a result of downgrading the brick material and extending its life, the cost of the furnace material has been reduced by approximately 20 cm.

(発明の効果) 以上の如く転炉の内壁や炉底耐大物の摩耗に対して、散
水コーティングを行うに際して本発明の水分蒸発促進法
は、作業時間が大巾に短縮で、き、11゛、。
(Effects of the Invention) As described above, the method of promoting water evaporation of the present invention can greatly shorten the working time when applying water spray coating to prevent the wear of the inner walls of the converter and the heavy-duty materials at the bottom of the converter. ,.

転炉稼働率及び生産能力が向上する。  ′又、放熱ロ
スを最小限に防止でき省エネルギーが図れる。
Converter operation rate and production capacity will improve. 'Also, heat radiation loss can be minimized and energy can be saved.

さらに短時間で頻度多く、実施できることから、炉材コ
ストも大巾に低減できる等優れた効果を発揮する。
Furthermore, since it can be carried out frequently and in a short period of time, it has excellent effects such as greatly reducing the cost of furnace materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、通風方法の一例を示す図、 第2図は通風による蒸発時間の短縮効果を測定する試験
装置、 第3図は、通風による蒸発時間の短縮効果の例を示す図
(蒸発完了の判定は重量測定で実施)、第4図は、転炉
内の熱対流の例全示す図である。 1・・・転炉       2・・・出鋼孔3・・・炉
底       4・・・炉口5・・・防熱板    
  6・・・操業床7・・・熱対流      8・・
・底部羽口9・・・強制通風     10・・・吹込
み気体1:転炉         2:81 3:炉底           4:炉口5: 防熱板
          6:操業床7:熱対流     
     8:底部羽口9: 強制通風       
  10: 吹込み気体第1図 第 2 凹 14 通風 第 3 図 剤醇濶 (分) 第4図
Figure 1 is a diagram showing an example of a ventilation method; Figure 2 is a test device for measuring the effect of ventilation on shortening evaporation time; Figure 3 is a diagram showing an example of the shortening effect of ventilation on evaporation time (evaporation is completed). Fig. 4 is a diagram showing all examples of thermal convection in a converter. 1... Converter 2... Steel tapping hole 3... Furnace bottom 4... Furnace mouth 5... Heat shield plate
6...Operating floor 7...Heat convection 8...
・Bottom tuyere 9... Forced draft 10... Blowing gas 1: Converter 2: 81 3: Hearth bottom 4: Furnace mouth 5: Heat shield plate 6: Operating floor 7: Heat convection
8: Bottom tuyere 9: Forced ventilation
10: Blowing gas Figure 1 Figure 2 Concave 14 Ventilation Figure 3

Claims (1)

【特許請求の範囲】[Claims] 転炉出鋼後、残スラグを首振りコーティングし、スプレ
ー散水冷却後、炉体を横倒し位置にて底部羽口より炉内
へ気体を吹込むことを特徴とする転炉スラグコーティン
グ法。
This converter slag coating method is characterized by coating the remaining slag by swinging after tapping the converter, cooling it with spray water, and then blowing gas into the furnace from the bottom tuyere with the furnace body in a horizontal position.
JP17087086A 1986-07-22 1986-07-22 Coating method of converter slag Pending JPS6328816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17087086A JPS6328816A (en) 1986-07-22 1986-07-22 Coating method of converter slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17087086A JPS6328816A (en) 1986-07-22 1986-07-22 Coating method of converter slag

Publications (1)

Publication Number Publication Date
JPS6328816A true JPS6328816A (en) 1988-02-06

Family

ID=15912838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17087086A Pending JPS6328816A (en) 1986-07-22 1986-07-22 Coating method of converter slag

Country Status (1)

Country Link
JP (1) JPS6328816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382705A (en) * 1989-08-25 1991-04-08 Kawasaki Steel Corp Method for repairing converter in hot-state
KR100489195B1 (en) * 2000-12-22 2005-05-11 주식회사 포스코 Recycling Method of Residual Castables for Teeming Ladle
JP2009108388A (en) * 2007-10-31 2009-05-21 Nippon Steel Corp Method for measuring profile of stuck metal on furnace opening hole of converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382705A (en) * 1989-08-25 1991-04-08 Kawasaki Steel Corp Method for repairing converter in hot-state
KR100489195B1 (en) * 2000-12-22 2005-05-11 주식회사 포스코 Recycling Method of Residual Castables for Teeming Ladle
JP2009108388A (en) * 2007-10-31 2009-05-21 Nippon Steel Corp Method for measuring profile of stuck metal on furnace opening hole of converter

Similar Documents

Publication Publication Date Title
JP5541423B1 (en) Steelmaking slag reduction treatment device and steelmaking slag reduction treatment system
JP5574060B2 (en) Converter steelmaking method
JPH05507764A (en) Compositions and methods for synthesizing Tribe slag, compositions and methods for treating Tribe slag, and compositions and methods for refractory lining coatings.
WO2022001874A1 (en) Slag-splashing fettling method
JPS6328816A (en) Coating method of converter slag
KR100660658B1 (en) Method for accelerating separation of granular metallic iron from slag
JP4689782B2 (en) Method for coating slag on converter furnace wall and method for managing converter furnace bottom during slag coating
JP4455791B2 (en) Coating method for refractories in the furnace
JPH11229021A (en) Method for protecting lining refractory in converter type furnace
JPH04501140A (en) A method for introducing a flowable additive into a metallurgical tank, and a tank used in the method
JPS6328817A (en) Furnace body cooling method of converter
JP2007064578A (en) Method for cooling converter
US3396958A (en) Apparatus for recovering an unburnt waste gas in an oxygen top-blowing converter
JP2000313912A (en) Slag coating method in converter
JPH0931513A (en) Steelmaking method in combination blown converter having long service life of refractory
JP3615673B2 (en) Blast furnace operation method
JPS6240309A (en) Coating method with slag in converter
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JP4045128B2 (en) Method and apparatus for cooling molten slag
JP2876955B2 (en) Repair method for converter type refining vessel with gas injection tuyere
JP2001089806A (en) Hot-repairing method of converter
JPH10317034A (en) Reaction vessel for pre-treating molten iron
SU1715861A1 (en) Method for operation of converter lining with combined feed of gases
CN114574655A (en) Method for repairing furnace by using limestone
JPS6046062B2 (en) Refractory materials for thermal spraying