JPS6328789A - Rigid canvas device with rotor and split flap - Google Patents

Rigid canvas device with rotor and split flap

Info

Publication number
JPS6328789A
JPS6328789A JP61171010A JP17101086A JPS6328789A JP S6328789 A JPS6328789 A JP S6328789A JP 61171010 A JP61171010 A JP 61171010A JP 17101086 A JP17101086 A JP 17101086A JP S6328789 A JPS6328789 A JP S6328789A
Authority
JP
Japan
Prior art keywords
rotor
rigid
sail
split
lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61171010A
Other languages
Japanese (ja)
Inventor
Takahiro Ogami
大神 孝裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61171010A priority Critical patent/JPS6328789A/en
Publication of JPS6328789A publication Critical patent/JPS6328789A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Landscapes

  • Ship Loading And Unloading (AREA)

Abstract

PURPOSE:To prevent exfoliation of an air flow from a vane surface and to increase a ship hull driving force through utilization of a lift by a Magnus effect, by a method wherein a rotor is mounted to the front part of the rigid main vane of a rigid canvas, and split flaps are situated on both sides of a rear part. CONSTITUTION:A rotor 2 rotatable around a rotary shaft 9 by means of a driven device is situated to the front part of a rigid vaneform canvas 1 serving as a rigid canvas, and split flaps 3 are situated on both sides of a rear part. The split flap 3 is supported to a revolving shaft 11 pivotally therearound, and is foldable into a recess 1'. This constitution causes acceleration of a flow 13a, on the front surface side of the vane, of air flows 13 through rotation of the rotor 2, deceleration of a flow 13b on the rear surface side, and further deceleration of the flow by means of the flap 3, generates a lift L by means of a Magnus effect, and enables utilization of the lift as a driving force.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、船舶にvc備される1肌装置に関し、特に剛
性の主翼をそなえた剛体帆装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a single sail device equipped with a VC on a ship, and more particularly to a rigid sail device provided with a rigid main wing.

〔従来の技術〕[Conventional technology]

従来上り、風力推進装置として、船上においてロータが
鉛直軸線周りに回転可能に立設されるとともに、このロ
ータを回転駆動させるための回転駆動機構を設ける技術
が開発されている。
2. Description of the Related Art Conventionally, a technology has been developed for upstream wind propulsion devices in which a rotor is erected on a ship so as to be rotatable around a vertical axis, and a rotational drive mechanism is provided for rotationally driving the rotor.

このような従来の風力推進装置において、上記ロータを
上記回転駆動機構により回転させると、マグヌス効果に
より風の入射方向と直交する方向に揚力が発生する。そ
して、この揚力の船舶の進行方向における成分が船舶の
推進力を助勢するのである。
In such a conventional wind propulsion device, when the rotor is rotated by the rotation drive mechanism, lift is generated in a direction perpendicular to the direction of incidence of the wind due to the Magnus effect. The component of this lift force in the direction of movement of the ship assists the propulsion force of the ship.

また、船舶の主機関の燃V目Y1費量を節約するため、
船上に剛体帆を設は同剛体帆に発生する揚力を船舶の推
進力として利用する技術も、従来、開発されている。
In addition, in order to save fuel consumption of the ship's main engine,
Techniques have also been developed in which a rigid sail is installed on a ship and the lift generated by the rigid sail is used as propulsion force for the ship.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来の風力推進装置において、ロータの直径
を実用上あまり大きくすることができないので、上記ロ
ータだけでは帆の面積に相当する投影面積は小さくなる
By the way, in a conventional wind propulsion device, since the diameter of the rotor cannot be increased practically, the projected area corresponding to the area of the sail becomes small if the rotor is used alone.

したがって、+11位投影面積当たりの揚力は大きくて
も、ロータ全体としての揚力はあまり大さくできない。
Therefore, even if the lift per +11 projected area is large, the lift of the rotor as a whole cannot be increased very much.

また、上記ロータには風の入射方向と直角方向に揚力が
発生する。つまワ、上記ロータへの風の入射方向が船舶
の真横方向である場合、発生する揚力の方向が船舶の進
行方向となるので、揚力がそのまま船舶の推進力として
作用するが、ロータへの風の入射方向が船舶の横方向と
ずれるにしたがって、ロータにおける揚力が船舶の推進
力として有効に作用しなくなる。すなわち、全方位の風
を考えた場合、上記ロータにより得ることのできろ推進
力の平均値は小さくなるという問題点がある。
Further, lift is generated in the rotor in a direction perpendicular to the direction of incidence of the wind. If the direction of wind incidence on the rotor is directly lateral to the ship, the direction of the generated lift will be in the direction of travel of the ship, so the lift will act as a propulsive force for the ship, but the wind on the rotor will As the direction of incidence of the rotor deviates from the lateral direction of the ship, the lift force on the rotor becomes less effective as a propulsion force for the ship. That is, when considering winds from all directions, there is a problem that the average value of the propulsive force that can be obtained by the rotor becomes small.

また、従来の剛体帆装置では、剛体帆の翼面の境界層制
御がなされておらず、風向きに対して帆の迎角を大きく
とると失速して、大きな揚力を得ることは期待できない
Furthermore, in conventional rigid sail systems, there is no boundary layer control of the wing surface of the rigid sail, and if the angle of attack of the sail is large with respect to the wind direction, the sail will stall and it cannot be expected to obtain large lift.

本発明は、このような状況に鑑み、剛体帆にロータとス
プリット・フラップとを組合わせることにより境′#層
制御を行なえるようにして、迎角をかなり大きくとって
も失速を起こさずに高揚力が得られ、しかもほぼ全方位
から入射する風力を船舶の推進力としてより効率よく利
用できるようにした、ロータおよび久ブリット・フラッ
プイ寸き凋1体帆装置を提供することを目的とする。
In view of this situation, the present invention enables boundary layer control by combining a rotor and split flaps with a rigid sail, thereby achieving high lift without stalling even at a considerably large angle of attack. To provide a single-body sail device including a rotor, a small flap, and a rotor, which can obtain the following characteristics and more efficiently utilize wind power incident from almost all directions as a propulsion force for a ship.

〔問題点を解決するための手段〕 このため、本発明のロータおよびスプリット・ロータを
そなえ、同主翼の後部両側に、それぞれスプリッ)・フ
ラップがVC罰されたことを特徴としている。
[Means for Solving the Problems] For this reason, the rotor and split rotor of the present invention are provided, and split flaps are provided on both rear sides of the main wing, respectively.

〔作 用〕[For production]

」−述の本発明のロータおよびスプリント・フラップ付
き剛体帆vc置では、剛体帆前面に沿う空気流は、風向
きにより適宜の方向に回転駆動されるロータにより運動
エネルギーを与えられ、剥離を生じることなくスムーズ
に流れる。
In the rigid sail VC system with the rotor and splint flap of the present invention described above, the air flow along the front surface of the rigid sail is given kinetic energy by the rotor which is rotationally driven in an appropriate direction depending on the direction of the wind, causing separation. Flows smoothly.

また、剛体帆背面に沿う空気流は、上記ロータとスプリ
ット・フラップとにより減速されて小さな速度で流れる
Furthermore, the air flow along the back surface of the rigid sail is decelerated by the rotor and the split flap and flows at a small speed.

さらに、上記ロータ自体にも循環流が生じ、マグヌス効
果によって揚力が発生する。
Furthermore, a circulating flow is generated in the rotor itself, and lift is generated due to the Magnus effect.

(7!、)IA例〕 以下、図面により本発明の一実施例としてのロータおよ
びスプリット・フラップ付き剛体帆装置について説明す
ると、第1図はその側面図、f52図は第1図の■−■
矢現矢面断面図3図はその作用を示す水平断面図である
(7!,) IA Example] Hereinafter, a rigid sail device with a rotor and split flap as an embodiment of the present invention will be explained with reference to the drawings. Fig. 1 is a side view thereof, and Fig. f52 is the - ■
3 is a horizontal sectional view showing the effect.

第1図に示すように、本実施例のロータおよびスプリッ
ト・フラップ付き剛体帆装置では、船体甲板12上に帆
旋回装置7を介し帆柱6が立設され、同帆柱6の上RJ
部には、剛体帆Sが、上記帆旋回装置マに駆動されて鉛
直軸線周りに旋回可能に設けられている。そして、この
剛体帆Sは第1゜2図に示すように構成されている。
As shown in FIG. 1, in the rigid sail device with a rotor and split flap according to the present embodiment, a mast 6 is erected on the hull deck 12 via a sail turning device 7, and the upper RJ
A rigid sail S is provided in the section so as to be able to swing around a vertical axis by being driven by the sail swinging device. This rigid sail S is constructed as shown in FIG. 1.2.

つまり、帆柱6の上端部に下部端板5を介し剛性の主翼
としての翼形帆1が設けられ、同翼形帆1の上端部には
上g端板4が固着されている。そして、これらの上部端
板4と下部端板5との相互間において、翼形帆1の前部
にロータ2が回転軸9に軸支されて鉛直軸線周りに回転
可能1こ装備されている。
That is, an airfoil sail 1 serving as a rigid main wing is provided at the upper end of the mast 6 via a lower end plate 5, and an upper g end plate 4 is fixed to the upper end of the airfoil 1. Between the upper end plate 4 and the lower end plate 5, a rotor 2 is provided at the front of the airfoil sail 1 and is rotatable around a vertical axis, supported by a rotating shaft 9. .

また、上記翼形帆1の後部両側に、それぞれスプリット
・7う・ンフ゛3,3が8されている。これらのスプリ
ット・フラップ3,3は、旋回軸11゜11により鉛直
軸線周りに旋回可能に軸支され祈りたたみ可能に構成さ
れている。そして、翼形帆1の後部両側には、上記スプ
リット・7ラノプ3゜3の折りたたみ時−二、上記スプ
リット・フラップ3.3がそれぞれ嵌合されるリセス1
’、1’が形成されている。
Furthermore, split fins 3 and 8 are provided on both sides of the rear portion of the airfoil sail 1, respectively. These split flaps 3, 3 are pivotably supported around a vertical axis by a pivot shaft 11.degree. 11, and are configured to be foldable. On both sides of the rear part of the airfoil 1, there are recesses 1 into which the split flaps 3.3 are fitted, respectively, when the split flap 3.3 is folded.
', 1' are formed.

そして、これらの翼形帆1.ロータ2.スプリント・フ
ラップ3,3.上部端板4および下部端板5から剛体帆
Sが成り、同剛体帆Sは、スプリット・フラップ3,3
の折りたたみ時に同剛体帆Sの中心軸線S′に関して対
称形をなすように構成される。
And these airfoil sails 1. Rotor 2. Splint flap 3,3. The upper end plate 4 and the lower end plate 5 constitute a rigid sail S, and the rigid sail S includes split flaps 3, 3.
When folded, the rigid sail S is configured to form a symmetrical shape with respect to the central axis S'.

また、下部端板5の下面において、上記ロータ2を鉛直
軸線周りに回転駆動するための回転ギヤ装置8が設けら
れるとともに、上記スプリット・フラップ3,3を鉛直
軸線周りに旋回させるためのスプリット・フラップ旋回
装置10.10が設けられている。
Further, on the lower surface of the lower end plate 5, a rotating gear device 8 for rotating the rotor 2 around the vertical axis is provided, and a split flap 8 for rotating the split flaps 3, 3 around the vertical axis. A flap pivoting device 10.10 is provided.

なお、図中の符号Saは剛体帆Sの右側面、sbは剛体
帆Sの左側面を示している。
In addition, the code|symbol Sa in a figure has shown the right side of the rigid body sail S, and sb has shown the left side of the rigid body sail S.

上述の構成により、本実施例のロータおよびスプリット
・フラップ付き剛体帆装置では、剛体帆Sが、帆旋回装
置7により駆動され同剛体帆Sに入射する風の方向に灯
して最適の迎角を取るように旋回されて調整される。
With the above-mentioned configuration, in the rigid sail device with the rotor and split flap of this embodiment, the rigid sail S is driven by the sail turning device 7 and lights in the direction of the wind incident on the rigid sail S to achieve the optimum angle of attack. It is rotated and adjusted to take the position.

さて、第3図に示すように本装置の剛体帆Sに入射する
風13に対して同剛体帆Sの迎角を最適の大きさ、つま
り図にaで示す大きさにとった場合について説明する。
Now, as shown in Fig. 3, a case will be explained in which the angle of attack of the rigid sail S of this device is set to the optimum angle with respect to the wind 13 incident on the rigid sail S, that is, the size shown by a in the figure. do.

この場合、剛体帆Sの前面つまり右側面Saにおけるス
プリット・フラップ3は折りたたまれて閉じられるとと
もに、剛体帆Sの背面つまり左側面sbにおけるスプリ
ット・7ラノブ4は開かれた状態で固定される。また、
ロータ2は、回転ギヤ装置8により図に矢印へで示す方
向に回転駆動される。
In this case, the split flap 3 on the front surface, that is, the right side surface Sa of the rigid sail S is folded and closed, and the split flap 4 on the back surface, that is, the left side surface sb of the rigid sail S is fixed in an open state. Also,
The rotor 2 is rotationally driven by a rotating gear device 8 in the direction indicated by the arrow in the figure.

この状態で、風13は図の左側のロータ2において、剛
体帆Sの前面つまり右側面Saに沿う空気流13aと、
剛体帆Sの背面つまり左側面sbに沿う空気流131ノ
とに分離される。
In this state, the wind 13 flows through the rotor 2 on the left side of the figure, and creates an air flow 13a along the front surface of the rigid sail S, that is, the right side surface Sa.
The air flow is separated into an air flow 131 along the back surface, that is, the left side surface sb of the rigid sail S.

空気流13bは、矢印Aで示す方向に回転しでいるロー
タ2により減速されて剛体帆Sの背面つまり左側面sb
に沿って図の右方に向かって流れ、によりさらに減速さ
れつつ案内されて小さな速度で図の右下方に向は流出さ
れる。
The airflow 13b is decelerated by the rotor 2 which is rotating in the direction shown by the arrow A, and the airflow 13b is decelerated by the rotor 2, which is rotating in the direction shown by the arrow A, and the airflow 13b is decelerated by the rotor 2, which is rotating in the direction shown by the arrow A.
It flows toward the right side of the figure along the , and is guided while being further decelerated by the flow, and flows out toward the lower right side of the figure at a small speed.

また、2気流13aは、上記ロータ2により運動エネル
ギーを与えられ、その境界層内の滅連流を加速され同境
界層の厚みを減少される。そして、2気流13aは剛体
@Sの前面つまり右側面Suに沿い剥離を生じることな
く大きな速度″C流出される。
Further, the two air flows 13a are given kinetic energy by the rotor 2, and the uncoupled flow within the boundary layer is accelerated to reduce the thickness of the boundary layer. Then, the two air flows 13a flow out at a high velocity "C" along the front surface, that is, the right side surface Su of the rigid body @S without causing separation.

このように、ロータ2により剛体帆Sの翼面の境界層制
御が行なわれ、同剛体帆Sの1宵面つまり右側面Saに
沿って空気流13aが剥離を生じることなく極めて大き
な速度で流れる。なお、空気流13bは1N!度が小さ
いので剛体帆Sの背面つまり左側面sbにおいて剥離を
生じることはない。
In this way, the boundary layer control of the wing surface of the rigid sail S is performed by the rotor 2, and the air flow 13a flows at an extremely high speed without causing separation along the first side, that is, the right side Sa of the rigid sail S. . In addition, the air flow 13b is 1N! Since the degree is small, separation does not occur on the back surface of the rigid sail S, that is, on the left side surface sb.

こうして、剛体帆Sは中心軸線S゛に関して対称に構成
されるにもががわらず、剛体帆Sの前面におけるスプリ
ット・7ランプ3を閉じ、背面におけるスプリット・フ
ラップ3を開くことにより、上記剛体帆Sにキャンバ−
をそなえた場合と同等の作用が生じる。つまり、剛体帆
Sの曲面に沿う空気流13aと背面に沿う空気流13b
との速度差が上記スプリット・フラップ3.3の作用に
より極めて大きくなるのである。
In this way, although the rigid sail S is constructed symmetrically with respect to the central axis S', by closing the split-7 ramp 3 on the front side of the rigid sail S and opening the split flap 3 on the back side, Camber to S
The same effect will occur as if it were equipped with. In other words, an air flow 13a along the curved surface of the rigid sail S and an air flow 13b along the back surface.
The speed difference between the two speeds becomes extremely large due to the action of the split flap 3.3.

そして、上記の空気流13aと空気流13bとの速度差
にもとづき、ベルヌーイの定理より、剛体帆Sの前面つ
まり右側面Saと背面つまり左側面sbとには大きな圧
力差が生じ、この圧力差により第3図に示すような揚力
りが発生する。
Based on the speed difference between the air flow 13a and the air flow 13b, a large pressure difference is generated between the front surface, that is, the right side surface Sa, and the back surface, that is, the left side surface sb of the rigid sail S, according to Bernoulli's theorem. As a result, a lifting force as shown in FIG. 3 is generated.

また、剛体帆Sに生じる揚力を船舶の推進力として有効
に利用できない場合や翼風雨IL7におけるように風力
が極めて大きく船舶が転覆する危険がある場合には、ロ
ータ2の回転駆動を停止されるとともに、両スプリット
・7ランプ3,3が折りたたまれて閉じC)れる。そし
て、剛体帆Sが、帆旋回装置7に駆動されて旋回され、
同剛体帆Sに入射する風の方向とほぼ平行になるような
状態で固定される。こうして、本装置は、卿1体IKs
に作用する風力が極めて小さくなるような状態を保持さ
れ、風による船体抵抗の増加が抑制されるほが船舶の転
覆が防止される。
In addition, when the lift generated in the rigid sail S cannot be effectively used as the propulsion force of the ship, or when the wind force is extremely large and there is a risk of capsizing the ship as in the case of wing wind and rain IL7, the rotational drive of the rotor 2 is stopped. At the same time, both split 7 lamps 3, 3 are folded and closed C). Then, the rigid sail S is driven by the sail turning device 7 and turned,
The rigid sail S is fixed in a state almost parallel to the direction of the wind incident on it. In this way, this device
Capsizing of a vessel is more likely to be prevented if the wind force acting on the vessel is kept extremely small and the increase in hull resistance due to the wind is suppressed.

このように、本発明のロータおよびスプリント・フラッ
プ付き剛体帆装置によれば、剛体帆Sの迎角を同剛体帆
Sに流入する風1こ対しかなり大きく取っても、同剛体
帆Sの翼面は、ロータ2により境界層制御が行なわれ、
同剛体@Sの翼面1こ沿う空気流が剥離を生じることな
くスムーズに流れる。
As described above, according to the rigid sail device with the rotor and the splint flap of the present invention, even if the angle of attack of the rigid sail S is made considerably larger than the wind flowing into the rigid sail S, the wings of the rigid sail S The surface is subjected to boundary layer control by the rotor 2,
Airflow flows smoothly along one wing surface of the same rigid body @S without causing separation.

また、スプリット・フラップ3,3の作用により、剛体
帆Sの前面と背面とにおける空気流の速度差が極めて大
きくなる。
Further, due to the action of the split flaps 3, 3, the difference in speed of airflow between the front and back surfaces of the rigid sail S becomes extremely large.

このため、上記剛体@Sにおいて、空気流の剥離による
失速を起こすことなく、上記剛体帆Sにおいて極めて大
きな揚力が発生する。
Therefore, an extremely large lift force is generated in the rigid sail S without stalling due to separation of airflow in the rigid body @S.

さらに、ロータ2において、同ロータ2の回転による循
環流を伴い、マグヌス効果により揚力が発生する。
Further, in the rotor 2, a lifting force is generated due to the Magnus effect accompanied by a circulating flow due to the rotation of the rotor 2.

そして、これらの剛体帆Sおよびロータ2において発生
する揚力の船舶の進行方向における成分が船舶の推進力
として利用されるのである。
The components of the lift generated in the rigid sail S and the rotor 2 in the direction of movement of the ship are used as the propulsion force of the ship.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明のロータおよびスプリント
・フラップ付き剛体帆装置によれば、剛性の主翼の前部
にロータをそなえ、同主翼の後部両側に、それぞれスプ
リット・フラップが装備されるという簡素な構成で、ロ
ータの循環流による揚力が得られるほか、同ロータによ
り剛体帆翼面の境界層制御が行なわれるので、同剛体帆
に沿う空気流が剥離を生じることなくスムーズに流れる
As detailed above, according to the rigid sail device with rotor and splint flaps of the present invention, the rotor is provided at the front of the rigid main wing, and the split flaps are provided on both sides of the rear of the main wing. With a simple configuration, lift is obtained from the circulating flow of the rotor, and since the rotor controls the boundary layer of the rigid sail wing surface, the airflow along the rigid sail flows smoothly without separation.

このため、風向きに対し剛体帆の迎角をがなり大きくと
っても、同剛体帆において空気流の911離による失速
が防止される。
Therefore, even if the angle of attack of the rigid sail is increased relative to the wind direction, the rigid sail is prevented from stalling due to the 911 separation of the airflow.

また、スプリット・フラップを設けたことにより、剛体
帆の前面に沿う空気流と背面に沿う空気流との速度差が
さらに大きくなり、ひいては上記の剛体帆の前面と背面
とにおける圧力乙も大きくなっている。
In addition, by providing the split flap, the speed difference between the airflow along the front side of the rigid sail and the airflow along the back side becomes even larger, which in turn increases the pressure between the front side and the back side of the rigid sail. ing.

この結果、上記剛体帆に極めて大きな揚力を発生させる
ことができるようになり、この揚力の船舶の進行方向に
おける成分を船舶の推進力として用いれば、船舶の運航
における燃料消費量が大幅に節約される効果がある。
As a result, it is now possible to generate an extremely large lift force in the rigid sail, and if the component of this lift force in the ship's direction of travel is used as the ship's propulsion force, fuel consumption during ship operation can be greatly reduced. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明の一実施例としてのロータおよびス
プリット・フラップ付き剛体帆装置を示すもので、第1
図はその側面図、第2図は第1図の■−■矢視断面図、
第3図はその作用を示す水平断面図である。 1・・主翼としてのう4形帆、1゛・・リセス、2・・
ロータ、3・・スプリット・フラップ、4・・上部端板
、5・・下部端板、6・・帆柱、7・・帆旋回vcr!
1.8・・回転ギヤ装置、9・・回転軸、10・・スプ
リント・フラップ旋回装置、11・・旋回軸、12・・
船体甲板、13・・風、13a・・剛体帆の右側面に沿
う空気流、13b・・剛体帆の左側面に沿う空気流、S
・・剛本帆、So・・剛体帆の中心軸線、Sa・・剛体
帆の右側面、sb・・剛体帆の左側面。 復代理人 弁理士 飯 沼 義 4 第1図 第3図
Figures 1 to 3 show a rigid sail device with a rotor and split flap as an embodiment of the present invention.
The figure is a side view, and Figure 2 is a sectional view taken along the ■-■ arrow in Figure 1.
FIG. 3 is a horizontal sectional view showing the effect. 1. 4-shaped sail as the main wing, 1.. recess, 2..
Rotor, 3. Split flap, 4. Upper end plate, 5. Lower end plate, 6. Mast, 7. Sail turning vcr!
1.8...Rotating gear device, 9...Rotating shaft, 10...Sprint flap rotating device, 11...Swivel axis, 12...
Hull deck, 13... Wind, 13a... Air flow along the right side of the rigid sail, 13b... Air flow along the left side of the rigid sail, S
...rigid main sail, So...center axis of the rigid sail, Sa...right side of the rigid sail, sb...left side of the rigid sail. Sub-Agent Patent Attorney Yoshi Iinuma 4 Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 剛性の主翼の前部にロータをそなえ、同主翼の後部両側
に、それぞれスプリット・フラップが装備されたことを
特徴とする、ロータおよびスプリット・フラップ付き剛
体帆装置
A rigid sail device with a rotor and split flaps, characterized by having a rotor at the front of a rigid main wing, and split flaps on both sides of the rear of the main wing.
JP61171010A 1986-07-21 1986-07-21 Rigid canvas device with rotor and split flap Pending JPS6328789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171010A JPS6328789A (en) 1986-07-21 1986-07-21 Rigid canvas device with rotor and split flap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171010A JPS6328789A (en) 1986-07-21 1986-07-21 Rigid canvas device with rotor and split flap

Publications (1)

Publication Number Publication Date
JPS6328789A true JPS6328789A (en) 1988-02-06

Family

ID=15915422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171010A Pending JPS6328789A (en) 1986-07-21 1986-07-21 Rigid canvas device with rotor and split flap

Country Status (1)

Country Link
JP (1) JPS6328789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098664A (en) * 2009-11-06 2011-05-19 Universal Shipbuilding Corp Sailing device and sailing vessel
DE202013100067U1 (en) * 2013-01-08 2014-04-09 Rolf Rohden Fluid dynamic profile for a ship
CN113060266A (en) * 2021-04-02 2021-07-02 中国船舶科学研究中心 Marine water conservancy diversion formula wind-force boosting equipment
WO2022085794A1 (en) * 2020-10-22 2022-04-28 エコマリンパワー株式会社 Sail equipped with sail drag enhancement member, sail module, and drag enhancement member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098664A (en) * 2009-11-06 2011-05-19 Universal Shipbuilding Corp Sailing device and sailing vessel
DE202013100067U1 (en) * 2013-01-08 2014-04-09 Rolf Rohden Fluid dynamic profile for a ship
WO2022085794A1 (en) * 2020-10-22 2022-04-28 エコマリンパワー株式会社 Sail equipped with sail drag enhancement member, sail module, and drag enhancement member
GB2615229A (en) * 2020-10-22 2023-08-02 Eco Marine Power Co Ltd Sail equipped with sail drag enhancement member, sail module, and drag enhancement member
CN113060266A (en) * 2021-04-02 2021-07-02 中国船舶科学研究中心 Marine water conservancy diversion formula wind-force boosting equipment

Similar Documents

Publication Publication Date Title
JP2010518308A (en) Airfoil with automatic pitch control function
CN206141830U (en) Screw, power suit and unmanned vehicles
CN205891216U (en) Screw, power suit and unmanned vehicles
US6527229B1 (en) Aerodynamic lift generating device
JPS6328789A (en) Rigid canvas device with rotor and split flap
JPS6325196A (en) Rigid body sail device having rotor
JPS6328793A (en) Rigid canvas device with slat and flap
JPH0617745A (en) Vertical shaft sail-wing windmill having laterally long blade
JPS6325195A (en) Rigid sail device
JPS6328790A (en) Rigid canvas device with rotor and flap
KR20220106833A (en) propulsion device
JPS6325194A (en) Rigid body sail device having rotor and flap
JPS61263892A (en) Wind power ship
JPS6160391A (en) Side thrustor
JPS62160987A (en) Ship with cylindrical rotor for wind force propulsion
JPS6328792A (en) Vaneform canvas device with rotor
JP3300708B2 (en) Water effect wing boat
JPS62231889A (en) Revolving type sailing device of edge coverless hollow type covered with canvas
JPS62160988A (en) Rigid body sail device with cylindrical rotor for wind force propulsion
JPH0234160Y2 (en)
CN219727769U (en) Composite multi-rotor aerocar
KR870001104B1 (en) Marine sail
JPS6239395A (en) Wind propeller device
JPS6328791A (en) Rotor canvas device
JPS6318029B2 (en)