JPS63286739A - Fault detector for optical cable - Google Patents

Fault detector for optical cable

Info

Publication number
JPS63286739A
JPS63286739A JP62123013A JP12301387A JPS63286739A JP S63286739 A JPS63286739 A JP S63286739A JP 62123013 A JP62123013 A JP 62123013A JP 12301387 A JP12301387 A JP 12301387A JP S63286739 A JPS63286739 A JP S63286739A
Authority
JP
Japan
Prior art keywords
optical
sensor
water
optical fiber
water infiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62123013A
Other languages
Japanese (ja)
Other versions
JPH0769248B2 (en
Inventor
Osamu Kojima
修 小島
Michio Akiyama
秋山 道夫
Yasuyuki Sugawara
菅原 康行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62123013A priority Critical patent/JPH0769248B2/en
Publication of JPS63286739A publication Critical patent/JPS63286739A/en
Publication of JPH0769248B2 publication Critical patent/JPH0769248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • G01M3/047Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means with photo-electrical detection means, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To surely detect the water infiltration accident of an optical circuit network, in a terminal station, by providing additionally a distribution type water infiltration sensor, and providing a centralized type water infiltration sensor on a connecting part. CONSTITUTION:A water infiltration detecting optical line is constituted of a distribution type water infiltration detecting sensor 2 which is provided additionally on an optical cable 1, and a centralized type water infiltration detecting sensor 3 which is connected in series to the sensor 2 and provided additionally on a connecting part 1a of the optical cable 1. As for the sensor 2, a hygroscopic expanding material is arranged in the periphery of an optical fiber for a sensor, lateral pressure is allowed to work on the optical fiber for the sensor by a volume expansion due to water absorption, and the water infiltration is detected from the transmission loss variation of the optical cable 1. As for the sensor 3, the optical fiber for the sensor is inserted through the inside of a water permeable container, the optical fiber for the sensor is deformed by the expansion of the hygroscopic expanding material contained in the container, and from the transmission loss variation of the optical cable 1 caused thereby, the water infiltration is detected. Also, the water infiltration detecting optical path is provided additionally at every optical cable 1, and one end of each path is switched by an optical path switch 40 in a terminal station together with one end of each optical cable 1, by which plural optical cables 1 can be monitored by one set of optical pulse tester 41.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、通信用光ケーブルの浸水による障害を端局
等において検知できるようにした光ケーブルの障害検知
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical cable failure detection device that is capable of detecting failures due to water intrusion in communication optical cables at terminal stations and the like.

「従来の技術」 光フアイバ通信回線の保守、管理上、光フアイバケーブ
ルへの浸水は、重大な通信障害を引き起こすおそれがあ
り、また、光フアイバ自体の劣化原因となることから、
早期にこれを検知する必要がある。
"Prior Art" In terms of maintenance and management of optical fiber communication lines, water ingress into optical fiber cables may cause serious communication failures and may also cause deterioration of the optical fiber itself.
This needs to be detected early.

このため従来、光フアイバケーブルの浸水検知装置が種
々提供されているが、その−例として、光フアイバケー
ブルに一対のメタルワイヤからなるパイロット線を添設
し、浸水による絶縁抵抗の低下を検出して浸水を検知す
る装置が知られている。
To this end, various water immersion detection devices for optical fiber cables have been provided in the past.One example is a method in which a pilot line consisting of a pair of metal wires is attached to an optical fiber cable to detect a drop in insulation resistance due to water immersion. Devices that detect water intrusion are known.

「発明が解決しようとする問題点」 しかしながら前記、従来の装置にあっては、抵抗変化か
ら浸水位置を明確に判断することは困難であり、更に長
距離にわたり敷設された光フアイバケーブルにおいて、
その全長にわたる浸水監視には不向きな問題がある。
``Problems to be Solved by the Invention'' However, with the conventional devices mentioned above, it is difficult to clearly determine the location of water intrusion from resistance changes, and furthermore, in optical fiber cables laid over long distances,
There are problems that make it unsuitable for flood monitoring along its entire length.

このため光回路網における浸水事故発生の有無およびそ
の発生位置を正確かつ確実に検知する装置の開発が望ま
れている。
For this reason, it is desired to develop a device that can accurately and reliably detect whether or not a flooding accident has occurred in an optical network and the location at which it has occurred.

「問題点を解決するための手段」 本発明では、浸水センサが付設された複数の通信用光ケ
ーブルと、浸水センサが検知した浸水状況を検出するた
めの光パルス試験器と、前記光パルス試験器と複数の光
ケーブルを接続し、前記複数の光ケーブルと光パルス試
験器との接続を切り換える光路切換器と、前記パルス試
験器に接続されて光ケーブルの浸水状況を検知して警告
を発する制御監視部とを具備させることをその解決手段
とした。
"Means for Solving the Problems" The present invention includes a plurality of communication optical cables to which water immersion sensors are attached, an optical pulse tester for detecting the water immersion situation detected by the water immersion sensors, and the optical pulse tester. an optical path switching device that connects a plurality of optical cables to the optical pulse tester and switches the connection between the plurality of optical cables and the optical pulse tester; and a control monitoring unit that is connected to the pulse tester and detects a state of flooding of the optical cable and issues a warning. The solution was to provide the following.

「作用 」 制御監視部に接続された光パルス試験器を光路切換器に
よって複数の光ケーブルの浸水センサと切り換えて接続
することによって複数の光ケーブルの浸水監視が可能と
なる。また、分布型浸水センサを光ケーブルに添設し、
接続部に集中型浸水センサを設けることにより、接続部
を含めた光ケーブル全長にわたる浸水監視が可能となる
``Function'' By switching and connecting the optical pulse tester connected to the control monitoring unit to the immersion sensors of a plurality of optical cables using an optical path switch, it becomes possible to monitor the immersion of a plurality of optical cables. In addition, a distributed water immersion sensor is attached to the optical cable,
By providing a centralized water immersion sensor at the connection part, it becomes possible to monitor water intrusion over the entire length of the optical cable, including the connection part.

「実施例] 第1図はこの゛発明の光ケーブル障害検知装置の一例を
示すもので、図中符号1は光ケーブルである。この光ケ
ーブルlは、複数の接続部1aによって個々の定尺の光
ケーブルが接続されて数kmないし数十kmにわたって
敷設されたものである。
Embodiment FIG. 1 shows an example of the optical cable failure detection device of the present invention, and the reference numeral 1 in the figure is an optical cable.This optical cable l has a plurality of connecting portions 1a that connect individual optical cables of a fixed length. They are connected and laid over several kilometers to several tens of kilometers.

この光ケーブル1には、浸水検知用光線路が付設されて
いる。
This optical cable 1 is provided with an optical line for detecting flooding.

この浸水検知用光線路は、光ケーブルlに添設された分
布型浸水検知センサ2と、これに直列に接続され、光ケ
ーブル1の接続部1aに付設された集中型浸水検知セン
サ3とからなるものである。
This optical path for flood detection consists of a distributed flood detection sensor 2 attached to an optical cable l, and a centralized flood detection sensor 3 connected in series to this and attached to a connecting portion 1a of the optical cable 1. It is.

前記分布型浸水検知センサ2は、センサ用光ファイバの
周囲に、吸水して体積膨張する吸水膨張材を配し、この
吸水膨張材の吸水体積膨張によってセンサ用光ファイバ
に側圧を作用させて曲がりを与え、マイクロベンディン
グ損を発生させてその伝送損失に変化を生じさせるもの
が用いられ、具体的には、第2図ないし第6図に示すも
のなどが用いられる。
The distributed water immersion detection sensor 2 has a water-absorbing and expanding material that expands in volume by absorbing water arranged around the sensor optical fiber, and bends the sensor optical fiber by applying lateral pressure to the sensor optical fiber due to the volumetric expansion of the water-absorbing and expanding material. , and generates microbending loss to cause a change in the transmission loss. Specifically, those shown in FIGS. 2 to 6 are used.

第2図に示す分布型浸水検知センサAは、本発明の出願
人が特願昭61−106290号明細書において提案し
たもので、センサ用光ファイバ5の全周に吸水膨張材6
を被覆し、吸水膨張材6を網組7で覆った構成であり、
網組7を介して吸水膨張材6に水が浸入し、吸水膨張材
6が膨張すると、網組7が吸水膨張材3の膨張を抑制す
るために、センサ用光ファイバ5に側圧が作用するよう
になっている。
The distributed water immersion detection sensor A shown in FIG.
It has a structure in which the water-absorbing and expanding material 6 is covered with a mesh 7,
When water enters the water-absorbing and expanding material 6 through the mesh 7 and the water-absorbing and expanding material 6 expands, lateral pressure acts on the sensor optical fiber 5 because the mesh 7 suppresses the expansion of the water-absorbing and expanding material 3. It looks like this.

第3図に示す分布型浸水検知センサBは、本発明の出願
人が特願昭61−106291号明細書において提案し
たもので、センサ用光ファイバ9の全周に吸水膨張材I
Oを被覆し、この吸水膨張材10をこれの体積膨張を抑
制する膨張抑制材llで覆い、この膨張抑制材11に導
水部12を形成した構成であり、導水部12を介して吸
水膨張材lOに水が浸入するとセンサ用光ファイバ9に
側圧が作用するようになっている。
The distributed water immersion detection sensor B shown in FIG.
This water absorbing and expanding material 10 is covered with an expansion suppressing material ll that suppresses the volumetric expansion of the water absorbing and expanding material 10, and a water guiding portion 12 is formed in this expansion suppressing material 11. When water enters the lO, lateral pressure acts on the sensor optical fiber 9.

第4図に示す分布型浸水検知センサCは、本発明の出願
人が特願昭61−106292号明細書において提案し
たもので、センサ用光ファイバ14に長尺の吸水膨張材
15を添設し、これらを膨張抑制材16で被覆した構成
であり、吸水膨張材15の膨張による体積変化を膨張抑
制材16が抑えるために、浸水時にセンサ用光ファイバ
14に側圧が作用するようになっている。
The distributed type water immersion detection sensor C shown in FIG. 4 was proposed by the applicant of the present invention in Japanese Patent Application No. 106292/1983, in which a long water-absorbing and expanding material 15 is attached to the sensor optical fiber 14. However, these are coated with an expansion suppressing material 16, and in order for the expansion suppressing material 16 to suppress volume changes due to expansion of the water-absorbing and expanding material 15, lateral pressure is applied to the sensor optical fiber 14 when submerged in water. There is.

第5図に示す分布型浸水検知センサDは、本発明の出願
人が特願昭62−67108号明細書において提案した
もので、センサ用光ファイバ18の全周に吸水膨張材1
9を被覆し、この上に膨張抑制材20を巻回したもので
、吸水膨張材I9の膨張により生じた体積変化が膨張抑
制材20により抑制されて中心側のセンサ用光ファイバ
18に側圧を作用させるようになっている。
The distributed water immersion detection sensor D shown in FIG. 5 was proposed by the applicant of the present invention in Japanese Patent Application No. 62-67108.
9 and an expansion suppressing material 20 is wound thereon, and the volume change caused by the expansion of the water-absorbing and expanding material I9 is suppressed by the expansion suppressing material 20, thereby applying lateral pressure to the sensor optical fiber 18 on the center side. It is designed to work.

第6図に示す分布型浸水検知センサEは、本発明の出願
人が特願昭62−67109号明細書において提案した
もので、紐状の吸水膨張材22にセンサ用光ファイバ2
3を巻回してなるもので、吸水膨張材22の膨張により
センサ用光ファイバ23に側圧が作用するようになって
いる。
The distributed water immersion detection sensor E shown in FIG. 6 was proposed by the applicant of the present invention in the specification of Japanese Patent Application No. 62-67109.
3 is wound around the sensor optical fiber 23, and lateral pressure is applied to the sensor optical fiber 23 due to the expansion of the water-absorbing and expanding material 22.

以上説明した構造の分布型のセンサを適宜選択し、第1
図に示す光ファイバlの全長にわたり付設することによ
り、光ファイバlの全長のいずれの部位における浸水を
も検知することができるようになる。
A distributed type sensor having the structure explained above is appropriately selected, and the first
By attaching the optical fiber 1 along the entire length of the optical fiber 1 shown in the figure, it becomes possible to detect water intrusion at any part of the entire length of the optical fiber 1.

一方、前記集中型浸水検知センサ3は、透水性を有する
容器内にセンサ用光ファイバを挿通し、この容器内に吸
水膨張材を収納し、吸水膨張材の膨張によりセンサ用フ
ァイバを変形させ、これに伴う光ファイバの伝送損失変
化から浸水を検知するものが用いられ、具体的には、本
発明の出願人が特願昭62−62258号明細書で提案
している、第7図ないし第14図に示すものなどが用い
られる。
On the other hand, the concentrated water immersion detection sensor 3 has a sensor optical fiber inserted into a water-permeable container, a water-absorbing and expanding material stored in the container, and the sensor fiber being deformed by the expansion of the water-absorbing and expanding material. A device is used to detect water intrusion from the change in transmission loss of the optical fiber accompanying this, and specifically, the method shown in FIGS. The one shown in Figure 14 is used.

まず、第7図ないし第9図に示す集中型浸水検知センサ
Fは、多数の透水孔を形成した容器25と、容器25の
内底部に収納された吸水膨張材26と、容器25の向上
部に形成された凸部27と、容器25を貫通して吸水膨
張材26と凸部27の間を通過したセンサ用光ファイバ
28とを具備した構成であり、吸水膨張材26の膨張に
より第9図に示すように凸部27がセンサ用光ファイバ
28を撓曲させるようになっている。
First, the concentrated water immersion detection sensor F shown in FIGS. 7 to 9 consists of a container 25 in which a large number of water permeable holes are formed, a water-absorbing and expanding material 26 housed in the inner bottom of the container 25, and an upper part of the container 25. This configuration includes a convex portion 27 formed in As shown in the figure, the convex portion 27 bends the sensor optical fiber 28.

第10図と第11図に示す集中型浸水検知センサGは、
容器30の内底部に吸水膨張材31を収納し、容器30
の側壁を貫通させてセンナ用光ファイバ32を設けた構
成であり、吸水膨張材31の膨張により第11図に示す
ようにセンサ用ファイバ32が変形するようになってい
る。
The centralized flood detection sensor G shown in Figs. 10 and 11 is
A water-absorbing and expanding material 31 is stored in the inner bottom of the container 30, and the container 30
The sensor optical fiber 32 is provided so as to penetrate the side wall of the sensor, and the sensor fiber 32 is deformed as shown in FIG. 11 by the expansion of the water-absorbing and expanding material 31.

第12図と第13図に示す集中型浸水検知センサHは、
中空角柱状の容器35を通過させてセンサ用光ファイバ
36を設け、容器35の底部に吸水膨張材37を収納し
、向上部にセンサ用光ファイバ36を折曲させるための
棒体38を配した構成であり、吸水膨張材37の膨張に
よりセンサ用光ファイバ36が第12図の鎖線に示すよ
うに変形するようになっている。
The centralized flood detection sensor H shown in Figs. 12 and 13 is
A sensor optical fiber 36 is provided by passing through a hollow prismatic container 35, a water absorbing and expanding material 37 is stored in the bottom of the container 35, and a rod 38 for bending the sensor optical fiber 36 is arranged in the upper part. With this structure, the sensor optical fiber 36 is deformed as shown by the chain line in FIG. 12 due to the expansion of the water-absorbing and expanding material 37.

第14図に示す集中型浸水検知センサIは、容器38の
底部に収納した吸水膨張材39の膨張により容器内を移
動する可動駒40を設け、容器38の向上部に、凹部4
1を設け、可動駒40と凹部4Iの間にセンサ用光ファ
イバ42を設けた構成であり、吸水膨張材39の膨張に
より可動駒40がセンサ用光ファイバ42を変形させる
ようになっている。
The concentrated water immersion detection sensor I shown in FIG.
1, and a sensor optical fiber 42 is provided between the movable piece 40 and the recess 4I, and the movable piece 40 deforms the sensor optical fiber 42 by expansion of the water-absorbing and expanding material 39.

以上説明した集中型浸水センサは各容器に浸水を生じた
場合にセンサ用光ファイバを変形させてその伝送損失を
変化させるもので、各容器の存在位置での浸水を検知す
るためのものである。従って、これら集中型浸水センサ
を適宜選択し、第1図に示す光ファイバlの接続部1a
に付設することにより、光ファイバlの接続部における
浸水を検知することができるようになる。
The centralized water immersion sensor described above deforms the sensor optical fiber to change its transmission loss when each container is flooded with water, and is designed to detect water intrusion at the location of each container. . Therefore, by selecting these centralized water immersion sensors as appropriate, the connecting portion 1a of the optical fiber l shown in FIG.
By attaching it to the optical fiber l, it becomes possible to detect water intrusion at the connection part of the optical fiber l.

ところで、以上の各浸水センサにおいて、吸水膨張材と
しては、吸水時に体積が5倍以上になるような水膨潤材
料で形成され、このような水膨潤材料として好適な材料
を例示すれば、ポリ塩化ビニル、ポリエチレン、EVA
樹脂、EEA樹脂、ポリニスエル樹脂、ポリウレタン、
スチレン系の熱可塑性エラストマー(以下TPEと略称
する)、オレフィン系TPE、エステル系TPE、塩化
ビニル系TPE、アミド系TPE、ジエン系TPE。
By the way, in each of the above-mentioned water immersion sensors, the water-absorbing and expanding material is formed of a water-swelling material whose volume increases by five times or more when it absorbs water. Examples of suitable materials for such water-swelling materials include polychloride. vinyl, polyethylene, EVA
resin, EEA resin, polynisel resin, polyurethane,
Styrene-based thermoplastic elastomer (hereinafter abbreviated as TPE), olefin-based TPE, ester-based TPE, vinyl chloride-based TPE, amide-based TPE, diene-based TPE.

アイオノマ系TPE等の熱可塑性樹脂、または、!、3
ジエン系ゴム等のゴムにポリアクリル酸塩−ポリアクリ
ル酸共重合体、ポリ、ビニルアルコール−酢酸ビニル共
重合体、ポリウレタン、ポリエチレンオキサイド、澱粉
グラウト共重合体、カルボキシメチルセルロース(CM
C)、等の吸水性材料を混合したものなどが好適に用い
られる。
Thermoplastic resins such as ionomer TPE, or! ,3
Polyacrylate-polyacrylic acid copolymer, poly, vinyl alcohol-vinyl acetate copolymer, polyurethane, polyethylene oxide, starch grout copolymer, carboxymethyl cellulose (CM
A mixture of water-absorbing materials such as C) and the like is preferably used.

なお、前記分散型浸水センサ2と集中型浸水センサ3は
センサ用光ファイバに直列に接続されて1本の浸水検知
用光線路を形成している。
The distributed water immersion sensor 2 and the centralized water immersion sensor 3 are connected in series to a sensor optical fiber to form one optical path for water immersion detection.

以上説明したような浸水検知用光線路は、第1図に示す
複数(本実施例の場合4本)の光ケーブルl毎に付設さ
れており、各々の一端は、各光ケーブル1の一端ととも
に、端局内に集合されて光路切換器40の複数の2次側
接点に接続されている。
The optical line for flood detection as described above is attached to each of the plurality of (four in this example) optical cables shown in FIG. They are collected within the station and connected to a plurality of secondary side contacts of the optical path switch 40.

また、前記光路切換器40の1次側の接点は、光パルス
試験器4■に光線路40aにより接続されている。
Further, a contact point on the primary side of the optical path switching device 40 is connected to an optical pulse tester 42 through an optical path 40a.

前記光路切換器40は、光パルス試験器41に複数の浸
水検知用光線路を切り換え接続するものであり、この光
路切換器40によって1台の光パルス試験器41で複数
の光ケーブルlの監視が可能となる。前記光パルス試験
器41は、パルス状の光出力に対する光線路の各点にお
ける後方錯乱光や反射光により、線路長と接続損失と伝
送損失を測定するためのものである。
The optical path switch 40 switches and connects a plurality of optical lines for water immersion detection to the optical pulse tester 41, and allows one optical pulse tester 41 to monitor a plurality of optical cables l. It becomes possible. The optical pulse tester 41 is used to measure the line length, connection loss, and transmission loss using backscattered light and reflected light at each point of the optical line in response to a pulsed optical output.

更に、前記光路切換器40と光パルス試験器41は、制
御監視部42に電気的に接続され、光路切換器40と光
パルス試験器41は、制御監視部42からの制御信号に
より作動制御され、光パルス試験器41で得られた測定
結果は、制御監視部42の内部に設けられた演算部に送
られるようになっている。
Further, the optical path switch 40 and the optical pulse tester 41 are electrically connected to a control monitoring section 42, and the operation of the optical path switching device 40 and the optical pulse tester 41 is controlled by a control signal from the control monitoring section 42. The measurement results obtained by the optical pulse tester 41 are sent to a calculation section provided inside the control monitoring section 42.

ここで以下に、光ファイバlに浸水や断線等の障害を生
じた場合の障害検知と制御監視部42の機能について第
15図を基に説明する。
Hereinafter, failure detection when a failure such as water intrusion or disconnection occurs in the optical fiber 1 and the function of the control monitoring unit 42 will be explained based on FIG. 15.

まず、光パルス試験器41から強い光パルスをセンサ用
ファイバに入射させた場合、光パルスはセンサ用光ファ
イバの内部を伝播してゆくに従って散乱や吸収により減
衰するが、その散乱光のうち、後方へ散乱する光を入射
側で観測する。ここで、光パルス試験器41に遠い部分
からの散乱光と光パルス試験器41に近い部分からの散
乱光を比較した場合、遠い部分からの散乱光が多くの伝
播時間を必要とする関係から、遅れ時間と受光レベルの
関係を得ることにより第15図に示すような波形を得る
ことができる。なおここで、前記遅れ時間は、センサ用
光ファイバの距離に対応するために、第15図において
は、遅れ時間の代わりに横軸に距離を示した。
First, when a strong optical pulse is made incident on the sensor fiber from the optical pulse tester 41, the optical pulse is attenuated by scattering and absorption as it propagates inside the sensor optical fiber, but among the scattered light, Observe the light scattered backwards on the incident side. Here, when comparing the scattered light from a part far from the optical pulse tester 41 and the scattered light from a part near the optical pulse tester 41, it is found that the scattered light from the far part requires a long propagation time. By obtaining the relationship between the delay time and the received light level, a waveform as shown in FIG. 15 can be obtained. Here, since the delay time corresponds to the distance of the sensor optical fiber, in FIG. 15, the distance is shown on the horizontal axis instead of the delay time.

第15図は、光ファイバlの一端に光パルス試験器41
が接続されるとともに、光ファイバlの他端が4つの接
続部1aを介して無反射終端1bに接続されている構造
をモデル的に記載し、このモデル構造で光ファイバlの
途中に各種の障害が生じた場合に得られる波形を一括し
て記載したものである。
FIG. 15 shows an optical pulse tester 41 connected to one end of the optical fiber l.
is connected, and the other end of the optical fiber l is connected to the non-reflective termination end 1b via the four connection parts 1a. This is a list of waveforms obtained when a failure occurs.

第15図において、光パルス試験器41から2つめの接
続部1aにおいて浸水が生じた場合には、図の3部分に
示すように受光レベルを示す波形に段部を生じる。また
、第15図において、光パルス試験器41から3つめの
接続部1aと4つめの接続部1aの間に破断を生じた場
合には、図の5部分に示す急峻な山伏の波形を生じる。
In FIG. 15, when water enters the second connection 1a from the optical pulse tester 41, a step appears in the waveform representing the received light level, as shown in part 3 of the figure. In addition, in FIG. 15, if a rupture occurs between the third connection 1a and the fourth connection 1a from the optical pulse tester 41, a steep waveform as shown in part 5 of the figure will occur. .

更に第15図において、無反射終端1bの手前の光ファ
イlで浸水を生じた場合には、図のC部分に示すような
段部を生じる。
Furthermore, in FIG. 15, if water intrusion occurs in the optical fiber l before the non-reflection termination end 1b, a stepped portion as shown in part C in the figure will occur.

従って以上のような種々の障害の際に現れる波形が予め
制御監視部42の演算部に記憶されていて、この記憶内
容と実際の監視の場合に得られた波形を比較して、障害
の種類に合わせて制御監視部42が各種の警報を発する
ように構成されている。そして実際に敷設された光ケー
ブル1にこの制御監視部42を第1図に示すようにセッ
トする。
Therefore, the waveforms that appear when various faults as mentioned above are stored in advance in the arithmetic section of the control monitoring section 42, and by comparing the stored contents with the waveforms obtained during actual monitoring, the type of fault can be determined. The control monitoring unit 42 is configured to issue various alarms in accordance with the above. The control and monitoring unit 42 is then set on the optical cable 1 that has actually been installed as shown in FIG.

なお、前記警報を発する手段は、制御監視部42にディ
スプレイを接続してディスプレイに表示するようにして
も良いし、制御監視部42に警報装置を設けて警報を発
するようにするなど、公知の手段を採用すれば良い。
The means for issuing the alarm may be a known means such as connecting a display to the control monitoring section 42 and displaying the information on the display, or providing an alarm device in the control monitoring section 42 to issue the alarm. You just have to use the means.

以上のように構成された制御監視部42を用い、光パル
ス試験器41と光路切換器4oとともに光ケーブルト・
・に接続しておくことによって、実際に敷設された光フ
ァイバ1に障害が生じた場合は、制御監視部42が前述
のように波形を検知して演算部で数値処理を行い、障害
の種類に合わせた警報を発し、監視員に光ファイバlに
対する浸水発生の有無と浸水地点、あるいは、切断の発
生と切断場所を知らせる。
Using the control monitoring section 42 configured as described above, the optical cable can be connected together with the optical pulse tester 41 and the optical path switch 4o.
If a fault occurs in the actually installed optical fiber 1, the control monitoring unit 42 detects the waveform as described above, performs numerical processing in the calculation unit, and determines the type of fault. A warning is issued in accordance with the situation, and the monitoring staff is informed of the presence or absence of water intrusion into the optical fiber l and the location of the inundation, or the occurrence and location of the cut.

また、制御監視部42は、光路切換器4oを適宜切り換
えて複数の光ファイバlと光パルス試験器41との接続
の切り換えを行い、総ての光ファイバト・・を統括的に
監視する。このため、複数の光ファイバの障害発生を統
括的に監視することができる。
Further, the control monitoring unit 42 appropriately switches the optical path switch 4o to switch the connection between the plurality of optical fibers l and the optical pulse tester 41, and monitors all the optical fibers in an integrated manner. Therefore, it is possible to comprehensively monitor the occurrence of failures in a plurality of optical fibers.

「発明の効果」 以上説明したように本発明によれば、光パルス試験器と
複数の光ファイバを光路切換器を介して接続したため、
複数の光ファイバの障害発生を監視することができる効
果がある。また、制御監視部で光パルス試験器と光ファ
イバの接続を一括制御することができるので、光ファイ
バに生じる障害の種類に応じて光パルス試験器から得ら
れる波形を予め記憶し、制御監視部で比較できるように
しておくことにより、光ファイバに生じた障害の種類の
特定と障害発生の地点の特定を制御監視部で自動的に行
うことができる。更に、光ファイバに分布型浸水検知セ
ンサと集中型浸水検知センサを設けたために、光ファイ
バの全長、並びに、接続部における各種の障害を確実に
検知することができる効果がある。
"Effects of the Invention" As explained above, according to the present invention, since the optical pulse tester and the plurality of optical fibers are connected via the optical path switch,
This has the effect of being able to monitor the occurrence of failures in multiple optical fibers. In addition, since the control and monitoring section can collectively control the connection between the optical pulse tester and the optical fiber, the waveform obtained from the optical pulse tester can be stored in advance according to the type of failure occurring in the optical fiber, and By making the comparison possible, the control and monitoring unit can automatically identify the type of failure that has occurred in the optical fiber and the point where the failure has occurred. Furthermore, since the optical fiber is provided with a distributed water immersion detection sensor and a concentrated water immersion detection sensor, it is possible to reliably detect various failures along the entire length of the optical fiber and at the connection portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す構成図、第2図な
いし第6図は本発明装置に適用される分布型浸水検知セ
ンサの各側を示すもので、第2図は第1の例のセンサを
示す断面図、第3図は第2の例のセンサを示す断面図、
第4図は第3の例のセンサを示す断面図、第5図は第4
の例のセンサを示す断面図、第6図は第5の例のセンサ
を示す断面図、第7図ないし第9図は本発明装置に適用
される集中型浸水センサの第1の例を示す、もので、第
7図は断面図、第8図は斜視図、第9図は作動状態を示
す断面図、第1O図と第11図は本発明装置に適用され
る集中型浸水センサの第2の例を示すもので、第1O図
は非作動状態を示す断面図、第11図は作動状態を示す
断面図、第12図と第13図は本発明装置に適用される
集中型浸水センサの第3の例を示すもので、第12図は
断面図、第13図は一部を破断した斜視図、第14図は
本発明装置に適用される集中型浸水センサの第4の例を
示す断面図、第15図は光パルス試験器が検出する出力
波形を示す線図である。 l・・・・・・光ファイバ、  la・・・・・・接続
部、2 、A 、B 、C、D 、E・・・・・・分布
型浸水検知センサ、3、F、G、H,I・・・・・・集
中型浸水検知センサ、40・・・・・・光路切換器、 
41・・・・・・光パルス試験器、42・・・・・・制
御監視部。
FIG. 1 is a configuration diagram showing one embodiment of the device of the present invention, and FIGS. 2 to 6 show each side of a distributed water immersion detection sensor applied to the device of the present invention. FIG. 3 is a cross-sectional view showing the sensor of the second example;
FIG. 4 is a sectional view showing the third example of the sensor, and FIG.
FIG. 6 is a cross-sectional view showing the fifth example of the sensor, and FIGS. 7 to 9 show the first example of the centralized water immersion sensor applied to the device of the present invention. , Fig. 7 is a sectional view, Fig. 8 is a perspective view, Fig. 9 is a sectional view showing the operating state, and Figs. Fig. 10 is a cross-sectional view showing the non-operating state, Fig. 11 is a cross-sectional view showing the operating state, and Figs. 12 and 13 are the centralized flood sensor applied to the device of the present invention. 12 is a cross-sectional view, FIG. 13 is a partially cutaway perspective view, and FIG. 14 is a fourth example of a centralized water immersion sensor applied to the device of the present invention. The cross-sectional view shown in FIG. 15 is a diagram showing the output waveform detected by the optical pulse tester. l...Optical fiber, la...Connection part, 2, A, B, C, D, E...Distributed water immersion detection sensor, 3, F, G, H , I... Centralized flood detection sensor, 40... Optical path switch,
41... Optical pulse tester, 42... Control monitoring section.

Claims (1)

【特許請求の範囲】[Claims] 通信用光ケーブルに分布型浸水センサを添設し、該通信
用光ケーブルの接続部に集中型浸水センサを設けた複数
の光ケーブルと、浸水センサが検知した浸水状況を検知
するための光パルス試験器と、前記光パルス試験器と複
数の光ケーブルを接続した光路切換器と、前記パルス試
験器に接続され、光ケーブルの浸水状況を検知して警告
を発する制御監視部とを具備してなる光ケーブルの障害
検知装置。
A plurality of optical cables each having a distributed water immersion sensor attached to a communication optical cable and a centralized water immersion sensor provided at the connection part of the communication optical cable, and an optical pulse tester for detecting a water immersion situation detected by the water immersion sensor. , an optical cable failure detection device comprising: an optical path switching device connecting the optical pulse tester and a plurality of optical cables; and a control monitoring unit connected to the pulse tester that detects a water intrusion condition of the optical cable and issues a warning. Device.
JP62123013A 1987-05-20 1987-05-20 Optical cable fault detector Expired - Lifetime JPH0769248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123013A JPH0769248B2 (en) 1987-05-20 1987-05-20 Optical cable fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123013A JPH0769248B2 (en) 1987-05-20 1987-05-20 Optical cable fault detector

Publications (2)

Publication Number Publication Date
JPS63286739A true JPS63286739A (en) 1988-11-24
JPH0769248B2 JPH0769248B2 (en) 1995-07-26

Family

ID=14850081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123013A Expired - Lifetime JPH0769248B2 (en) 1987-05-20 1987-05-20 Optical cable fault detector

Country Status (1)

Country Link
JP (1) JPH0769248B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130447A (en) * 1988-11-11 1990-05-18 Sumitomo Electric Ind Ltd Apparatus and method for monitoring optical fiber line
JPH0313905A (en) * 1989-06-12 1991-01-22 Tokai Rubber Ind Ltd Water immersion sensor tool
WO1997048994A1 (en) * 1996-06-21 1997-12-24 Kabushiki Gaisha Inter Action Sensing optical fiber and sensor system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62837A (en) * 1985-06-27 1987-01-06 Nippon Telegr & Teleph Corp <Ntt> Optical fiber water immersion detection line and water immersion detection type optical fiber cable
JPS6225845A (en) * 1985-07-25 1987-02-03 Matsushita Electric Works Ltd Joining method for coil end surface of coreless motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62837A (en) * 1985-06-27 1987-01-06 Nippon Telegr & Teleph Corp <Ntt> Optical fiber water immersion detection line and water immersion detection type optical fiber cable
JPS6225845A (en) * 1985-07-25 1987-02-03 Matsushita Electric Works Ltd Joining method for coil end surface of coreless motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130447A (en) * 1988-11-11 1990-05-18 Sumitomo Electric Ind Ltd Apparatus and method for monitoring optical fiber line
JPH0313905A (en) * 1989-06-12 1991-01-22 Tokai Rubber Ind Ltd Water immersion sensor tool
JP2727018B2 (en) * 1989-06-12 1998-03-11 東海ゴム工業株式会社 Water sensor
WO1997048994A1 (en) * 1996-06-21 1997-12-24 Kabushiki Gaisha Inter Action Sensing optical fiber and sensor system
US6449400B1 (en) 1996-06-21 2002-09-10 Kabushiki Gaisha Inter Action Sensing optical fiber and sensor system

Also Published As

Publication number Publication date
JPH0769248B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US7865078B2 (en) Processing of optical performance data in an optical wavelength division multiplexed communication system
WO1995025274A1 (en) Method and apparatus scanning a fiber optic network
CN104518826A (en) Fiber fault monitoring method, equipment and system
JP2009512057A (en) Intruder sensing apparatus and method using optical fiber grating sensor
JPS63286739A (en) Fault detector for optical cable
WO2007043794A1 (en) Apparatus and method for detecting intrusion by using fiber bragg grating sensor
KR101819446B1 (en) Optical line detection system
JP3762186B2 (en) Optical transmission line and optical transmission line with optical line monitoring device
JP2722554B2 (en) Optical fiber line monitoring system
JPS59131177A (en) Detector for fault position of power-transmission line
JP2003241040A (en) Water-immersion and wire-breaking sensor cord and cable having the same installed therein
KR101800021B1 (en) System for Power Distribution Network Monitoring and Optical Fiber Composite Power Distribution Cable Thereof
RU2586074C1 (en) Secure fibre-optic transmission system with selection and localisation of emergency situations
JPS63234205A (en) Sensor for detecting water infiltration in optical fiber
CN217849440U (en) Optical cable fault detection positioning system
JPH02132338A (en) Light beam path monitoring method
KR102532924B1 (en) Method for controlling optical cable measuring instrument
JP2803726B2 (en) Optical fiber line contrast method
JPH0353400A (en) Trespasser monitor method
CN213581216U (en) Detection device for fault arc of cable harness
JPS63231402A (en) Sensor for detecting infiltration of water in optical fiber
JP2001066224A (en) Method for monitoring optical cable line
JPH01243808A (en) Device and method for maintaining cable
JPH0365863B2 (en)
JPH01189541A (en) Optical fiber water leakage detection sensor