JPS63285871A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS63285871A
JPS63285871A JP62120216A JP12021687A JPS63285871A JP S63285871 A JPS63285871 A JP S63285871A JP 62120216 A JP62120216 A JP 62120216A JP 12021687 A JP12021687 A JP 12021687A JP S63285871 A JPS63285871 A JP S63285871A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62120216A
Other languages
Japanese (ja)
Inventor
Tadaaki Miyazaki
忠昭 宮崎
Takao Ogino
隆夫 荻野
Yoshitomo Masuda
善友 増田
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62120216A priority Critical patent/JPS63285871A/en
Priority to US07/185,995 priority patent/US4803137A/en
Priority to DE3816778A priority patent/DE3816778A1/en
Priority to FR8806670A priority patent/FR2615657A1/en
Publication of JPS63285871A publication Critical patent/JPS63285871A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain high energy density, high potential, and good cycle performance by using a specific compound having good conductivity and large capacity as a positive active material. CONSTITUTION:A substance selected from compounds as indicated in the chemical formulas (1) to (5) is used as a positive active material. In the formulas, x<=1, z<y<=1, and m=n<=1. Lithium or lithium alloy capable of absorbing or desorbing lithium ion is used as a negative active material. A nonaqueous substance which is chemically stable to positive and negative active materials and in which lithium ion is movable for electrochemical reaction with the positive active material is used as an electrolyte. By this constitution, a battery having high energy density, high potential, and good cycle performance can be obtained.

Description

【発明の詳細な説明】 本発明は、高エネルギー密度で充放電寿命が長く、安定
性、信頼性に優れた充放電可能な非水電解質二次電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chargeable/dischargeable non-aqueous electrolyte secondary battery that has high energy density, long charge/discharge life, and excellent stability and reliability.

tlEガ技泗及び発明が解決しようとす7!訓題点従来
から、リチウムを負極活物質として用いる高エネルギー
密度電池に関しては多くの提案がなされており、フッ化
黒鉛や二酸化マンガンを正極活物質として用いたリチウ
ム電池が既に市販されている。しかし、これらの電池は
一次電池であり、充電できない欠点があった。
tlE techniques and inventions are trying to solve 7! Training points Many proposals have been made for high-energy density batteries that use lithium as the negative electrode active material, and lithium batteries that use fluorinated graphite or manganese dioxide as the positive electrode active material are already on the market. However, these batteries are primary batteries and have the disadvantage that they cannot be recharged.

リチウムを負極活物質として用いる二次電池については
、正極活物質としてチタン、モリブデン。
For secondary batteries that use lithium as the negative electrode active material, titanium and molybdenum are used as the positive electrode active material.

ニオビウム、バナジウム、ジルコニウムのカルコゲナイ
ド(硫化物、セレン化物、テルル化物)を用いた電池が
提案されているが、電池特性及び経済性が必ずしも十分
でないために、実用化されているものは少ない。最近、
硫化モリブデンを用いた二次電池が実用化されたが、こ
れも放電電位が低く、過充電に弱いなどの欠点を持って
いる。放電電位の高い正極活物質としては酸化クロム、
五酸化バナジウムなどが知られているが、酸化クロムは
充放電のサイクル特性が悪く、五酸化バナジウムは導電
性が低く、十分なカソード特性を得るには至っていない
Batteries using chalcogenides (sulfides, selenides, tellurides) of niobium, vanadium, and zirconium have been proposed, but few have been put into practical use because the battery characteristics and economic efficiency are not necessarily sufficient. recently,
Secondary batteries using molybdenum sulfide have been put into practical use, but they also have drawbacks such as low discharge potential and vulnerability to overcharging. Chromium oxide is a positive electrode active material with a high discharge potential.
Vanadium pentoxide and the like are known, but chromium oxide has poor charge-discharge cycle characteristics, vanadium pentoxide has low conductivity, and has not yet achieved sufficient cathode properties.

このため、高エネルギー密度で充放電寿命が長く、安定
性、信頼性に優れたリチウム二次電池の開発が望まれる
Therefore, it is desired to develop a lithium secondary battery that has high energy density, long charging/discharging life, and excellent stability and reliability.

本発明は上記事情に鑑みなされたもので、導電性が良好
でしかも容量の大きい正極活物質を用いることにより、
導電付与剤の添加量を少なくして高エネルギー密度を達
成し得ると共に、高電位でサイクル特性に優れた非水電
解質リチウム二次電池を提供することを目的とする。
The present invention was made in view of the above circumstances, and by using a positive electrode active material with good conductivity and large capacity,
It is an object of the present invention to provide a non-aqueous electrolyte lithium secondary battery that can achieve high energy density by reducing the amount of a conductivity-imparting agent added, and has excellent cycle characteristics at a high potential.

間 点を解決するための手段 び作 本発明は上記目的を達成するため、下記式(1)%式%
) (但し、式中X≦1.z<y≦l、m+n≦1)から選
ばれる物質を正極活物質とし、リチウム又はリチウムを
吸蔵及び放出可能なリチウム合金を負極活物質とし、か
つリチウムイオンが前記正極活物質と電気化学反応をす
るために移動を行ない得る非水物質を電解質としたもの
である6″ 即ち、本発明者らは、非水電解質リチウム
二次電池の正極活物質として優れた特性を有する物質に
ついて鋭意検討を行なった結果、理想的な五酸化バナジ
ウムは3d及び4s軌道の5個の電子(五個)が酸素と
結合しており、導電性を持たないが、そのバナジウムの
一部をよりイオン半径の大きいモリブデン及び/又はタ
ングステンで置換すると共に、更にリチウムを部分的に
導入することにより得た前記(1)〜(5)式の化合物
が優れた正極活物質としての特性を示し、これらの化合
物は四価のバナジウムが生成され、ホッピング電導性が
付与されて導電性が改良され、また構造に歪みが与えら
れてリチウムとのトポケミカルな反応が容易になるとい
う性質を示し、これら(1)〜(5)式の化合物を非水
電解質リチウム二次電池の正極活物質°として用いた場
合、充放電特性が顕著に改良されることを知見し1本発
明をなすに至ったものである6 以下、本発明につき更に詳しく説明する。
In order to achieve the above object, the present invention solves the problem by using the following formula (1) % formula %
) (However, in the formula, a material selected from The electrolyte is a non-aqueous substance that can migrate in order to undergo an electrochemical reaction with the positive electrode active material. That is, the present inventors have found that the electrolyte is an excellent positive electrode active material for non-aqueous electrolyte lithium secondary batteries. As a result of intensive research on materials with such characteristics, we found that ideal vanadium pentoxide has five electrons (five) in the 3d and 4s orbits bonded to oxygen, and has no conductivity. Compounds of the formulas (1) to (5) above obtained by replacing a part of the compound with molybdenum and/or tungsten having a larger ionic radius and further introducing lithium partially are found to be excellent positive electrode active materials. These compounds exhibit the properties that tetravalent vanadium is generated, imparting hopping conductivity to improve conductivity, and structural distortion to facilitate topochemical reactions with lithium. We have found that when the compounds of formulas (1) to (5) are used as positive electrode active materials of non-aqueous electrolyte lithium secondary batteries, the charge-discharge characteristics are significantly improved. The present invention will be explained in more detail below.

本発明に係る二次電池は、上述したように下記式(1)
〜(5) %式%) (但し、式中X≦1 y z < y≦1.m+n≦1
)から選ばれる材料を正極活物質とするものである。
As mentioned above, the secondary battery according to the present invention has the following formula (1):
~(5) % formula %) (However, in the formula, X≦1 y z < y≦1.m+n≦1
) is used as the positive electrode active material.

ここで、Xv’j及びm+nはそれぞれ1以下であれば
よいが、より好ましくはx、y及びm+nはそれぞれ0
.1以上0.7以下である。
Here, Xv'j and m+n each need to be 1 or less, but more preferably x, y and m+n are each 0.
.. It is 1 or more and 0.7 or less.

この正極材料を用いて正極を作成する場合、正極材料の
粒径は必ずしも制限されないが、平均粒径が3μ以下の
ものを用いるとより高性能の正極を作ることができる。
When creating a positive electrode using this positive electrode material, the particle size of the positive electrode material is not necessarily limited, but a positive electrode with higher performance can be created by using one with an average particle size of 3 μm or less.

この場合、これらの粉末に対し、アセチレンブラック等
の導電剤やフッ素樹脂粉末等の結着剤などを添加混合し
、有機溶剤で混練りし、ロールで圧延し、乾燥する等の
方法により正極を作成することができる。なお、導電剤
の混合量は(1)〜(5)式の正極材料100重量部に
対し3〜25重量部、特に5〜15重量部とすることが
でき、本発明にあってはその正極材料の導電性が良好で
あるため、導電剤使用量を少なくすることができる。ま
た結着剤の配合量は上記正極材料100重量部に対し2
〜25重量部とすることが好ましい。ここで、正極を作
成するに際し、(1)〜(5)式の正極材料はその1種
を単独で使用してもよく、2種以上を混合して使用する
ようにしてもよい。
In this case, the positive electrode is prepared by adding and mixing a conductive agent such as acetylene black or a binder such as fluororesin powder to these powders, kneading with an organic solvent, rolling with a roll, and drying. can be created. The amount of the conductive agent mixed can be 3 to 25 parts by weight, particularly 5 to 15 parts by weight, based on 100 parts by weight of the positive electrode material of formulas (1) to (5). Since the material has good conductivity, the amount of conductive agent used can be reduced. The amount of binder added is 2 parts by weight per 100 parts by weight of the above positive electrode material.
It is preferable to set it as 25 parts by weight. Here, when creating a positive electrode, one type of the positive electrode materials of formulas (1) to (5) may be used alone, or two or more types may be used in combination.

ナオ、(1)、 (2) 、 (5)式ノ正極材料は、
v205に対しM o O□及び/又はWO2を加える
と共に。
Nao, the positive electrode material of formulas (1), (2), and (5) is
Along with adding M o O□ and/or WO2 to v205.

L1□○やLi2Co3を添加混合し、窒素、アルゴン
等の不活性ガス中において温度500〜700℃で3〜
48時間加熱反応させるなどの方法で製造することがで
きる。
Add and mix L1□○ and Li2Co3 and heat in an inert gas such as nitrogen or argon at a temperature of 500 to 700℃ for 3 to 30 minutes.
It can be produced by a method such as heating reaction for 48 hours.

また、(3)、(4)式の正極材料はV2O,に対しM
2O3とVO2又はWO,とVO2を加えると共に、L
i2OやLi、GO,を添加混合し、窒素、アルゴン等
の不活性ガス中において温度500〜700℃で3〜4
8時間加熱反応させるなどの方法で製造することができ
る。
In addition, the positive electrode material in equations (3) and (4) is M
While adding 2O3 and VO2 or WO, and VO2, L
Add and mix i2O, Li, and GO, and heat in an inert gas such as nitrogen or argon at a temperature of 500 to 700°C for 3 to 4 hours.
It can be produced by a method such as heating reaction for 8 hours.

本発明の二次電池負極活物質としては、リチウム又はリ
チウムを吸蔵、放出可能なリチウム合金が用いられる。
As the secondary battery negative electrode active material of the present invention, lithium or a lithium alloy capable of inserting and releasing lithium is used.

この場合、リチウム合金としては、リチウムを含むIl
a、 IIb、■a、IVa、 Va族の金属又はその
2種以上の合金が使用可能であるが、特にリチウムを含
むAQ、 I n、 Sn、 Pb、 Bi、C:d、
 Zn又はこれらの2種以上の合金が好適である。
In this case, the lithium alloy is Il containing lithium.
a, IIb, ■a, IVa, Va group metals or alloys of two or more thereof can be used, especially AQ containing lithium, In, Sn, Pb, Bi, C:d,
Zn or an alloy of two or more of these is preferred.

更に、本発明の二次電池に使用する電解質としては、前
記正極活物質及び負極活物質に対して化学的に安定であ
り、かつリチウムイオンが前記正極活物賛成いは前記負
極活物質と電気化学反応をするための移動を行ない得る
非水物質であればいずれのものでも使用することができ
、特にカチオンとアニオンとの組合せよりなる化合物で
あって、カチオンとしてはLi+、またアニオンの例と
してはPF6”、 AsFG−,5bF6−、5bC4
−の如きVa族元素のハロゲン化物アニオン、B F、
−、AnCQ4−の如きma族元素のハロゲン化物アニ
オン、ド(Ia−LBr−y CΩ−の如きハロゲンア
ニオン、CQO4−の如き過塩素酸アニオン、HF、−
、CF、So、−,5CN−等のアニオンを有する化合
物等を挙げることができるが、必ずしもこれらのアニオ
ンに限定されるものではない。このようなアニオン、カ
チオンをもつ電解質の具体例としては、LiPFG、 
LiAsFG、 Li5bF、、 LiBF4゜LLC
QO,、LiI、 LiBr、 LiCQ、 LiAQ
CI24. LiHF7゜Li5CN+Li503CF
、等が挙げられる。これらのうちでは特にLiPF、、
 LiAsF、、 LiBF、、 LiCQO,。
Furthermore, the electrolyte used in the secondary battery of the present invention must be chemically stable with respect to the positive electrode active material and the negative electrode active material, and lithium ions can be electrically connected to the positive electrode active material or the negative electrode active material. Any non-aqueous substance that can undergo movement for a chemical reaction can be used, especially compounds consisting of a combination of a cation and an anion, with Li+ as the cation and Li+ as an example of the anion. is PF6”, AsFG-, 5bF6-, 5bC4
- halide anions of group Va elements such as B F,
-, halide anions of ma group elements such as AnCQ4-, halogen anions such as Do(Ia-LBr-y CΩ-, perchlorate anions such as CQO4-, HF, -
Examples include compounds having anions such as , CF, So, -, 5CN-, but are not necessarily limited to these anions. Specific examples of electrolytes having such anions and cations include LiPFG,
LiAsFG, Li5bF, LiBF4゜LLC
QO,, LiI, LiBr, LiCQ, LiAQ
CI24. LiHF7゜Li5CN+Li503CF
, etc. Among these, especially LiPF,
LiAsF,, LiBF,, LiCQO,.

Li5bF、、 Li5O,CF3が好適である。Li5bF, Li5O, CF3 are preferred.

なお、上記電解質は通常溶媒により溶解された状態で使
用され5この場合溶媒は特に限定されないが、比較的極
性の大きい溶媒が好適に用いられる。具体的には、プロ
ピレンカーボネート、エチレンカーボネート、テトラヒ
ドロフラン、2−メチルテトラヒドロフラン、ジオキソ
ラン、ジオキサン、ジメトキシエタン、ジエチレングリ
コールジメチルエーテル等のグライム類、γ−ブチロラ
クトン等のラクトン類、トリエチルフォスフェート等の
リン酸エステル類、ホウ酸トリエチル等のホウ酸エステ
ル類、スルホラン、ジメチルスルホキシド等の硫黄化合
物、アセトニトリル等のニトリル類、ジメチルホルムア
ミド、ジメチルアセトアミド等のアミド類、硫酸ジメチ
ル、ニトロメタン、ニトロベンゼン、ジクロロエタンな
どの1種又は2種以上の混合物を挙げることができる。
Note that the electrolyte is usually used in a state dissolved in a solvent.5 In this case, the solvent is not particularly limited, but a relatively highly polar solvent is preferably used. Specifically, glymes such as propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, dioxane, dimethoxyethane, diethylene glycol dimethyl ether, lactones such as γ-butyrolactone, phosphoric acid esters such as triethyl phosphate, One or two types of boric acid esters such as triethyl borate, sulfur compounds such as sulfolane and dimethyl sulfoxide, nitriles such as acetonitrile, amides such as dimethylformamide and dimethylacetamide, dimethyl sulfate, nitromethane, nitrobenzene, and dichloroethane. Mixtures of the above may be mentioned.

これらのうちでは、特にエチレンカーボネート、プロピ
レンカーボネート、ブチレンカーボネート。
Among these, especially ethylene carbonate, propylene carbonate, butylene carbonate.

テトラヒドロフラン、2−メチルテトラヒドロフラン、
ジメトキシエタン、ジオキソラン及びγ−ブチロラクト
ンから選ばれた1種又は2種以上の混合溶媒が好適であ
る。
Tetrahydrofuran, 2-methyltetrahydrofuran,
One or more mixed solvents selected from dimethoxyethane, dioxolane, and γ-butyrolactone are suitable.

更に本発明の二次電池を構成する電解質としては、上記
電解質を例えばポリエチレンオキサイド、ポリプロピレ
ンオキサイド、ポリエチレンオキサイドのイソシアネー
ト架橋体、エチレンオキサイドオリゴマーを側鎖に持つ
ホスファゼンポリマー等の重合体に含浸させた有機固体
電解質、Li、N。
Furthermore, the electrolyte constituting the secondary battery of the present invention may be an organic material impregnated with a polymer such as polyethylene oxide, polypropylene oxide, an isocyanate crosslinked product of polyethylene oxide, or a phosphazene polymer having an ethylene oxide oligomer in its side chain. Solid electrolyte, Li, N.

LiBCQ4等の無機イオン導電体、Li、SiO4゜
Li、BO3等のリチウムガラスなどの無機固体電解質
を用いることもできる。
Inorganic solid electrolytes such as inorganic ionic conductors such as LiBCQ4, lithium glasses such as Li, SiO4°Li, and BO3 can also be used.

本発明の二次電池は1通常正負極間に電解液を介在させ
ることにより構成されるが、この場合正負両極間に両極
の接触による電流の短絡を防ぐためセパレーターを介装
することができる。セパレーターとしては多孔質で電解
液を通したり含んだりすることのできる材料、例えばポ
リテトラフルオロエチレン、ポリプロピレンやポリエチ
レンなどの合成樹脂製の不織布、織布及び網等を使用す
ることができる。
The secondary battery of the present invention is usually constructed by interposing an electrolyte between the positive and negative electrodes, but in this case, a separator may be interposed between the positive and negative electrodes to prevent short-circuiting of current due to contact between the two electrodes. As the separator, it is possible to use porous materials that allow the electrolyte to pass through or be contained therein, such as nonwoven fabrics, woven fabrics, and nets made of synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene.

発明の効果 本発明に係る二次電池は、導電性が良好でかつ容量の大
きい(1)〜(5)式の化合物を正極活物質として使用
したことにより、高エネルギー密度である上、高電位で
サイクル特性に優れ、安定性、信頼性に優れたものであ
る。
Effects of the Invention The secondary battery according to the present invention has high energy density and high potential by using compounds of formulas (1) to (5) with good conductivity and large capacity as positive electrode active materials. It has excellent cycle characteristics, stability, and reliability.

以下、本発明の正極活物質の製造例及び実施例と比較例
を示すが、本発明は下記の例に制限されるものではない
Hereinafter, production examples, examples, and comparative examples of the positive electrode active material of the present invention will be shown, but the present invention is not limited to the following examples.

〔製造例〕[Manufacturing example]

(2−x)モルのV2O5に2xモルのMO2(M=M
o又はW)とXモルのLi2O又はLi2Co3を加え
、よく混合した後、不活性ガス中で650℃。
(2-x) moles of V2O5 to 2x moles of MO2 (M=M
o or W) and X moles of Li2O or Li2Co3, mixed well, and then heated at 650°C in an inert gas.

48時間加熱反応させてβ−LiXMXV2−ycO5
を得た。
After a heating reaction for 48 hours, β-LiXMXV2-ycO5
I got it.

また、(2−m−n)モルのV2O5に2mモルのM 
o O,と2nモルのWO,と(m+n)モルのLi2
O又はLi2C○3を加え、よく混合した後、不活性ガ
ス中で650℃、48時間加熱反応させてβ−L im
+。M oI、lW nV 2−+m−n○5を得た。
Also, in (2-m-n) moles of V2O5, 2 mmoles of M
o O, and 2n moles of WO, and (m+n) moles of Li2
After adding O or Li2C○3 and mixing well, a heating reaction was carried out at 650°C for 48 hours in an inert gas to form β-L im
+. MoI, lW nV 2-+m-n○5 was obtained.

更に、(2−y)モルのV2O,に2zモルのMO。Additionally, (2-y) moles of V2O, and 2z moles of MO.

(M==Mo又はW)と2(y−z)モルのVO,及び
yモルのLi2O又はLi、CO,を加え、よく混合し
た後、不活性ガス中で650℃、48時間加熱反応させ
てβ−L iy M z V 2−Z Osを得た。
(M==Mo or W), 2 (y-z) moles of VO, and y moles of Li2O or Li, CO, were added, mixed well, and then reacted by heating at 650°C for 48 hours in an inert gas. β-LiyMzV2-ZOs was obtained.

〔実施例1〕 正極活物質としてβ−Li、、2.Mo。、2.V、、
、50゜粉末を使用し、その100重量部に導電剤とし
てアセチレンブラック15重量部及び結着剤としてフッ
素樹脂粉末15重量部を加え、十分混合した後、有機溶
剤で混練りし、ロールで約350pに圧延し、150℃
で真空乾燥し、所定の径に打抜いたものを正極とした。
[Example 1] β-Li as the positive electrode active material, 2. Mo. , 2. V...
, 50° powder, 15 parts by weight of acetylene black as a conductive agent and 15 parts by weight of fluororesin powder as a binder were added to 100 parts by weight of the powder, mixed thoroughly, kneaded with an organic solvent, and rolled with a roll to approx. Rolled to 350p, 150℃
The positive electrode was dried in vacuum and punched out to a predetermined diameter.

負極は所定寸法に打抜いたアルミニウム板にリチウムを
圧着し、電解液中でアルミニウムーリチウム(Al1−
LL)合金化したものを用い、またプロピレンカーボネ
ートとエチレンカーボネートとの混合溶媒(容量比1:
1)にリチウム・六フッ化リン(L I P F 4 
)を1モル/Qで溶解したものを電解液として使用し、
第1図に示す電池を組み立てた。
The negative electrode is made by pressing lithium onto an aluminum plate punched to a predetermined size, and forming aluminum-lithium (Al1-
LL) alloyed one, and a mixed solvent of propylene carbonate and ethylene carbonate (volume ratio 1:
1) with lithium/phosphorus hexafluoride (L I P F 4
) dissolved at 1 mol/Q is used as an electrolyte,
The battery shown in FIG. 1 was assembled.

ここで、第1図において、1は正極、2はステンレスス
チール製の正極集電体で、正極1と集電体2とは一体化
されており、集電体2は正極缶3の内底面にスポット溶
接されている。また、4は負極、5は負極集電体で、負
極4は負極缶6の内底面に固着した集電体にスポット溶
接されている。
Here, in FIG. 1, 1 is a positive electrode, 2 is a positive electrode current collector made of stainless steel, and the positive electrode 1 and current collector 2 are integrated, and the current collector 2 is the inner bottom surface of the positive electrode can 3. spot welded on. Further, 4 is a negative electrode, 5 is a negative electrode current collector, and the negative electrode 4 is spot-welded to the current collector fixed to the inner bottom surface of the negative electrode can 6.

更に、7はポリプロピレン不織布よりなるセパレーター
であり、これに前記電解液が含浸されている。なお、8
は絶縁バッキングである。また、電池寸法は直径20.
0+nm、厚さ1.6mmである。
Furthermore, 7 is a separator made of polypropylene nonwoven fabric, which is impregnated with the electrolytic solution. In addition, 8
is an insulating backing. Also, the battery dimensions are 20mm in diameter.
The thickness is 0+nm and the thickness is 1.6mm.

この電池を充放電電流1mAにおいて放電終止電圧2.
OV、充電終止電圧3.5vで充放電を繰り返し、5サ
イクル目の放電曲線とその時の容量を調べた。第2図に
放電曲線を、第1表にその時の容量の結果を示す。
This battery was charged at a discharge end voltage of 2.0 mA at a charging/discharging current of 1 mA.
Charging and discharging were repeated at OV and a charge end voltage of 3.5 V, and the discharge curve at the 5th cycle and the capacity at that time were examined. Figure 2 shows the discharge curve, and Table 1 shows the capacity results.

〔実施例2〕 t[活物’ffとり、てβ−LL0,3W、、、V1.
705を使用した以外は実施例1と同様な方法で正極及
び負極を作成し、電解液としてリチウム・六フッ化ヒ素
(LiAsF、)1モル/Qをエチレンカーボネートと
2−メチルテトラヒドロフランとの混合溶媒(容量比1
:1)に溶解したものを用いて第1図に示す電池を実施
例1と同様にして組み立てた。
[Example 2] t [Live material'ff taken, β-LL0,3W, , V1.
A positive electrode and a negative electrode were prepared in the same manner as in Example 1 except that 705 was used, and 1 mol/Q of lithium arsenic hexafluoride (LiAsF) was used as an electrolyte in a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran. (Capacity ratio 1
:1) was used to assemble the battery shown in FIG. 1 in the same manner as in Example 1.

次にこの電池を用いて実施例1と同様の充放電試験を行
なった。5サイクル目の放電曲線を第3図に、その時の
容量を第1表に示す。
Next, a charge/discharge test similar to that in Example 1 was conducted using this battery. The discharge curve at the 5th cycle is shown in FIG. 3, and the capacity at that time is shown in Table 1.

〔実施例3〕 正極活物質としてβ−Li01Mo、、zWfi、2V
、、CO9を用いた以外は実施例1と同様にして第1図
に示す電池を作成した。
[Example 3] β-Li01Mo, zWfi, 2V as positive electrode active material
The battery shown in FIG. 1 was produced in the same manner as in Example 1 except that ,,CO9 was used.

この電池につき実施例1と同様の充放電試験を行なった
。5サイクル目の放電曲線を第4図に、その時の容量を
第1表に示す。
A charge/discharge test similar to that in Example 1 was conducted on this battery. The discharge curve at the 5th cycle is shown in FIG. 4, and the capacity at that time is shown in Table 1.

〔実施例4〕 正極活物質としてβ−Lie、iMo6.1V□、、’
Osを用いた以外は実施例1と同様にして第1図に示す
電池を作成した。
[Example 4] β-Lie, iMo6.1V□,,' as positive electrode active material
The battery shown in FIG. 1 was produced in the same manner as in Example 1 except that Os was used.

この電池につき実施例1と同様の充放電試験を行なった
。5サイクル目の放電曲線を第5図に。
A charge/discharge test similar to that in Example 1 was conducted on this battery. Figure 5 shows the discharge curve of the 5th cycle.

その時の容量を第1表に示す。The capacity at that time is shown in Table 1.

〔実施例5〕 正極活物質としてβ−Lie、、W、、、V1..O,
を用いた以外は実施例1と同様にして第1図に示す電池
を作成した。
[Example 5] β-Lie, W, V1. .. O,
The battery shown in FIG. 1 was produced in the same manner as in Example 1 except that the battery was used.

この電池につき実施例1と同様の充放電試験を行なった
。5サイクル目の放電曲線を第6図に。
A charge/discharge test similar to that in Example 1 was conducted on this battery. Figure 6 shows the discharge curve of the 5th cycle.

その時の容量を第1表に示す。The capacity at that time is shown in Table 1.

〔比較例〕[Comparative example]

正極活物質としてV、 O,を用いた以外は実施例2と
同様にして第1図に示す電池を作成した。
A battery shown in FIG. 1 was prepared in the same manner as in Example 2 except that V, O, and the like were used as the positive electrode active materials.

この電池につき充電終止電圧を3.3vにした以外は実
施例1と同様の方法で充放電試験を行なった。5サイク
ル目の放電曲線を第7図に、その時の容量を第1表に示
す。なお、充電終止電圧を3.3vにしたのは、これよ
り電位を高くすると充電曲線が急に立ち上るためである
A charge/discharge test was conducted on this battery in the same manner as in Example 1, except that the end-of-charge voltage was set to 3.3V. The discharge curve at the 5th cycle is shown in FIG. 7, and the capacity at that time is shown in Table 1. Note that the charging end voltage was set to 3.3 V because the charging curve would rise abruptly if the potential was made higher than this.

第  1  表 なお、実施例1〜3及び比較例に示した正極活物質10
0重量部に対して、アセナシンブラシ95重斌部及び結
着剤としてフッ素樹脂粉末を15重量部加え、実施例1
と同様な方法で正極シートを作成すると共に、これら正
極シートを四端子法で直流抵抗を測定した結果は第2表
に示す通りである。
Table 1 In addition, the positive electrode active materials 10 shown in Examples 1 to 3 and Comparative Examples
Example 1: To 0 parts by weight, 95 parts by weight of an acenacin brush and 15 parts by weight of fluororesin powder as a binder were added.
Positive electrode sheets were prepared in the same manner as above, and the DC resistance of these positive electrode sheets was measured using the four-terminal method. The results are shown in Table 2.

第   2   表 以上の結果より、V、 O,はLi−AQを負極に用い
た電池において、2v以上の電位で使う場合に容量が小
さく、導電性も低いのに対して、実施例に示したβ−タ
イプの複合酸化物は放電電位が高く、2v以上での容量
も大きく、また導電性も良好であることが知見される。
From the results shown in Table 2, it can be seen that in a battery using Li-AQ as the negative electrode, the capacity is small and the conductivity is low when used at a potential of 2 V or higher, whereas the It has been found that the β-type composite oxide has a high discharge potential, a large capacity at 2 V or more, and good conductivity.

従って、本発明によれば、高電位で高い放電容量を有す
る優れた非水電解液二次電池を得ることができるもので
あり。
Therefore, according to the present invention, it is possible to obtain an excellent non-aqueous electrolyte secondary battery having a high potential and high discharge capacity.

その工業的価値は極めて大である。Its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は充放電試験に使用した電池の断面図、第2図乃
至第7図はそれぞれ正極活物質としてLi、、26Mo
。、25V、、7.O6,Li0.、Wo、3V1.7
0s。 L 10.4 MOo、 2 Wo、 2 Vl、 @
 05 ) L ig、 3 MOo、L Vlog 
05 pLio、、Wo、tVx、s○5及び■205
を用いた電池の放電曲線を示す。
Fig. 1 is a cross-sectional view of the battery used in the charge/discharge test, and Figs. 2 to 7 show Li, 26Mo as positive electrode active materials, respectively.
. , 25V, 7. O6, Li0. ,Wo,3V1.7
0s. L 10.4 MOo, 2 Wo, 2 Vl, @
05) L ig, 3 MOo, L Vlog
05 pLio, , Wo, tVx, s○5 and ■205
The discharge curve of the battery is shown.

Claims (1)

【特許請求の範囲】 1、下記式(1)〜(5) Li_xMo_xV_2_−_xO_5……(1)Li
_xW_xV_2_−_xO_5……(2)Li_yM
o_zV_2_−_zO_5……(3)Li_yW_z
V_2_−_zO_5……(4)Li_m_+_nMo
_mW_nV_2_−_m_−_nO_5……(5)(
但し、式中x≦1、z<y≦1、m+n≦1)から選ば
れる物質を正極活物質とし、リチウム又はリチウムを吸
蔵及び放出可能なリチウム合金を負極活物質とし、かつ
リチウムイオンが前記正極活物質と電気化学反応をする
ために移動を行ない得る非水物質を電解質としたことを
特徴とする非水電解質二次電池。
[Claims] 1. The following formulas (1) to (5) Li_xMo_xV_2_-_xO_5...(1) Li
_xW_xV_2_-_xO_5...(2) Li_yM
o_zV_2_-_zO_5...(3) Li_yW_z
V_2_−_zO_5……(4) Li_m_+__nMo
_mW_nV_2_-_m_-_nO_5...(5)(
However, in the formula, a material selected from A non-aqueous electrolyte secondary battery characterized in that the electrolyte is a non-aqueous substance that can move to cause an electrochemical reaction with a positive electrode active material.
JP62120216A 1987-05-19 1987-05-19 Nonaqueous electrolyte secondary battery Pending JPS63285871A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62120216A JPS63285871A (en) 1987-05-19 1987-05-19 Nonaqueous electrolyte secondary battery
US07/185,995 US4803137A (en) 1987-05-19 1988-04-25 Non-aqueous electrolyte secondary cell
DE3816778A DE3816778A1 (en) 1987-05-19 1988-05-17 SECOND ELEMENT WITH NON-AQUE ELECTROLYTE
FR8806670A FR2615657A1 (en) 1987-05-19 1988-05-18 NONAQUEOUS ELECTROLYTE SECONDARY BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62120216A JPS63285871A (en) 1987-05-19 1987-05-19 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS63285871A true JPS63285871A (en) 1988-11-22

Family

ID=14780765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62120216A Pending JPS63285871A (en) 1987-05-19 1987-05-19 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS63285871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020112A1 (en) * 1991-04-26 1992-11-12 Sony Corporation Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992020112A1 (en) * 1991-04-26 1992-11-12 Sony Corporation Nonaqueous electrolyte secondary battery
US5427875A (en) * 1991-04-26 1995-06-27 Sony Corporation Non-aqueous electrolyte secondary cell

Similar Documents

Publication Publication Date Title
US4803137A (en) Non-aqueous electrolyte secondary cell
JPH02288068A (en) Nonaqueous electrolyte secondary battery
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
JP2561556B2 (en) Positive electrode active material for lithium secondary battery
JPH01258359A (en) Nonaqueous electrolyte accumulator
JPH0517669B2 (en)
JP2017059532A (en) Electrolyte for secondary battery, and secondary battery including the same
JPH04162357A (en) Nonaqueous secondary battery
JPS63121258A (en) Nonaqueous secondary battery
JPH04115458A (en) Non-aqueous electrolyte secondary battery
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
JPS63285871A (en) Nonaqueous electrolyte secondary battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JP6125719B1 (en) Charging system and method for charging non-aqueous electrolyte battery
JP3393621B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPH0521065A (en) Lithium secondary battery
JPH01173575A (en) Nonaqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JPH01265456A (en) Nonaqueous electrolyte secondary cell
JPH03225774A (en) Nonaqueous electrolytic secondary battery
JPH06267590A (en) High performance nonaqueous secondary battery
JPH03225760A (en) Nonaqueous electrolytic secondary battery
JP3032597B2 (en) Cathode materials for lithium secondary batteries
JPH03236173A (en) Nonaqueous electrolyte secondary battery