JPS63285230A - Coal gasifying type composite power plant - Google Patents

Coal gasifying type composite power plant

Info

Publication number
JPS63285230A
JPS63285230A JP11906387A JP11906387A JPS63285230A JP S63285230 A JPS63285230 A JP S63285230A JP 11906387 A JP11906387 A JP 11906387A JP 11906387 A JP11906387 A JP 11906387A JP S63285230 A JPS63285230 A JP S63285230A
Authority
JP
Japan
Prior art keywords
air
gas
compressor
heat
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11906387A
Other languages
Japanese (ja)
Other versions
JPH0718350B2 (en
Inventor
Yoichi Hattori
洋市 服部
Yoshiki Noguchi
芳樹 野口
Kenji Yokosuka
横須賀 建志
Nobuo Nagasaki
伸男 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62119063A priority Critical patent/JPH0718350B2/en
Publication of JPS63285230A publication Critical patent/JPS63285230A/en
Publication of JPH0718350B2 publication Critical patent/JPH0718350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To aim at enhancing the thermal efficiency by providing a heat- exchanger for bleed air from a gas turbine compressor and air discharged from a booster compressor, and an intake-air cooler for the booster compressor. CONSTITUTION:Bleed air from a gas turbine compressor 10 is fed into a coal gas furnace 1 through a booster compressor 23. There is provided a heat- exchanger 24 for bleed air from the gas turbine compressor 10 and discharge air from the booster compressor 23. Further there is provided an air cooler 25 for cooling intake-air of the booster compressor 23. With this arrangement sensible heat given by the bleed air from the compressor 10 can be retrieved by the heat-exchanger 24, thereby it is possible to enhance the thermal efficiency of the power plant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気酸化石炭ガス化複合発電プラントに係り
、ガスタービンの圧縮機より抽気し、さらに昇圧圧縮機
にて加圧して石炭ガス化炉へ空気を供給するシステムに
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an air oxidation coal gasification combined cycle power plant, in which air is extracted from a compressor of a gas turbine and further pressurized by a booster compressor to gasify coal. It concerns a system for supplying air to the furnace.

〔従来の技術〕[Conventional technology]

この種の複合発電プラントに関しては、特開昭57−5
9993号に記載の技術で公知である。
Regarding this type of combined power generation plant, Japanese Patent Application Laid-Open No. 57-5
The technique described in No. 9993 is known.

上記の公知技術を含めて、従来一般に石炭ガス化炉への
空気はガスタービンの圧縮機から抽気し。
In the prior art, including the prior art described above, the air to the coal gasifier is generally extracted from the compressor of the gas turbine.

中間空気冷却器で冷却された後、昇圧圧縮機で加圧され
て石炭ガス化炉へ供給されている。前記公知例ではガス
タービンの圧縮機からの油気が保有する熱は中間空気冷
却器において系外へ捨てられており、プラントの熱損失
となっていた。
After being cooled by an intermediate air cooler, it is pressurized by a booster compressor and then supplied to a coal gasifier. In the known example, the heat held by the oil from the compressor of the gas turbine is discarded to the outside of the system in the intermediate air cooler, resulting in heat loss to the plant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

加圧式空気酸化石炭ガス化炉と複合発電プラントとから
構成される石炭ガス化複合発電プラントでは、石炭ガス
化炉のガス化剤である空気は、ガスタービンの圧縮機か
ら抽気して昇圧圧縮機で昇圧した後に石炭ガス化炉へ供
給される。石炭ガス化炉へ供給する空気をガスタービン
の圧縮機から抽気せずに、別置の圧縮機から供給する事
も可能であるが、別置の小容量の圧縮機よりもガスター
ビンの圧縮機の方が、効率が良い(すなりち圧縮に要す
る動力が少ない)為、一般に石炭ガス化炉への空気はガ
スタービンの圧縮機から抽気して更に昇圧圧縮機により
昇圧するシステムによって供給される。
In a coal gasification combined power generation plant consisting of a pressurized air oxidation coal gasification furnace and a combined power generation plant, air, which is the gasifying agent in the coal gasification furnace, is extracted from the compressor of the gas turbine and then passed through the booster compressor. After increasing the pressure in the coal gasifier, it is supplied to the coal gasifier. Although it is possible to supply air to the coal gasifier from a separate compressor without extracting air from the gas turbine compressor, it is possible to supply air to the coal gasifier from a separate compressor, but it is possible to supply air to the coal gasifier from a separate compressor. Since this method is more efficient (in other words, less power is required for compression), the air to the coal gasifier is generally supplied by a system that extracts air from a gas turbine compressor and then boosts the pressure using a booster compressor. .

昇圧圧縮機の動力は、圧縮機での圧力比・空気重量流量
が同一の場合、空気の体積流量が小さいほど動力は小さ
くなる。従って、圧縮機入口の空気温度が高い場合は、
体積流量を減少させる為に、できる限り冷却した方がよ
いことになる。一方、ガスタービンの圧縮機出口の空気
は約390℃と、かなり高温である。この為、ガスター
ビンの圧縮機から油気を一度冷却して、空気の体積流量
を減少させた後、昇圧圧縮機へ送ることによって昇圧圧
縮機の消費動力を低減させている。
When the pressure ratio and air weight flow rate in the compressor are the same, the power of the boost compressor becomes smaller as the volumetric flow rate of air becomes smaller. Therefore, if the air temperature at the compressor inlet is high,
In order to reduce the volumetric flow rate, it is better to cool it down as much as possible. On the other hand, the air at the outlet of the compressor of the gas turbine has a fairly high temperature of about 390°C. For this reason, the power consumption of the boost compressor is reduced by cooling the oil from the gas turbine compressor once to reduce the volumetric flow rate of air and then sending it to the boost compressor.

以上の理由により、上記従来技術においては昇圧圧縮機
の上流に空気冷却器を設置し、昇圧圧縮機の動力低減へ
の配慮はなされているが、ガスタービシの圧縮機からの
高温抽気が有する熱量の有効利用についての配慮はなさ
れておらず、プラントの熱損失が大きいという問題があ
った。
For the above reasons, in the above conventional technology, an air cooler is installed upstream of the boost compressor, and consideration is given to reducing the power of the boost compressor. No consideration was given to effective utilization, and there was a problem that the heat loss of the plant was large.

本発明の目的はガスタービンの圧縮機からガス化炉へ空
気を供給する系統の熱損失を減少させることの出来石炭
ガス化複合発電プラントを提供しようとするものである
An object of the present invention is to provide a coal gasification combined cycle power plant that can reduce heat loss in a system that supplies air from a gas turbine compressor to a gasifier.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、昇圧圧縮機の入口に外部冷却水による空気
冷却器または排熱回収ボイラへの給水による空気冷却器
を設置し、さらにガスタービンの圧縮機からの油気と昇
圧圧縮機出口の空気とを熱交換するガス/ガス熱交換器
を設置することにより達成される。
The above purpose is to install an air cooler using external cooling water or an air cooler using water supplied to the exhaust heat recovery boiler at the inlet of the boost compressor, and also to use oil air from the gas turbine compressor and air from the boost compressor outlet. This is achieved by installing a gas/gas heat exchanger that exchanges heat between the

上述の原理に基づき、これを実用面に適用するための具
体的構成として、本発明のプラントは、(a)ガスター
ビン圧縮機からの抽気と、昇圧圧縮機から送出される空
気との間に熱交換を行わせるガス/ガス熱交換器を設け
るとともに、(b)昇圧圧縮機の吸入空気を冷却する空
気冷却器を設けたものである。
Based on the above-mentioned principle, and as a specific configuration for applying the principle to practical use, the plant of the present invention has the following features: (a) between the extracted air from the gas turbine compressor and the air delivered from the boost compressor; A gas/gas heat exchanger for heat exchange is provided, and (b) an air cooler is provided for cooling intake air of the boost compressor.

〔作用〕[Effect]

上記のように構成した複合発電プラントにおいて、ガス
タービンの圧縮機出口の約390’Cの高温空気は、ガ
スタービン圧縮機出口のガス/ガス熱交換器にて約19
0℃まで冷却されると同時に、昇圧圧縮機出口の空気を
加熱することにより、その顕熱を、ガス化炉へ供給する
空気に与えて熱回収される。更に、排熱回収ボイラへ供
給される約30℃の給水による空気冷却器にて、約50
℃まで冷却されると同時に、該給水を加熱することによ
り、その顕熱を排熱回収ボイラへの給水に与えて熱回収
される。給水を冷熱源とする空気冷却器を出た空気は、
更に昇圧圧縮機の入口に設置された外部冷却水による空
気冷却器によって約40℃まで冷却された後、昇圧圧縮
機へ送られる。昇圧圧縮機へ送られた空気は、昇圧圧縮
機にて昇圧され、断熱圧縮によって温度が上昇して約1
50℃の空気となり、さらにガスタービンの圧縮機の油
気によりガス/ガス熱交換器にて約350℃まで加熱さ
れた後、石炭ガス化炉へ供給される。
In the combined cycle power plant configured as described above, the high temperature air of about 390'C at the outlet of the gas turbine compressor is transferred to the gas/gas heat exchanger at the outlet of the gas turbine compressor at about 190'C.
By heating the air at the outlet of the booster compressor at the same time as it is cooled down to 0° C., the sensible heat is given to the air supplied to the gasifier and heat is recovered. Furthermore, approximately 50℃ is supplied to the exhaust heat recovery boiler by an air cooler using approximately 30℃ water supplied to the exhaust heat recovery boiler.
By simultaneously heating the feed water while being cooled to .degree. C., the sensible heat is given to the water feed to the waste heat recovery boiler and heat is recovered. The air that leaves the air cooler that uses the supply water as its cooling source is
The air is further cooled down to approximately 40° C. by an air cooler using external cooling water installed at the inlet of the boost compressor, and then sent to the boost compressor. The air sent to the boost compressor is pressurized by the boost compressor, and the temperature rises due to adiabatic compression, resulting in a temperature of approximately 1
The air becomes air at 50°C and is further heated to approximately 350°C in a gas/gas heat exchanger using oil from the gas turbine compressor before being supplied to the coal gasification furnace.

上記のように、従来空気冷却器において外部へ捨てられ
ていた空気の顕熱が、石炭ガス化炉へ供給される空気及
び排熱回収ボイラへの給水に熱回収されることにより、
プラント熱効率の向上が図られる。
As mentioned above, the sensible heat of the air that was conventionally discarded to the outside in the air cooler is recovered into the air supplied to the coal gasifier and the water supplied to the exhaust heat recovery boiler.
Plant thermal efficiency will be improved.

〔実施例〕〔Example〕

以下、本発明の第1の実施例について第1図を参照しつ
つ説明する。
A first embodiment of the present invention will be described below with reference to FIG.

石炭ガス化炉1に石炭2と空気3が供給され、該石炭ガ
ス化炉1では石炭と空気とが反応し、高温の粗生成ガス
4が生成される。高温の粗生成ガス4はガス化炉熱回収
ボイラ5でガス精製6の要求する温度まで冷却されると
同時に、その顕熱を蒸気として熱回収される。
Coal 2 and air 3 are supplied to a coal gasifier 1, where the coal and air react to generate high-temperature crude gas 4. The high-temperature crude gas 4 is cooled in the gasifier heat recovery boiler 5 to a temperature required by the gas purification 6, and at the same time, its sensible heat is recovered as steam.

400℃程度まで冷却された粗生成ガスは、ガス精製6
に送られ、除塵・脱硫されてクリーンな燃料ガス7とな
る。
The crude gas cooled to about 400°C is processed through gas purification 6.
The gas is sent to a clean fuel gas 7 where it is dedusted and desulfurized.

燃料ガス7はガスタービン8の燃焼器9へ送られ、圧縮
機10からの空気により燃焼し高温高圧のガスを発生す
る。燃焼器9で発生した高温高圧のガスはガスタービン
11を駆動し、このガスタービンに接続されている発電
機12で電気出力を発生する。
The fuel gas 7 is sent to the combustor 9 of the gas turbine 8 and is combusted by air from the compressor 10 to generate high temperature and high pressure gas. The high-temperature, high-pressure gas generated in the combustor 9 drives a gas turbine 11, and a generator 12 connected to the gas turbine generates electrical output.

ガスタービン8の高温の排ガス13は排熱回収ボイラ1
4へ送られ、ガスの保有する顕熱を蒸気として熱回収さ
れた後、比較的低温のガス(約100℃)として系外へ
放出される。
The high temperature exhaust gas 13 of the gas turbine 8 is transferred to the exhaust heat recovery boiler 1
4, where the sensible heat held by the gas is recovered as steam, and then released to the outside of the system as a relatively low temperature gas (approximately 100°C).

排熱回収ボイラ14は過熱器15.蒸発器16゜節炭器
17より構成される。排熱回収ボイラ14への給水18
はまず節炭器17へ送られて高温水となり、蒸発器16
及びガス化炉熱回収ボイラ5へ供給される。蒸発器16
では飽和蒸気が発生し、ガス化炉熱回収ボイラ5で発生
した飽和蒸気と共に、過熱器15へ送られて過熱蒸気と
なり、蒸気タービン19へ供給される。蒸気タービン1
9は発電機20を駆動して電気出力を発生させる。
The exhaust heat recovery boiler 14 has a superheater 15. It consists of an evaporator 16° and an economizer 17. Water supply 18 to the exhaust heat recovery boiler 14
The water is first sent to the economizer 17 and becomes high-temperature water, which then goes to the evaporator 16.
and is supplied to the gasifier heat recovery boiler 5. Evaporator 16
Then, saturated steam is generated and sent to the superheater 15 together with the saturated steam generated in the gasifier heat recovery boiler 5 to become superheated steam, which is then supplied to the steam turbine 19. steam turbine 1
9 drives a generator 20 to generate electrical output.

一方、蒸気タービン19で仕事をした蒸気は、復水器2
1へ送られ、冷却水によって冷却されて凝縮し、復水と
なる。復水器21の復水は給水ポンプ22によって排熱
回収ボイラ14への給水18として供給される。
On the other hand, the steam that has done work in the steam turbine 19 is transferred to the condenser 2
1, where it is cooled by cooling water and condensed to become condensate. Condensate from the condenser 21 is supplied as feed water 18 to the exhaust heat recovery boiler 14 by a water feed pump 22 .

石炭ガス化炉1へ供給される空気3は、ガスタービン8
の圧縮機10により圧縮さ九た空気の一部を抽気して、
昇圧圧縮機23にて昇圧された後、石炭ガス化炉1への
供給される。
Air 3 supplied to the coal gasifier 1 is supplied to the gas turbine 8
A part of the air compressed by the compressor 10 is extracted,
After being pressurized by the boosting compressor 23, it is supplied to the coal gasifier 1.

本実施例では、昇圧圧縮機23へ送られる空気の冷却の
為に、ガス/ガス熱交換器24及び空気冷却器25が設
置される。ガス/ガス熱交換器24はガスタービン8の
圧縮機10の出口空気と昇圧圧縮機23の出口空気との
熱交換を行うように設置され、空気冷却器25は昇圧圧
縮機23の入口に設置される。
In this embodiment, a gas/gas heat exchanger 24 and an air cooler 25 are installed to cool the air sent to the boost compressor 23. The gas/gas heat exchanger 24 is installed to exchange heat between the outlet air of the compressor 10 of the gas turbine 8 and the outlet air of the boost compressor 23, and the air cooler 25 is installed at the inlet of the boost compressor 23. be done.

ガスタービン8の圧縮機10からの抽気は約390℃と
高温であるが、ガス/ガス熱交換器24にて昇圧圧縮機
23からの約150℃の空気と熱交換し、約190℃程
度まで冷却される。ガス/ガス熱交換器24を出た空気
は、更に空気冷却器25にて外部冷却水により冷却され
る。空気冷却器25出口の空気温度をどの程度まで下げ
られるかは外部冷却水の温度に依存するが、20℃程度
の海水を外部冷却水に使用する場合は、空気冷却器25
出口の空気温度は40℃程度となる。
The extracted air from the compressor 10 of the gas turbine 8 has a high temperature of about 390°C, but it exchanges heat with the air at about 150°C from the booster compressor 23 in the gas/gas heat exchanger 24, and the temperature reaches about 190°C. cooled down. The air leaving the gas/gas heat exchanger 24 is further cooled by external cooling water in an air cooler 25. The degree to which the air temperature at the outlet of the air cooler 25 can be lowered depends on the temperature of the external cooling water, but if seawater at about 20°C is used as the external cooling water, the temperature of the air at the outlet of the air cooler 25 can be lowered.
The air temperature at the outlet is about 40°C.

昇圧圧縮機23へ送られた空気は、昇圧圧縮機にて断熱
圧縮される為、昇圧圧縮機出口の空気温度は約150’
C程度となる。昇圧圧縮機を出た空気は、ガス/ガス熱
交換器24にてガスタービンの油気により加熱されて約
350℃となり石炭ガス化炉1へ供給される。
The air sent to the boost compressor 23 is adiabatically compressed by the boost compressor, so the air temperature at the outlet of the boost compressor is approximately 150'.
It will be about C. The air exiting the boost compressor is heated by gas turbine oil in the gas/gas heat exchanger 24 to a temperature of approximately 350° C. and is supplied to the coal gasification furnace 1 .

本実施、例によれば、従来外部へ捨てられていた空気の
顕熱を5石炭ガス化炉1へ供給するガス化用空気3及び
排熱回収ボイラ5への給水に熱回収できるのでプラント
熱効率向上の効果がある。
According to this embodiment and example, the sensible heat of the air that was conventionally discarded to the outside can be recovered into the gasification air 3 that is supplied to the coal gasifier 1 and the water that is supplied to the exhaust heat recovery boiler 5, thereby increasing the plant thermal efficiency. It has an improving effect.

ガスタービン圧縮機10から昇圧圧縮機23へ送る空気
は、該昇圧圧縮機23の動力低減の為に本例では、約3
90℃から約40℃まで冷却しているが、この空気の冷
却顕熱はプラントへの燃料人熱すなわち石炭入熱の約5
.3 %に相当する。
In order to reduce the power of the boost compressor 23, the air sent from the gas turbine compressor 10 to the boost compressor 23 is approximately 3
The air is cooled from 90℃ to about 40℃, but the sensible heat of this air is about 5% of the fuel heat input into the plant, that is, the coal heat input.
.. This corresponds to 3%.

従来技術においてはこの約5.3 %の熱量が外部へ捨
てられて熱損失となっていたが、本実施例においては前
述の如く、空気の冷却顕熱をガス化用空気及び給水へ熱
回収することによりプラント熱効率が向上する。プラン
ト熱効率向上のメカニズムについて、以下各要因毎に具
体的に説明する。
In the conventional technology, approximately 5.3% of this heat was discarded to the outside and became a heat loss, but in this embodiment, as mentioned above, the sensible heat of cooling the air is recovered into the gasification air and water supply. This improves plant thermal efficiency. The mechanism for improving plant thermal efficiency will be explained in detail below for each factor.

まず第1に、空気の冷既顕熱を昇圧圧縮機23の出口の
空気に熱回収することにより、石炭ガス化炉へ送る空気
の温度を150℃から350℃へ高めて、プラント熱効
率の向上を図っている。石炭ガス化炉1では石炭と空気
とによりガス化反応が行なわれ、粗生成ガス4が生成さ
れるが1石炭ガス化炉1内の温度は例えば噴流層方式ガ
ス化炉では1500〜1700℃と、かなり高温にして
いる。これは、石炭ガス化炉の灰を溶融状態のスラグで
外部へ排出するために石炭ガス化炉内の温度を灰の溶融
点以上にする必要があるからである。
First, by recovering the cooled sensible heat of the air to the air at the outlet of the booster compressor 23, the temperature of the air sent to the coal gasifier is increased from 150°C to 350°C, improving plant thermal efficiency. We are trying to In the coal gasifier 1, a gasification reaction is carried out between coal and air to produce a crude gas 4, but the temperature inside the coal gasifier 1 is, for example, 1500 to 1700°C in a spouted bed gasifier. , the temperature is quite high. This is because the temperature inside the coal gasifier needs to be higher than the melting point of the ash in order to discharge the ash from the coal gasifier to the outside as molten slag.

石炭ガス化炉1内のガス化反応は、燃焼部分燃焼(不完
全燃焼)・水性ガス反応・シフト反応等が複雑に行なわ
れているが、ガス化空気の供給温度が低くなると燃焼の
比率が大きくなる。例えば空気の温度が150℃の場合
と350℃の場合とを想定すると、供給された空気を同
じガス化温度まで上昇させる為に150℃の空気の方が
より多くの熱量を必要とする。従って、150℃の空気
のケースの方が、より多くの熱量を供給する為に、供給
する空気量を増加し、ガス化反応の中の燃焼反応の比率
を増加させる必要がある。この為、石炭ガス化炉へ供給
される石炭の持つ発熱量の中のガスへ転換する熱量が減
少し、粗生成ガスの発熱量は減少する。又、空気量が増
加すると生成する粗生成ガス量が増加する。一方、粗生
成ガスの温度はガス化炉内で1500〜1700°C、
ガス化炉熱回収ボイラ出口で約400℃とガス量によら
ず一定である為、ガス量が増加するとガス化炉熱回収ボ
イラで熱回収する熱量が増加し、熱回収ボイラの蒸気量
は増加する。
The gasification reaction in the coal gasifier 1 involves complex combustion partial combustion (incomplete combustion), water gas reaction, shift reaction, etc., but as the gasification air supply temperature decreases, the combustion ratio increases. growing. For example, assuming that the air temperature is 150°C and 350°C, air at 150°C requires more heat in order to raise the supplied air to the same gasification temperature. Therefore, in the case of air at 150° C., in order to supply more heat, it is necessary to increase the amount of supplied air and increase the ratio of combustion reaction in the gasification reaction. For this reason, the calorific value of the coal supplied to the coal gasifier that is converted into gas is reduced, and the calorific value of the crude gas is reduced. Furthermore, as the amount of air increases, the amount of crude gas produced increases. On the other hand, the temperature of the crude gas is 1500 to 1700°C in the gasifier,
The temperature at the exit of the gasifier heat recovery boiler remains constant at approximately 400°C regardless of the amount of gas, so as the amount of gas increases, the amount of heat recovered in the gasifier heat recovery boiler increases, and the amount of steam in the heat recovery boiler increases. do.

従って、複合発電設備(ガスタービン・排熱回収ボイラ
・蒸気タービンより構成される)へ供給される燃料ガス
と蒸気の熱量との比率は、ガス化用空気の温度が高いほ
ど上昇する。複合発電設備では、燃料ガスはガスタービ
ンで仕事をし、更にその排ガスが蒸気を発生させ、蒸気
タービンで仕事をするのに対し、蒸気は蒸気タービンの
みで仕事をする為、複合発電設備へ供給される総熱量の
中で燃料ガスの熱量の比率が高いほど複合発電設備の熱
効率は高くなる。ゆえに、ガス化用空気の温度が高いほ
ど燃料ガスの比率は高くなり、プラント熱効率は高くな
る。
Therefore, the ratio of the heat amount of the fuel gas and steam supplied to the combined power generation facility (consisting of a gas turbine, an exhaust heat recovery boiler, and a steam turbine) increases as the temperature of the gasification air increases. In combined cycle power generation equipment, fuel gas does work in the gas turbine, and then the exhaust gas generates steam, which does work in the steam turbine, whereas steam only works in the steam turbine, so it is supplied to the combined power generation equipment. The higher the ratio of the fuel gas's calorific value to the total calorific value generated, the higher the thermal efficiency of the combined power generation equipment becomes. Therefore, the higher the temperature of the gasification air, the higher the proportion of fuel gas and the higher the plant thermal efficiency.

一方、ガス化用空気の温度が高いと、複合発電設備へ入
る総熱量自体も増加する為、複合発電設備の出力が増加
し、プラント熱効率は向上する。
On the other hand, if the temperature of the gasification air is high, the total amount of heat that enters the combined power generation equipment itself increases, so the output of the combined power generation equipment increases and the plant thermal efficiency improves.

以上のように、ガス化用空気の温度が高くなると、複合
発電設備への総熱量の増加による効果及び燃料ガス熱量
の比率の増加による効果により、プラント熱効率は向上
する。
As described above, when the temperature of the gasification air increases, the plant thermal efficiency improves due to the effect of increasing the total amount of heat to the combined power generation equipment and the effect of increasing the ratio of the amount of heat of the fuel gas.

ガス化用空気の温度とプラント熱効率との関係を第4図
に示す。横軸は石炭ガス化炉供給空気温度を示し、縦軸
はプラント熱効率の偏差を示している。
Figure 4 shows the relationship between the temperature of the gasification air and the plant thermal efficiency. The horizontal axis shows the coal gasifier supply air temperature, and the vertical axis shows the deviation of the plant thermal efficiency.

従来技術により、ガス化用空気を約150℃で供給して
いる場合に比べて、本実施例により、ガス化用空気を約
350℃で供給する場合は、プラント熱効率が約4.2
 %(相対値)向上する。
Compared to the case where gasification air is supplied at approximately 150°C using the conventional technology, when gasifying air is supplied at approximately 350°C according to this embodiment, the plant thermal efficiency is approximately 4.2.
% (relative value) improved.

次に、本発明の第2の実施例について、第2図を参照し
つつ説明する。但し1石炭ガス化炉1からガスタービン
8に至る燃料系及び排熱回収ボイラ14の蒸気系につい
ては第1図と同様の構成である為、説明を省略し、空気
系について次に説明する。
Next, a second embodiment of the present invention will be described with reference to FIG. However, since the fuel system from the coal gasifier 1 to the gas turbine 8 and the steam system of the exhaust heat recovery boiler 14 have the same configuration as shown in FIG. 1, their explanation will be omitted, and the air system will be explained next.

本実施例では、ガスタービン8の圧縮機10の抽気と昇
圧圧縮機23出口の空気と熱交換するガス/ガス熱交換
器24と、排熱回収ボイラ14への給水による空気冷却
器26とが設置される。第1図の実施例に比して、空気
冷却器26の冷却に排熱回収ボイラ14への給水18を
用いている点が異なる。ガスタービン8の圧縮機10か
ら石炭ガス化炉1へ送られる空気の各部の温度は、第1
図の実施例と同様である。本実施例では、空気冷却器2
6において外部冷却水を用いる代りに排熱回収ボイラ1
4への給水を用いている為、第1図の実施例では外部へ
捨てられていた空気の顕熱を給水に与えて熱回収できる
ので、排熱回収ボイラ5の蒸発量が増加する。したがっ
て、第1図の実施例に比べて、蒸気タービン19への蒸
気量が増加して蒸気タービン出力が増え、プラント熱効
率が向上する。
In this embodiment, a gas/gas heat exchanger 24 that exchanges heat with the extracted air of the compressor 10 of the gas turbine 8 and air at the outlet of the booster compressor 23, and an air cooler 26 that supplies water to the exhaust heat recovery boiler 14 are provided. will be installed. This embodiment differs from the embodiment shown in FIG. 1 in that the water supply 18 to the exhaust heat recovery boiler 14 is used to cool the air cooler 26. The temperature of each part of the air sent from the compressor 10 of the gas turbine 8 to the coal gasifier 1 is
This is similar to the embodiment shown in the figure. In this embodiment, the air cooler 2
Exhaust heat recovery boiler 1 instead of using external cooling water in 6
Since the water supply to the exhaust heat recovery boiler 5 is used, the sensible heat of the air that was discarded to the outside in the embodiment shown in FIG. Therefore, compared to the embodiment shown in FIG. 1, the amount of steam flowing to the steam turbine 19 increases, the steam turbine output increases, and the plant thermal efficiency improves.

吹上に述べた第2の実施例(第2図)において空気の冷
却顕熱を排熱回収ボイラ5への給水に熱回収することに
よる効果を説明する。
In the second embodiment (FIG. 2) described above, the effect of recovering the cooling sensible heat of the air into the water supplied to the exhaust heat recovery boiler 5 will be explained.

前述の公知技術に示されているように、従来技術におい
ては、排熱回収ボイラへの給水は復水器を出た後に給水
加熱器で加熱され排熱回収ボイラへ供給される。上記給
水加熱器の熱源は蒸気タービンからの油気であり、給水
加熱用の油気を蒸気タービンから取ることにより蒸気タ
ービン出力は低下する。本実施例においては、給水の加
熱に蒸気タービンの油気を用いず、空気の冷却顕熱を用
いている為、蒸気タービンの油気をなくし、蒸気タービ
ンの出力増加を図ることができる。従って。
As shown in the above-mentioned prior art, in the prior art, the feed water to the waste heat recovery boiler is heated by a feed water heater after leaving the condenser and then supplied to the waste heat recovery boiler. The heat source of the feed water heater is oil air from the steam turbine, and by taking oil air for heating the feed water from the steam turbine, the steam turbine output is reduced. In this embodiment, since the cooling sensible heat of the air is used instead of using the oil air of the steam turbine to heat the feed water, it is possible to eliminate the oil air of the steam turbine and increase the output of the steam turbine. Therefore.

プラント出力が増加し、プラント熱効率は向上する。Plant output increases and plant thermal efficiency improves.

空気冷却器出口給水温度とプラント熱効率の関係を第5
図に示す。空気冷却器出口給水温度が復水器出口温度で
ある約33℃(すなわち空気冷却器での熱回収がOの場
合)から約60℃まで給水温度60”Cでプラント熱効
率向上量は約0.6 %となるが60℃以上ではプラン
ト熱効率向上量は増加しない。
The relationship between the air cooler outlet water supply temperature and the plant thermal efficiency is shown in the fifth
As shown in the figure. When the air cooler outlet feed water temperature is from the condenser outlet temperature of about 33 degrees Celsius (that is, when heat recovery in the air cooler is O) to about 60 degrees Celsius, the plant thermal efficiency improvement amount is about 0. 6%, but the amount of improvement in plant thermal efficiency does not increase at temperatures above 60°C.

排熱回収ボイラでは、節炭器での結露防止及び煙突の白
煙防止の為、節炭器入口の給水温度を一般に約60℃以
上にする必要があり、給水加熱器による給水の加熱等の
対策を行なっている。したがって給水温度60℃までは
空気の冷却顕熱を給水に熱回収することによるプラント
熱効率向上の効果があるが、給水温度を60℃以上にし
てもプラント熱効率向上量は増加しない。
In an exhaust heat recovery boiler, in order to prevent condensation in the economizer and white smoke in the chimney, the temperature of the feed water at the inlet of the economizer must generally be approximately 60°C or higher, and heating of the feed water using a feed water heater, etc. We are taking measures. Therefore, when the feed water temperature is up to 60° C., there is an effect of improving plant thermal efficiency by recovering cooling sensible heat of the air into the feed water, but even if the feed water temperature is increased to 60° C. or higher, the amount of improvement in plant thermal efficiency does not increase.

以上のことから、第1図に示した実施例では空気の冷却
顕熱の約55%をガス化用空気へ熱回収することにより
約4.2 %のプラント熱効率向上が図れる。また、第
2図に示した実施例では空気の冷却顕熱をガス化用空気
及び給水の両方に熱回収することにより、ガス化用空気
の温度上昇分で約4.2 %のプラント熱効率向上を、
また給水の加熱器で約0.6 %のプラント熱効率向上
が図れ、この両者をあわせて約4.8 %のプラント熱
効率向上が図れる。
From the above, in the embodiment shown in FIG. 1, by recovering about 55% of the cooling sensible heat of the air to the gasification air, it is possible to improve the plant thermal efficiency by about 4.2%. In addition, in the example shown in Figure 2, by recovering the sensible heat of air cooling into both the gasification air and the feed water, the plant thermal efficiency is improved by approximately 4.2% due to the temperature rise of the gasification air. of,
Additionally, the plant thermal efficiency can be improved by about 0.6% with the feed water heater, and the plant thermal efficiency can be improved by about 4.8% in total.

次に、本発明の第3図の実施例について、第3図を参照
しつつ説明する。
Next, the embodiment of the present invention shown in FIG. 3 will be described with reference to FIG.

本施例では、ガスタービン8の圧縮機10の抽気と昇圧
圧縮If&23出口の空気とを熱交換するガス/ガス熱
交換器24と、排熱回収ボイラ14への籍水による空気
冷却器26と、外部冷却水による空気冷却器25とが設
置される。第1図の実施例及び第2図の実施例では、ガ
ス/ガス熱交換器24の他に給水による空気冷却器26
又は外部冷却水による空気冷却器25のいずれか一方が
設置されているのに対し、第3図の実施例ではガス/ガ
ス熱交換器の他に給水による空気冷却器26と外部冷却
水による空気冷却器25との両方が設置されている点が
異なる。
In this embodiment, a gas/gas heat exchanger 24 that exchanges heat between the extracted air from the compressor 10 of the gas turbine 8 and the air at the outlet of the boost compression If & 23, and an air cooler 26 using registered water to the exhaust heat recovery boiler 14 are used. , and an air cooler 25 using external cooling water. In the embodiment of FIG. 1 and the embodiment of FIG. 2, in addition to the gas/gas heat exchanger 24, an air cooler 26 with water supply
Alternatively, in the embodiment shown in FIG. 3, in addition to the gas/gas heat exchanger, an air cooler 26 using water supply and an air cooler 25 using external cooling water are installed. The difference is that both the cooler 25 and the cooler 25 are installed.

ガスタービン8の圧縮機10からの約390℃の油気は
、ガス/ガス熱交換器24にて昇圧圧縮機23からの約
150℃の空気と熱交換し、約190℃程度まで冷却さ
れる。ガス/ガス熱交換器24を出た空気は、更に空気
冷却器26にて給水により約50℃程度まで冷却される
と同時に給水を加熱し、その顕熱を給水に熱回収される
。空気冷却器26を出た空気は、更に空気冷却器25に
て外部冷却水により40℃程度まで冷却され、昇圧圧縮
機23へ送られる。昇圧圧縮機23では空気が昇圧され
、昇圧圧縮機出口の空気は約150°Cとなり、更にガ
ス/ガス熱交換器24にて約350℃まで加熱された後
、石炭ガス化炉1へ供給される。
Approximately 390°C oil air from the compressor 10 of the gas turbine 8 exchanges heat with approximately 150°C air from the booster compressor 23 in the gas/gas heat exchanger 24, and is cooled to approximately 190°C. . The air exiting the gas/gas heat exchanger 24 is further cooled to about 50° C. by water supply in the air cooler 26, and at the same time heats the water supply, and the sensible heat is recovered into the water supply. The air exiting the air cooler 26 is further cooled to about 40° C. by external cooling water in the air cooler 25 and sent to the boost compressor 23. The pressure of the air is increased in the boost compressor 23, and the air at the outlet of the boost compressor reaches approximately 150°C. After being further heated to approximately 350°C in the gas/gas heat exchanger 24, it is supplied to the coal gasifier 1. Ru.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の石炭ガス化71.6発電
プラントによれば、ガスタービンの圧縮機からガス化炉
へ送給される空気系統の熱損失を減少せしめ得るという
優れた実用的効果を奏し1石炭ガス化複合発電プラント
全体としての熱動′に向上に貢献するところ多大である
As detailed above, the coal gasification 71.6 power generation plant of the present invention has excellent practical advantages in that it can reduce heat loss in the air system that is fed from the compressor of the gas turbine to the gasifier. This is highly effective and greatly contributes to improving the thermal dynamics of the coal gasification combined cycle power plant as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は、それぞれ本発明の石炭ガス化複合
発電プラントの1実施例を示す系統図である。 第4図及び第5図は本発明の作用、効果を説明するため
の図表である。 1・・・石炭ガス化炉、2・・・石炭、3・・・空気、
4・・・粗生成ガス、5・・・ガス化炉熱回収ボイラ、
6・・・ガス精製、7・・・燃料ガス、8・・・ガスタ
ービン、9・・・燃焼器、10・・・圧縮機、11・・
・ガスタービン、12・・・発電機、13・・・排ガス
、14・・・排熱回収ボイラ、15・・・過熱器、16
・・・蒸発器、17・・・節炭器、18・・給水、19
・・・蒸気タービン、20・・・発電機、21・・復水
器、22・・・給水ポンプ、23・・・昇圧圧縮機、2
4・・・ガス/ガス熱交換器、25・・・空気冷却器、
26・・・空気冷却器。
1 to 3 are system diagrams showing one embodiment of the coal gasification combined cycle power plant of the present invention, respectively. FIGS. 4 and 5 are diagrams for explaining the functions and effects of the present invention. 1...Coal gasifier, 2...Coal, 3...Air,
4... Crude gas, 5... Gasifier heat recovery boiler,
6...Gas purification, 7...Fuel gas, 8...Gas turbine, 9...Combustor, 10...Compressor, 11...
・Gas turbine, 12... Generator, 13... Exhaust gas, 14... Exhaust heat recovery boiler, 15... Superheater, 16
... Evaporator, 17... Energy saver, 18... Water supply, 19
... Steam turbine, 20 ... Generator, 21 ... Condenser, 22 ... Water supply pump, 23 ... Boost compressor, 2
4... Gas/gas heat exchanger, 25... Air cooler,
26...Air cooler.

Claims (1)

【特許請求の範囲】 1、加圧式空気酸化石炭ガス化炉、及び、ガスタービン
・排熱回収ボイラ・蒸気タービンを含む複合発電設備、
並びに昇圧圧縮機を設けた石炭ガス化複合発電プラント
において、 (a)ガスタービン圧縮機からの抽気と、昇圧圧縮機か
ら送出される空気との間に熱交換を行わせるガス/ガス
熱交換器を設けるとともに、(b)昇圧圧縮機の吸入空
気を冷却する空気冷却器を設けたことを特徴とする、石
炭ガス化複合発電プラント。 2、前記の空気冷却器は、外部冷却水を吸熱物質として
用いたものであることを特徴とする特許請求の範囲第1
項に記載の石炭ガス化複合発電プラント。 3、前記の空気冷却器は、排熱回収ボイラの給水を吸熱
物質として用いたものであることを特徴とする特許請求
の範囲第1項に記載の石炭ガス化複合発電プラント。 4、前記の空気冷却器は、これを複数として、外部冷却
水を吸熱物質とする冷却器と、排熱回収ボイラ給水を吸
熱物質とする冷却器とを直列に接続したものであること
を特徴とする特許請求の範囲第1項に記載の石炭ガス化
複合発電プラント。
[Claims] 1. A pressurized air oxidation coal gasifier, and a combined power generation facility including a gas turbine, an exhaust heat recovery boiler, and a steam turbine;
In addition, in a coal gasification combined cycle power plant equipped with a boost compressor, (a) a gas/gas heat exchanger that performs heat exchange between the extracted air from the gas turbine compressor and the air sent out from the boost compressor; A coal gasification combined cycle power generation plant, characterized in that it is provided with: and (b) an air cooler for cooling intake air of the boost compressor. 2. Claim 1, wherein the air cooler uses external cooling water as an endothermic substance.
Coal gasification combined cycle power generation plant described in paragraph. 3. The coal gasification combined cycle power plant according to claim 1, wherein the air cooler uses water supplied from an exhaust heat recovery boiler as an endothermic substance. 4. The above-mentioned air cooler is characterized in that a plurality of air coolers are connected in series, including a cooler using external cooling water as an endothermic substance and a cooler using exhaust heat recovery boiler feed water as an endothermic substance. A coal gasification combined cycle power plant according to claim 1.
JP62119063A 1987-05-18 1987-05-18 Integrated coal gasification combined cycle power plant Expired - Lifetime JPH0718350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119063A JPH0718350B2 (en) 1987-05-18 1987-05-18 Integrated coal gasification combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119063A JPH0718350B2 (en) 1987-05-18 1987-05-18 Integrated coal gasification combined cycle power plant

Publications (2)

Publication Number Publication Date
JPS63285230A true JPS63285230A (en) 1988-11-22
JPH0718350B2 JPH0718350B2 (en) 1995-03-01

Family

ID=14751983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119063A Expired - Lifetime JPH0718350B2 (en) 1987-05-18 1987-05-18 Integrated coal gasification combined cycle power plant

Country Status (1)

Country Link
JP (1) JPH0718350B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041428A (en) * 1990-04-18 1992-01-06 Mitsubishi Heavy Ind Ltd Power generation facilities
US5688296A (en) * 1992-12-30 1997-11-18 Combustion Engineering, Inc. Control system for IGCC's
WO2001016471A1 (en) * 1999-09-01 2001-03-08 Siemens Aktiengesellschaft Method and device for increasing the pressure of a gas
JP2010241957A (en) * 2009-04-06 2010-10-28 Mitsubishi Heavy Ind Ltd Coal gasification combined power generation facility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186018A (en) * 1986-02-07 1987-08-14 ウエスチングハウス エレクトリック コ−ポレ−ション Method of operating gas turbine device using low btu gas fuel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186018A (en) * 1986-02-07 1987-08-14 ウエスチングハウス エレクトリック コ−ポレ−ション Method of operating gas turbine device using low btu gas fuel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041428A (en) * 1990-04-18 1992-01-06 Mitsubishi Heavy Ind Ltd Power generation facilities
US5688296A (en) * 1992-12-30 1997-11-18 Combustion Engineering, Inc. Control system for IGCC's
WO2001016471A1 (en) * 1999-09-01 2001-03-08 Siemens Aktiengesellschaft Method and device for increasing the pressure of a gas
US6672069B1 (en) 1999-09-01 2004-01-06 Siemens Aktiengesellschaft Method and device for increasing the pressure of a gas
JP2010241957A (en) * 2009-04-06 2010-10-28 Mitsubishi Heavy Ind Ltd Coal gasification combined power generation facility

Also Published As

Publication number Publication date
JPH0718350B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
RU2433339C2 (en) Method to generate power in power plant by burning carbon-containing fuel in substantially pure oxygen, power plant to generate power by burning carbon-containing fuel in substantially pure oxygen, method to modify process of power generation by burning carbon-containing fuel from fuel burning in air to fuel burning in substantially pure oxygen
EP1982053B1 (en) Method for increasing the efficiency of an integrated gasification combined cycle
US5265410A (en) Power generation system
CN105820842B (en) A kind of coal gasification supercritical CO2Cycle generating system
JPH02248605A (en) Method for generating power from carboneseoud fuel
JPS59229005A (en) Coal gasification composite power generating plant
US4720968A (en) Method and apparatus for driving an electrical power plant
CN102186956B (en) Methods and systems for integrated boiler feed water heating
JP2757290B2 (en) Gas / steam turbine combined facility with coal gasification facility
AU682172B2 (en) New power process
JP2870232B2 (en) Coal gasification power plant
US8268023B2 (en) Water gas shift reactor system for integrated gasification combined cycle power generation systems
JPH05248260A (en) Coal gasified compound power generating plant
JPS63285230A (en) Coal gasifying type composite power plant
JP2003518220A (en) Operation method of steam turbine equipment and steam turbine equipment operated by this method
JP3709669B2 (en) Gasification integrated combined power plant
JPS61184301A (en) Method and device for generating and recovering treatment heat
JPS59101512A (en) Composite power generation plant by coal gassification
US3172258A (en) Nuclear power plant
JPS6069221A (en) Combined power plant utilizing gasified coal
JPS61233084A (en) Compound generating device by coal gasification
JP2857691B2 (en) Cogeneration system
JPH11343863A (en) Gasifying compound generating plant
JPH04321704A (en) Fuel cell compound generating plant
JPS6017602A (en) Coal gasifying composite generating plant