JPS63284978A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS63284978A
JPS63284978A JP62119753A JP11975387A JPS63284978A JP S63284978 A JPS63284978 A JP S63284978A JP 62119753 A JP62119753 A JP 62119753A JP 11975387 A JP11975387 A JP 11975387A JP S63284978 A JPS63284978 A JP S63284978A
Authority
JP
Japan
Prior art keywords
solid
parallel plate
image pickup
state image
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62119753A
Other languages
Japanese (ja)
Inventor
Kenji Awamoto
健司 粟本
Isao Tofuku
東福 勲
Yukihiro Yoshida
幸広 吉田
Hiroyuki Ishizaki
石崎 洋之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62119753A priority Critical patent/JPS63284978A/en
Publication of JPS63284978A publication Critical patent/JPS63284978A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/48Increasing resolution by shifting the sensor relative to the scene

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To attain high resolution and miniaturization by providing a piezoelectric linear actuator using a sinusoidal wave signal to drive a transparent parallel plate provided between an object and a solid-state image pickup element so as to move the parallel plate horizontally and vertically for each peak of a half cycle by 45 deg.. CONSTITUTION:A radiated light from an object is collected 2 and projected to a two-dimension solid-state image pickup element 5 via a parallel plate 11. The parallel plate 11 is supported to a bimorph type piezoelectric actuator 12 via a rotary shaft 10. The parallel plate 11 while being controlled by a control section 13 is moved by 45 deg. in horizontal/vertical direction for each half cycle of a sinusoidal wave signal by the actuator 12 and the image pickup element 5 applies storage for the peak area period of the sinusoidal wave signal and readout in other period. This is equivalent to the state that photodetection sections 1-9 of each picture element of the image pickup element 5 are moved to dead bands 1'-9' in an oblique direction of 45 deg.. The value of the areas 1-9, 1'-9' detected by the image pickup element 5 is subject to picture processing 14 and displayed (4). Thus, high resolution is obtained without increasing number of picture elements to attain miniaturization.

Description

【発明の詳細な説明】 〔概要〕 本発明は二次元固体撮像素子を用いた固体撮像装置の高
解像度化および装置の小型化と低価格化を図るため、被
写体からの光を透過する平行平板と、正弦波信号で前記
平行平板を駆動する圧電アクチュエータとを設け、正弦
波信号の半サイクルのピーク毎に平行平板を水平および
垂直方向に対して45°方向に変位させるとともに、前
記正弦波信号のピーク領域の期間で固体撮像素子の蓄積
を、また、その他の期間で読出しを行なうように構成し
、小型で安価な正弦波駆動アクチュエータを用いるとと
もに、一方向のみの走査によって画素数を増加させ、高
解像の画像を得ることを可能としている。
[Detailed Description of the Invention] [Summary] The present invention aims to improve the resolution of a solid-state imaging device using a two-dimensional solid-state imaging device, and to reduce the size and cost of the device. and a piezoelectric actuator that drives the parallel plate with a sine wave signal, displacing the parallel plate in a direction of 45° with respect to the horizontal and vertical directions at every half-cycle peak of the sine wave signal, and driving the parallel plate with a sine wave signal. The solid-state image sensor is configured to perform accumulation during the period of the peak region and readout during other periods, and uses a small and inexpensive sine wave drive actuator and increases the number of pixels by scanning in only one direction. , making it possible to obtain high-resolution images.

〔産業上の利用分野〕[Industrial application field]

本発明は二次元固体撮像素子を用いた固体撮像装置に関
し、特に高解像度化および装置の小型化と低価格化を図
るようにした固体撮像装置に関するものである。
The present invention relates to a solid-state imaging device using a two-dimensional solid-state imaging device, and more particularly to a solid-state imaging device that achieves higher resolution, smaller size, and lower cost of the device.

従来から観測視野を微少変位させ、等価的に撮像素子の
画素数を増加させたと同等の効果を得る画素補填方式が
提案されている。
Conventionally, a pixel compensation method has been proposed that slightly displaces the observation field and obtains the same effect as equivalently increasing the number of pixels of an image sensor.

かかる画素捕虜方式においては、補填画素を得るための
視野変位の構造が複雑、且つ高価となることから、簡易
で安価な視野変位構造によって画素数を増加し、高解像
度が得られる固体撮像装置が要望されている。
In such a pixel capture method, the field-of-field displacement structure for obtaining compensation pixels is complicated and expensive, so a solid-state imaging device that can increase the number of pixels and obtain high resolution with a simple and inexpensive field-of-field displacement structure is needed. It is requested.

〔従来の技術〕[Conventional technology]

第5図は従来の固体撮像装置の模式図、第6図は従来の
固体撮像装置の走査光学系の走査を説明するための図、
第7図tag、 (blは従来の圧電アクチュエータの
駆動電圧波形図を示している。
FIG. 5 is a schematic diagram of a conventional solid-state imaging device, and FIG. 6 is a diagram for explaining scanning of the scanning optical system of the conventional solid-state imaging device.
FIG. 7 (tag, bl) shows a drive voltage waveform diagram of a conventional piezoelectric actuator.

第5図において、光軸■1は、第1のフィルタ6の水平
方向での回転振動により、水平方向で走査され、また第
2のフィルタ7の垂直方向での回転振動により、垂直方
向で走査されて固体撮像素子5に入射する。
In FIG. 5, the optical axis 1 is scanned in the horizontal direction by the rotational vibration of the first filter 6 in the horizontal direction, and scanned in the vertical direction by the rotational vibration of the second filter 7 in the vertical direction. and enters the solid-state image sensor 5.

以上の走査光学系による固体撮像素子の走査方法を第6
図および第7図を参照して説明する。
The method for scanning a solid-state image sensor using the above-described scanning optical system is described in the sixth section.
This will be explained with reference to FIG. 7 and FIG.

第7図は、第1および第2の圧電アクチュエータ6およ
び7を駆動する電圧波形図を示しており、(a)は各フ
ィルタを同一周波数で、位相差を持たせて駆動する場合
、(b)は各フィルタを異なる周波数で駆動する場合を
示す。図中のI(レベルは固体撮像素子の視野を水平方
向では右方向、垂直方向では下方に走査し、Lレベルで
は上記と反対方向に走査する。
FIG. 7 shows a voltage waveform diagram for driving the first and second piezoelectric actuators 6 and 7, in which (a) shows that each filter is driven at the same frequency with a phase difference, (b) ) indicates the case where each filter is driven at a different frequency. The I (level) in the figure scans the field of view of the solid-state image sensor to the right in the horizontal direction and downward in the vertical direction, and the L level scans in the opposite direction to the above.

第6図は5(水平)×5 (垂直)画素を有する固体撮
像素子5の画素配列を示す図であり、固体撮像素子5に
おける各画素13−1〜13−25は、画素の幅と画素
間の間隔dを持って格子状に配列されている。
FIG. 6 is a diagram showing the pixel arrangement of the solid-state image sensor 5 having 5 (horizontal) x 5 (vertical) pixels, and each pixel 13-1 to 13-25 in the solid-state image sensor 5 has a pixel width and a pixel width. They are arranged in a grid pattern with an interval d between them.

かかる固体撮像素子5において、いま、第7図+8)、
 (blに示すAのタイミングでは固体撮像素子の視野
は第6図の■に対応し、Bのタイミングでは第6図の視
野■に、Cのタイミングでは第6図の視野■に、Dのタ
イミングでは第6図の視野■に対応する。
In such a solid-state image sensor 5, now FIG. 7+8),
(At the timing A shown in bl, the field of view of the solid-state image sensor corresponds to ■ in Figure 6, at the timing B, the field of view ■ in Figure 6, at the timing C, the field of view ■ in Figure 6, and at the timing D This corresponds to field of view ■ in Figure 6.

このような走査を行うことにより、画素数は10×10
 = 100となり、従来の走査方式による素子数5X
5=25の4倍の解像度が得られることになる。
By performing such scanning, the number of pixels is 10×10
= 100, the number of elements using the conventional scanning method is 5X
This results in a resolution four times higher than 5=25.

このようにして固体撮像素子5で得られた画素は順次信
号処理部3で画像処理され、表示部4で画像表示される
The pixels thus obtained by the solid-state image sensor 5 are sequentially subjected to image processing by the signal processing section 3, and the images are displayed on the display section 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の固体撮像素子の視野を走査する方式においては、
撮像素子の蓄積動作時に視野を固定するため、X、Y方
向の変位に矩形波、又は台形波の駆動信号を用いており
、この矩形波、又は台形波による駆動信号に対して応答
速度の比較的高い積層型圧電素子が用いられる。
In the method of scanning the field of view of the solid-state image sensor described above,
In order to fix the field of view during the accumulation operation of the image sensor, a rectangular wave or trapezoidal wave drive signal is used for displacement in the X and Y directions, and the response speed is compared with this rectangular wave or trapezoidal wave drive signal. A high-performance multilayer piezoelectric element is used.

この積層型圧電アクチュエータは非常に高価であり、且
つ形状も大きいため、装置の小型化と低価格化を阻害し
ている。
This laminated piezoelectric actuator is very expensive and has a large size, which hinders miniaturization and cost reduction of the device.

また、矩形波や台形波を発生する回路も複雑となり低価
格化を阻害する一因をなしている。
Furthermore, the circuits that generate the rectangular waves and trapezoidal waves are also complicated, which is one of the factors that hinders price reduction.

本発明はこのような点に鑑みて創作されたもので、簡易
な視野変位構造で画素数を増加し、高解像度が得られる
とともに、小型化と低価格化が図れる固体撮像装置を提
供することを目的としている。
The present invention was created in view of these points, and an object of the present invention is to provide a solid-state imaging device that increases the number of pixels with a simple field-of-view displacement structure, provides high resolution, and can be made smaller and lower in price. It is an object.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の固体撮像装置の原理模式図を示してお
り、被写体1よりの放射光を集光する集光レンズ2と、
被写体を撮像する固体撮像素子5との間に光を透過する
平行平板11と、該平行平板11を正弦波信号で駆動す
る圧電アクチュエータ12とを設け、正弦波信号の半サ
イクルのピーク毎に平行平板11を水平および垂直方向
に対して45°方向に変位させるとともに、前記正弦波
信号のピーク領域の期間で固体撮像素子5の蓄積を、ま
たその他期間で読出しを行なうように制御する制御部1
3を備えた構成としている。
FIG. 1 shows a schematic diagram of the principle of the solid-state imaging device of the present invention, which includes a condensing lens 2 that condenses light emitted from a subject 1;
A parallel plate 11 that transmits light and a piezoelectric actuator 12 that drives the parallel plate 11 with a sine wave signal are provided between the solid-state image sensor 5 that images the subject and a piezoelectric actuator 12 that drives the parallel plate 11 with a sine wave signal. A control unit 1 displaces the flat plate 11 in a direction of 45 degrees with respect to the horizontal and vertical directions, and controls the solid-state image sensor 5 to perform storage during the period of the peak region of the sine wave signal and read out during other periods.
3.

〔作用〕[Effect]

第2図(a)、 (b)、 (C)は本発明の平行平板
の走査と固体撮像素子の動作との関係を説明するための
図、第3図は本発明の走査方式を説明するための図であ
る。
FIGS. 2(a), (b), and (C) are diagrams for explaining the relationship between the scanning of the parallel plate of the present invention and the operation of the solid-state image sensor, and FIG. 3 is for explaining the scanning method of the present invention. This is a diagram for

平行平板11は、その透過面を光軸に対して垂直に設け
られており、圧電アクチュエータ12により、第2図(
alに示すように、正弦波信号Aの半サイクルのピーク
毎に傾斜角0°から45°斜め方向に、また45°斜め
方向から傾斜角0°に変位される。
The parallel plate 11 has its transmitting surface perpendicular to the optical axis, and is actuated by the piezoelectric actuator 12 as shown in FIG.
As shown in al, each half-cycle peak of the sine wave signal A is displaced from an inclination angle of 0° to an oblique direction of 45°, and from an oblique direction of 45° to an inclination angle of 0°.

制御部13は、第2図(b)に示すように、平行平板1
1の変位と同期して正弦波のピーク領域の期間りで蓄積
信号Bを、その他の期間に読出し信号Cを固体撮像素子
5に出力する。
As shown in FIG. 2(b), the control unit 13 controls the parallel plate 1
In synchronization with the displacement of 1, the accumulation signal B is output to the solid-state image sensor 5 during the period of the peak region of the sine wave, and the readout signal C is output during the other periods.

固体撮像素子5は、第2図(′b)の蓄積信号Bおよび
読出し信号Cに同期して第2図(C1のタイミングで変
位O°と変位45°との画像の蓄積と、蓄積された画像
の続出しを行なう。
The solid-state image sensor 5 accumulates images with a displacement of 0° and a displacement of 45° at the timing shown in FIG. 2 (C1) in synchronization with the accumulation signal B and readout signal C shown in FIG. Continue posting images.

また、第2図(a)に示すように、平行平板11が視野
の水平および垂直方向に対して45°をなす斜め方向に
変位することにより、第3図に示すように、固体撮像素
子5の各画素の受光部(1,2,3・・9)が斜め45
°方向にある不感部分(1’、2′3′・・9に移動し
たのと等価になる。このようにして固体撮像素子5で検
知された1、2.3・・9および1’、2’、3”・・
9′ の各画素は画像処理部14に送られる。
Further, as shown in FIG. 2(a), by displacing the parallel plate 11 in an oblique direction at 45 degrees with respect to the horizontal and vertical directions of the field of view, the solid-state image sensor 5 The light receiving part (1, 2, 3...9) of each pixel is diagonally 45
This is equivalent to moving to the insensitive parts (1', 2', 3', . . . 9) in the ° direction. In this way, 1, 2, 3, . 2', 3"...
Each pixel of 9' is sent to the image processing section 14.

画像形成部14は、残りの不感領域(a、  b、  
c・・r)を、例えば不感領域eの場合、その外周の画
素(2+2”+1”+5)/4として平均値を出して不
感領域eの画素値とし、それぞれ平均画素値を第3図の
当該画素に付与し、1フレームの画像を成形して表示部
4で表示する。
The image forming unit 14 forms the remaining insensitive areas (a, b,
For example, in the case of a dead area e, calculate the average value of the pixels on its outer periphery as (2+2"+1"+5)/4 and use it as the pixel value of the dead area e. It is applied to the pixel to form one frame of image and display it on the display unit 4.

〔実施例〕〔Example〕

第4図は本発明の一実施例の固体撮像装置の模式図であ
る。
FIG. 4 is a schematic diagram of a solid-state imaging device according to an embodiment of the present invention.

第4図において一実施例の固体撮像装置は、被写体1よ
りの放射光を集光する集光レンズ2と、被写体1を撮像
する固体撮像素子5との間に光を透過する平行平板11
と、平行平板11を正弦波信号で駆動するバイモルフ型
圧電アクチュエータ12と、正弦波信号の半サイクルの
ピーク毎に平行平板11を水平および垂直方向に対して
45°方向に変位させるとともに、正弦波信号のピーク
領域の期間で固体撮像素子5の蓄積を、またその他期間
で読出しを行なうように制御する制御部13をを備えた
構成としている。
In FIG. 4, the solid-state imaging device of one embodiment includes a parallel plate 11 that transmits light between a condensing lens 2 that collects radiation from a subject 1 and a solid-state imaging device 5 that captures an image of the subject 1.
, a bimorph piezoelectric actuator 12 that drives the parallel plate 11 with a sine wave signal, and a bimorph piezoelectric actuator 12 that displaces the parallel plate 11 in a direction of 45 degrees with respect to the horizontal and vertical directions at every half-cycle peak of the sine wave signal, and drives the parallel plate 11 with a sine wave signal. The configuration includes a control section 13 that controls the storage in the solid-state image sensor 5 during the signal peak region period and the readout during other periods.

また、一実施例の画像処理部14は、第1の記憶部15
と、演算部16と、第2の記憶部17とで構成している
Further, the image processing unit 14 of one embodiment includes a first storage unit 15
, a calculation section 16 , and a second storage section 17 .

本実施例の走査動作を第2図および第3図を参照して説
明する。
The scanning operation of this embodiment will be explained with reference to FIGS. 2 and 3.

平行平板11は、その透過面が光軸Hに対して垂直(傾
斜角度0°)に配置されている。
The parallel plate 11 has its transmission surface perpendicular to the optical axis H (inclination angle of 0°).

このように、傾斜角O°に設定された平行平板11は、
バイモルフ型圧電アクチュエータ12により、第2図(
alに示すように、正弦波信号Aの半サイクルのピーク
毎に傾斜角0°から45°斜め方向に、また45°斜め
方向から傾斜角0°に変位される。
In this way, the parallel plate 11 set at an inclination angle of O° is
The bimorph type piezoelectric actuator 12 allows the bimorph type piezoelectric actuator 12 to
As shown in al, each half-cycle peak of the sine wave signal A is displaced from an inclination angle of 0° to an oblique direction of 45°, and from an oblique direction of 45° to an inclination angle of 0°.

一方、制御部13は、第2図世)に示すように、平行平
板11の変位と同期して正弦波のピーク領域の期間りで
蓄積信号Bを、その他の期間に読出し信号Cを固体撮像
素子5に出力する。
On the other hand, as shown in Figure 2), the control unit 13 synchronizes with the displacement of the parallel plate 11 and outputs the accumulation signal B during the period of the peak region of the sine wave and the readout signal C during the other periods. Output to element 5.

固体撮像素子5は、第2図(b)の蓄積信号Bおよび読
出し信号Cに同期して第2図(C)のタイミングで変位
0°と変位45°との画像のM#1と、蓄積された画像
の読出しを行なう。
The solid-state image sensor 5 acquires M#1 of the images with a displacement of 0° and a displacement of 45° at the timing of FIG. 2(C) in synchronization with the accumulation signal B and the readout signal C of FIG. The image is then read out.

また、第2図(a)に示すように、平行平板11が視野
の水平および垂直方向に対して45°をなす斜め方向に
変位することにより、第3図に示すように、固体撮像素
子5の各画素の受光部(1,2,3・・9)が斜め45
°方向にある不感部分(1′、2”。
Further, as shown in FIG. 2(a), by displacing the parallel plate 11 in an oblique direction at 45 degrees with respect to the horizontal and vertical directions of the field of view, the solid-state image sensor 5 The light receiving part (1, 2, 3...9) of each pixel is diagonally 45
Dead area in the ° direction (1′, 2”).

3′・・9に移動したのと等価になる。このようにして
固体撮像素子5で検知された1、2.3・・9および1
’、2’3′・・9′ の各画素は画像処理部14に送
られる。
This is equivalent to moving to 3'...9. 1, 2.3...9 and 1 detected by the solid-state image sensor 5 in this way.
', 2', 3', . . , 9' are sent to the image processing section 14.

第4図において、固体撮像素子5より送られてきた1、
2.3・・9および1”、2′3′・・9゛ の各画素
は第1の記憶部15の所定のアドレスに一時格納され、
第3図に示すパターンを形成し、その後、外部からの読
出し信号により、それぞれの不感領域(a、b、c・・
r)の外周の画素、例えば不感領域eの場合は2.2”
、l”。
In FIG. 4, 1, which is sent from the solid-state image sensor 5,
Each pixel of 2.3...9 and 1", 2'3'...9" is temporarily stored at a predetermined address in the first storage section 15,
After forming the pattern shown in FIG. 3, each dead area (a, b, c, . . .
pixel on the outer periphery of r), for example, 2.2" in the case of the dead area e.
, l”.

5とを読み出して演算部16に出力する。演算部16は
(2+2′+1’+5)/4を演算して平均画素値を算
出する。
5 is read out and output to the calculation unit 16. The calculation unit 16 calculates the average pixel value by calculating (2+2'+1'+5)/4.

第2の記憶部17は、第1の記憶部15と同様に第3図
の画素パターンを記憶しており、演算部16より入力す
る平均画素値を該当不感領域に格納して不感領域をなく
し、表示部4で画像表示する。
The second storage unit 17 stores the pixel pattern shown in FIG. 3 similarly to the first storage unit 15, and stores the average pixel value input from the calculation unit 16 in the corresponding dead area to eliminate the dead area. , the image is displayed on the display section 4.

これによって、固体撮像素子数の4倍の画素が得られ、
高分解能の画像が得られる。また、バイモルフ型圧電ア
クチュエータは、正弦波状の微少な変位を容易に行なえ
るとともに、安価で小型であるため、高解像度化と装置
の小型化、低価格化となる。
As a result, four times as many pixels as the number of solid-state image sensors are obtained,
High resolution images can be obtained. Further, the bimorph piezoelectric actuator can easily perform minute displacements in a sinusoidal waveform, and is inexpensive and compact, resulting in higher resolution, smaller device size, and lower cost.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、正弦波信号で駆動
するバイモルフ型圧電アクチュエータを用い、一方向の
みの走査により固体撮像素子数の4倍の画素数を得るよ
うにしたことにより、高解像度化と、装置の小型化およ
び低価格化が可能となる。
As explained above, according to the present invention, a bimorph piezoelectric actuator driven by a sine wave signal is used to obtain four times the number of pixels as the number of solid-state image sensors by scanning in only one direction, thereby achieving high resolution. This makes it possible to reduce the size and cost of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体撮像装置の原理模式図、第2図は
本発明の平行平板の走査と固体撮像素子の動作を説明す
るための図、 第3図は本発明の走査方式を説明するための図、第4図
は一実施例の固体撮像装置の模式図、第5図は従来の固
体撮像装置の模式図、ft’r 6図は従来の固体撮像
装置の走査光学系の走査を説明するための図、 第7図は圧電アクチュエータの駆動電圧波形図である。 図において、lは被写体、2は集光レンズ、3゜は信号
処理部、4は表示部、5は固体撮像素子、6および7は
第1および第2のフィルタ、8および9は第1および第
2の圧電アクチュエータ、10は回転軸、11は平行平
板、12は圧電アクチュエータ(バイモルフ型)、13
は制御部、13−1〜13−25は画素、14は画像処
理部、15および17は第1および第2の記憶部、16
は演算部を示している。 李ダ明り廚停謹本暮1シ厘理裁或圓 第1図 第2図 オド発8月偽足金力’に、’re訝明万1ルーーの第3
図 第4図 第5図 第6図 (Q) an圧電77チユエータめ、チ」ゆ′膚り千〃芝形ご第
7図
Fig. 1 is a schematic diagram of the principle of the solid-state imaging device of the present invention, Fig. 2 is a diagram for explaining the scanning of the parallel plate of the invention and the operation of the solid-state imaging device, and Fig. 3 is an illustration of the scanning method of the invention. Fig. 4 is a schematic diagram of a solid-state imaging device according to an embodiment, Fig. 5 is a schematic diagram of a conventional solid-state imaging device, and Fig. 6 is a scanning diagram of a scanning optical system of a conventional solid-state imaging device. FIG. 7 is a drive voltage waveform diagram of the piezoelectric actuator. In the figure, l is the subject, 2 is the condensing lens, 3° is the signal processing unit, 4 is the display unit, 5 is the solid-state image sensor, 6 and 7 are the first and second filters, 8 and 9 are the first and 2nd piezoelectric actuator, 10 is a rotating shaft, 11 is a parallel plate, 12 is a piezoelectric actuator (bimorph type), 13
13-1 to 13-25 are pixels; 14 is an image processing unit; 15 and 17 are first and second storage units;
indicates a calculation section. Lee's decision was made in 1999, and the court ordered him to do so. Figure 1, Figure 2.
Fig. 4 Fig. 5 Fig. 6 (Q) An piezoelectric 77 controller, Chi'Yu's skin, Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 被写体(1)よりの放射光を集光する集光レンズ(2)
と、前記被写体を撮像する固体撮像素子(5)との間に
挿入され光を透過する平行平板(11)と、該平行平板
を正弦波信号の半サイクルで水平および垂直方向に対し
て45°方向に変位させる圧電アクチュエータ(12)
とを備えるとともに、前記正弦波信号のピーク領域の期
間で蓄積を、その他の期間で読出しを行うように前記固
体撮像素子を制御する制御部(13)を備えて成ること
を特徴とする固体撮像装置。
Condensing lens (2) that condenses the emitted light from the subject (1)
and a solid-state image sensor (5) that images the subject, and a parallel plate (11) that transmits light, and the parallel plate is rotated at an angle of 45 degrees with respect to the horizontal and vertical directions in half a cycle of a sine wave signal. Piezoelectric actuator (12) for displacing in the direction
and a control unit (13) for controlling the solid-state image sensor so as to perform accumulation during a period of a peak region of the sine wave signal and read out during other periods. Device.
JP62119753A 1987-05-15 1987-05-15 Solid-state image pickup device Pending JPS63284978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119753A JPS63284978A (en) 1987-05-15 1987-05-15 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119753A JPS63284978A (en) 1987-05-15 1987-05-15 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS63284978A true JPS63284978A (en) 1988-11-22

Family

ID=14769305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119753A Pending JPS63284978A (en) 1987-05-15 1987-05-15 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS63284978A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231589A (en) * 1990-02-06 1991-10-15 Victor Co Of Japan Ltd Image pickup device
US5402171A (en) * 1992-09-11 1995-03-28 Kabushiki Kaisha Toshiba Electronic still camera with improved picture resolution by image shifting in a parallelogram arrangement
WO1996027980A1 (en) * 1995-03-06 1996-09-12 Hitachi, Ltd. High precision electronic camera and its control method
WO1998030022A1 (en) * 1996-12-26 1998-07-09 Sony Corporation High resolution image acquisition device and image capturing method
US5920342A (en) * 1994-09-16 1999-07-06 Kabushiki Kaisha Toshiba Image input apparatus for capturing images of multiple resolutions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231589A (en) * 1990-02-06 1991-10-15 Victor Co Of Japan Ltd Image pickup device
US5402171A (en) * 1992-09-11 1995-03-28 Kabushiki Kaisha Toshiba Electronic still camera with improved picture resolution by image shifting in a parallelogram arrangement
US5920342A (en) * 1994-09-16 1999-07-06 Kabushiki Kaisha Toshiba Image input apparatus for capturing images of multiple resolutions
WO1996027980A1 (en) * 1995-03-06 1996-09-12 Hitachi, Ltd. High precision electronic camera and its control method
WO1998030022A1 (en) * 1996-12-26 1998-07-09 Sony Corporation High resolution image acquisition device and image capturing method

Similar Documents

Publication Publication Date Title
US5774179A (en) Method and system for fast microscanning
JP2753541B2 (en) Still image pickup device
JP3410929B2 (en) Scanning imaging device and scanning laser light receiving device
JPH0813088B2 (en) Image reader
AU638865B2 (en) Imaging system
CA2144482C (en) Apparatus for dithering
JPS63284980A (en) Solid-state image pickup device
JPS63284978A (en) Solid-state image pickup device
WO2000016038A1 (en) Apparatus for surface image sensing and surface inspection of three-dimensional structures
JPS63284979A (en) Solid-state image pickup element
WO2007025832A1 (en) Apparatus and method for imaging
JPH07503113A (en) Image input device with optical deflection elements for capturing multiple sub-images
JP3027915B2 (en) Image scanner and its image reading method
JPH03187582A (en) Infrared detector
JPH06139340A (en) Image forming method and image pickup device
JPH01133017A (en) Infrared image pickup device
JPH03276981A (en) Solid-state image pickup device
JPH06100506B2 (en) Infrared imaging device
JPS63234766A (en) Scanning optical system
JP2000136913A (en) Image reader
JPH1032743A (en) Image adding device
JPH03188338A (en) Two-dimensional infrared image sensing apparatus
JP2709117B2 (en) Optical scanning method
JPS63298213A (en) Scanning type image pickup device
JPH03201883A (en) Image pickup device