JPS63283725A - Removing method for arsenic in fluid - Google Patents

Removing method for arsenic in fluid

Info

Publication number
JPS63283725A
JPS63283725A JP62117272A JP11727287A JPS63283725A JP S63283725 A JPS63283725 A JP S63283725A JP 62117272 A JP62117272 A JP 62117272A JP 11727287 A JP11727287 A JP 11727287A JP S63283725 A JPS63283725 A JP S63283725A
Authority
JP
Japan
Prior art keywords
arsenic
catalyst
fluid
compounds
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62117272A
Other languages
Japanese (ja)
Other versions
JPH0364166B2 (en
Inventor
Shinichi Ichikawa
市川 紳一
Kazuyoshi Yoshida
吉田 運吉
Tadanao Obara
小原 忠直
Chiaki Tochiuchi
栃内 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK filed Critical Tonen Sekiyu Kagaku KK
Priority to JP62117272A priority Critical patent/JPS63283725A/en
Publication of JPS63283725A publication Critical patent/JPS63283725A/en
Publication of JPH0364166B2 publication Critical patent/JPH0364166B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To remove As in fluid efficiently by bringing a catalyst carrying copper oxide having a given quantity of Cu, pore volume and specific surface area into contact with fluid containing As. CONSTITUTION:The Cu content is 30-55wt.%, and the pore volume consisting of 40-300Angstrom pore diameters is 0.12ml/g or more, and the sp. sa. is 100m<2>/g or more. Especially, copper oxide such as CuO is carried by a carrier such as alumina and prepared as a catalyst. Fluid such as hydrocarbon or the like containing As such as tributylarsine or hydrogen arsenide is passed through said catalyst to remove As out of the fluid.

Description

【発明の詳細な説明】 l用例技■分■ 本発明は、流体中の砒素除去方法に関し、さらに詳しく
は、とくに石油の流動床式接触分解装置で副生ずる軽質
炭化水素などに含有される砒化水素等の砒素またはその
化合物を効率よく除去する方法に関する。
[Detailed Description of the Invention] 1 Example Techniques ■ Minutes ■ The present invention relates to a method for removing arsenic from a fluid, and more particularly, to a method for removing arsenic from a fluid, and more specifically, to remove arsenic contained in light hydrocarbons etc. produced as a by-product in a fluidized bed catalytic cracker for petroleum. The present invention relates to a method for efficiently removing arsenic such as hydrogen or its compounds.

の°  “−tらびに のU 近年、原油重質留分の有効利用を目的として、流動床式
接触分解装置(FCC)によるガソリンの生産が増大し
ている。この際副生ずるLPG留分(C3およびC4留
分)の有効利用は、コスト面での競争力を維持するうえ
で極めて重要である。
In recent years, the production of gasoline using fluidized bed catalytic crackers (FCC) has been increasing with the aim of effectively utilizing heavy crude oil fractions.At this time, the by-product LPG fraction ( Effective utilization of C3 and C4 fractions is critical to maintaining cost competitiveness.

しかしながら、このLPG留分、とくにC3留分には砒
化水素などの砒素化合物が含有されている。
However, this LPG fraction, especially the C3 fraction, contains arsenic compounds such as hydrogen arsenide.

砒化水素などの砒素化合物は微量であっても後の反応工
程において触媒毒となることが知られており、従ってこ
のC3留分を各種化学反応の原料として用いる場合は、
予め砒化水素などの砒素化合物を所定量以下まで除去す
ることが強く望まれている。
It is known that even trace amounts of arsenic compounds such as hydrogen arsenide can act as catalyst poisons in subsequent reaction steps. Therefore, when using this C3 fraction as a raw material for various chemical reactions,
It is strongly desired to remove arsenic compounds such as hydrogen arsenide to a predetermined amount or less in advance.

ところで従来、流体中の砒素またはその化合物の除去方
法として、以下のようなものが開示されている。
Heretofore, the following methods have been disclosed as methods for removing arsenic or its compounds from fluids.

(イ)亜鉛もしくは鉛の塩または酸化物の少くとも1つ
を含むアルカリ性水溶液と、アントラキノンスルホン酸
またはアントラキノンジスルホン酸の少くとも1つの塩
のアルカリ性水溶液と、アミンまたはエタノールアミン
の存在下にキノン誘導体の少なくとも1つを含む有機溶
媒から成る洗浄用溶液を用いて揮発性砒素誘導体を気相
で除去する方法(特公昭59−33408号公報)(ロ
)酸化マンガン、酸化銅およびそれらの混合物により、
気相で砒素またはその化合物を反応吸着または酸化処理
する方法(特公昭60−17772号公報)。
(b) A quinone derivative in the presence of an alkaline aqueous solution containing at least one salt or oxide of zinc or lead, an alkaline aqueous solution of at least one salt of anthraquinone sulfonic acid or anthraquinone disulfonic acid, and an amine or ethanolamine. A method for removing volatile arsenic derivatives in a gas phase using a cleaning solution consisting of an organic solvent containing at least one of the following (Japanese Patent Publication No. 59-33408) (b) Using manganese oxide, copper oxide and a mixture thereof,
A method of reactive adsorption or oxidation treatment of arsenic or its compounds in a gas phase (Japanese Patent Publication No. 17772/1983).

(ハ)銅族およびクロム族化合物を担持した活性炭を用
いて、気相で砒化水素類を除去する方法(特開昭60−
238144号公報)。
(c) Method for removing hydrogen arsenides in the gas phase using activated carbon supporting copper group and chromium group compounds
238144).

(ニ)活性炭を用いて、液相で砒素またはその化合物を
吸着除去する方法(特開昭57−170987号公報、
同57−170988号公報)。
(d) A method of adsorbing and removing arsenic or its compounds in a liquid phase using activated carbon (Japanese Patent Application Laid-open No. 170987/1983,
Publication No. 57-170988).

(ホ)液相で砒素を酸化処理した後、砒素の酸化生成物
を除去する方法(特公昭55−11714号公報、同6
0−9549号公報)などである。
(e) A method of removing arsenic oxidation products after oxidizing arsenic in a liquid phase (Japanese Patent Publication No. 11714/1983, 6
0-9549).

しかしながら上記に開示された砒素またはその化合物の
除去方法では、脱砒素能が低く、高濃度の砒素あるいは
その化合物を含有する留分に対して多量の脱砒素剤を要
し、また設備費および運転費が高く、しかもLPG留分
を取り扱うプロセス内に含酸素化合物を入れることは安
全上の問題があるとともにLPG留分中の反応性の高い
オレフィン類が重合してしまうなどの問題点があった。
However, the method for removing arsenic or its compounds disclosed above has a low arsenic removal ability, requires a large amount of arsenic removal agent for a fraction containing a high concentration of arsenic or its compounds, and also requires high equipment costs and operational costs. In addition to being expensive, there are safety issues with introducing oxygen-containing compounds into the process that handles LPG fractions, as well as problems such as the highly reactive olefins in the LPG fractions polymerizing. .

本発明者らは、流体中の砒素またはその化合物の安価で
効率のよい除去方法を稚々検討する中で、銅含有量、触
媒の細孔半径、細孔容積および比表面積とを特定の範囲
に制御した銅系触媒と、砒素を含有する液体とを接触さ
せることにより、砒素またその化合物の除去率が著しく
改善されることを見い出し、本発明を完成するに至った
The inventors of the present invention determined that the copper content, pore radius, pore volume, and specific surface area of the catalyst were determined within specific ranges while conducting a preliminary study on an inexpensive and efficient method for removing arsenic or its compounds from fluids. The present inventors have discovered that the removal rate of arsenic and its compounds can be significantly improved by bringing a controlled copper catalyst into contact with a liquid containing arsenic, and have completed the present invention.

几皿Ω旦灼 本発明は、流体中の砒素またはその化合物を除去するに
際して、脱砒素能が低く、設備費および運転費が高いと
いう従来技術に伴う問題点を解決しようとするものであ
り、流体中の砒素またはその化合物を効率よくかつ安価
に除去するための方法を提供することを目的としている
The present invention aims to solve the problems associated with the conventional technology of low arsenic removal ability and high equipment and operating costs when removing arsenic or its compounds from a fluid. It is an object of the present invention to provide a method for efficiently and inexpensively removing arsenic or its compounds from a fluid.

及咀例鷹! 本発明に係る流体中の砒素除去方法は、30〜55重量
%の銅を含有し、細孔半径40〜300人の細孔容積が
0.12m1/g以上であり、かつ比表面積が100m
2/を以上である、酸化銅が担体に担持された触媒と、
砒素を含有する流体とを接触させることを特徴としてい
る。
It's a good example! The method for removing arsenic in a fluid according to the present invention contains 30 to 55% by weight of copper, has a pore radius of 40 to 300, has a pore volume of 0.12 m1/g or more, and has a specific surface area of 100 m1/g.
2/ or more, a catalyst in which copper oxide is supported on a carrier;
It is characterized by contacting with a fluid containing arsenic.

九咀ム且婆的皿朋 以下本発明に係る流体中の砒素またはその化合物の除去
方法について具体的に説明する。
Hereinafter, the method for removing arsenic or its compounds from a fluid according to the present invention will be explained in detail.

流−一体 本発明に用いられる流体は、液体状または気体状の炭化
水素、窒素ガス等の不活性ガス、空気あるいは各種排ガ
スなどである。
Fluids used in the present invention include liquid or gaseous hydrocarbons, inert gases such as nitrogen gas, air, and various exhaust gases.

本発明において、砒素が除去される液体状または気体状
の炭化水素としては、具体的には、流動床式接触分解装
置より副生ずるLPG留分の他、原油からの常圧蒸留ま
たは減圧蒸留により流出するナフサ、灯油、軽油などの
留分、あるいはエチレンプラント、コーカー、ビスブレ
ーカ−など熱処理によって生成された軽質留分などの石
油留分なとも用いることができる。
In the present invention, the liquid or gaseous hydrocarbons from which arsenic is removed include LPG fraction produced as a by-product from a fluidized bed catalytic cracker, as well as LPG fraction produced by atmospheric distillation or reduced pressure distillation from crude oil. It is also possible to use petroleum fractions such as spilled fractions of naphtha, kerosene, light oil, etc., or light fractions produced by heat treatment in ethylene plants, cokers, visbreakers, etc.

このような炭化水素中には、砒素は、通常R1As H
3−、(式中Rはアルキル基、フェニル基などであり、
nは0,1,2.3である)で表わされるような水素化
物あるいは有機化合物の形態で含有されている。このよ
うな砒素化合物としては具体的には、アルシン、モノメ
チルアルシン、ジメチルアルシン、トリメチルアルシン
、トリブチルアルシン、トリフェニルアルシンなどが挙
げられる。ハロゲン化された砒素化合物たとえばジメチ
ルクロルアルシンあるいは酸化された砒素化合物たとえ
ばトリメチルアルシンオキシドなどの形態で、砒素が炭
化水素中に含まれていることもありうる。
In such hydrocarbons, arsenic is usually R1As H
3-, (wherein R is an alkyl group, a phenyl group, etc.,
It is contained in the form of a hydride or an organic compound (n is 0, 1, 2.3). Specific examples of such arsenic compounds include arsine, monomethylarsine, dimethylarsine, trimethylarsine, tributylarsine, triphenylarsine, and the like. Arsenic can also be present in the hydrocarbon in the form of halogenated arsenic compounds such as dimethylchloroarsine or oxidized arsenic compounds such as trimethylarsine oxide.

このような砒素またはその化合物は、炭化水素の種類に
よって異なるが、−mに炭化水素中に数ppb(重fi
>から数百ppb(重量)で含まれていることが多い。
Although it varies depending on the type of hydrocarbon, arsenic or its compounds are present in several ppb (heavy fi
It is often contained in amounts ranging from > to several hundred ppb (by weight).

本発明に係る触媒を用いて砒素が除去される炭化水素以
外の流体としては、たとえば半導体電子工業あるいは他
の化学工業で排出される砒素または砒素化合物を含有す
る排ガス、あるいは半導体原料として用いられる砒素水
素化物を不純物として含有する粗製ホスフィンガスなど
が挙げられる。
Fluids other than hydrocarbons from which arsenic is removed using the catalyst according to the present invention include, for example, exhaust gas containing arsenic or arsenic compounds discharged from the semiconductor electronic industry or other chemical industries, or arsenic used as a raw material for semiconductors. Examples include crude phosphine gas containing hydrides as impurities.

放−一皿 本発明で用いられる触媒は、酸化銅とくに望ましくは酸
化第二銅を担体に担持した触媒である。
The catalyst used in the present invention is a catalyst in which copper oxide, particularly cupric oxide, is supported on a carrier.

担体としては、具体的には、シリカ、アルミナ、シリカ
・アルミナ、活性炭、ケイソウ土、活性白土、マグネシ
アなどが用いられるが、このうちとくにアルミナが好ま
しい。
Specific examples of the carrier used include silica, alumina, silica-alumina, activated carbon, diatomaceous earth, activated clay, and magnesia, among which alumina is particularly preferred.

このような担体は、細孔半径40〜300人の細孔容積
が0.20m1/g以上であ゛す、かつ比表面積が20
0d1g以上であることが好ましい。
Such a carrier has a pore radius of 40 to 300, a pore volume of 0.20 m1/g or more, and a specific surface area of 20 m1/g or more.
It is preferable that it is 0d1g or more.

本発明に係る砒素除去用触媒では、銅含有量は30〜5
5重量%であるが、とくに35〜50重量%が好ましい
。銅含有量が30重量%未満であると脱砒素能が劣り、
また銅含有量が55重量%を越えると、細孔容積が減少
するのみならず触媒強度が低下するため好ましくない。
In the arsenic removal catalyst according to the present invention, the copper content is 30 to 5.
5% by weight, particularly preferably 35 to 50% by weight. If the copper content is less than 30% by weight, the arsenic removal ability will be poor,
Moreover, if the copper content exceeds 55% by weight, it is not preferable because not only the pore volume decreases but also the catalyst strength decreases.

本発明に係る砒素除去用触媒は、細孔半径40〜300
人の細孔容積が0.12m1/g以上であるが、とくに
細孔半径40〜300人の細孔容積が0.14m1/g
以上であることが好ましい。
The arsenic removal catalyst according to the present invention has a pore radius of 40 to 300.
The pore volume of a person is 0.12 m1/g or more, but especially the pore volume of a person with a pore radius of 40 to 300 is 0.14 m1/g.
It is preferable that it is above.

また、本発明に係る砒素除去用触媒は、比表面積が10
0nf/g以上であるがとくに120耐/g以上である
ことが好ましい。細孔半径40〜300人の細孔容積が
0.12m1/g未満で且つこの比表面積が100rr
f/g未満であると、砒素吸着速度が劣る。この結果、
この触媒を流通系で用いた場合、銅含有量が高くてもそ
の砒素吸着容量が減少するため、好ましくない。
Further, the arsenic removal catalyst according to the present invention has a specific surface area of 10
It is preferably 0 nf/g or more, and particularly preferably 120 nf/g or more. The pore radius is 40 to 300, the pore volume is less than 0.12 m1/g, and the specific surface area is 100rr.
If it is less than f/g, the arsenic adsorption rate will be poor. As a result,
When this catalyst is used in a flow system, it is not preferable because even if the copper content is high, its arsenic adsorption capacity decreases.

このような触媒は、たとえば水酸化ナトリウム水溶液に
硫酸銅および硝酸銅の水溶液を混合し、担体を加えて良
く撹拌後、濾過により回収し乾燥、粉砕工程を経た後、
成型機を用いて所定の形状に成型することにより調製さ
れる。
Such a catalyst can be obtained by, for example, mixing an aqueous solution of copper sulfate and copper nitrate with an aqueous sodium hydroxide solution, adding a carrier, stirring well, recovering by filtration, drying, and pulverizing steps.
It is prepared by molding into a predetermined shape using a molding machine.

批放条任 砒素あるいはその化合物を含有する流体と触媒との接触
は、従来から知られている方法の中から適宜選択できる
。たとえば、流体と触媒とを、気、相または液相にて、
固定床方式で接触させる方法、移動床方式で接触させる
方法、流動床方式で接触させる方法などを採用すること
ができる。また場合によっては、流体と触媒を回分方式
で接触させることもできる。
The contact between the fluid containing released arsenic or its compound and the catalyst can be appropriately selected from conventionally known methods. For example, when the fluid and the catalyst are in gas, phase or liquid phase,
A method of contacting using a fixed bed method, a method of contacting using a moving bed method, a method of contacting using a fluidized bed method, etc. can be adopted. In some cases, the fluid and catalyst can also be brought into contact in a batch manner.

流体と触媒との接触時間は、気相で接触させる場合には
ガス空間速度(G、H,S、V)で1〜1.000時間
−1好ましくは100〜800時間−1程度であり、液
相で接触させる場合には液空間速度(L、H,S、V、
)で0.01〜20時間−1好ましくは1〜10時間−
1程度である。また接触時の温度はO〜100℃程度で
ある。
The contact time between the fluid and the catalyst is about 1 to 1.000 hours, preferably 100 to 800 hours, in terms of gas hourly space velocity (G, H, S, V) when they are brought into contact in the gas phase. When contact is made in the liquid phase, the liquid hourly space velocity (L, H, S, V,
) for 0.01 to 20 hours, preferably 1 to 10 hours.
It is about 1. Moreover, the temperature at the time of contact is about 0 to 100°C.

主咀Ω効ヌ 本発明の方法により、流体中の高濃度の砒素を少量の触
媒にて高い除去率で除去することができる。また除去に
際して前処理設備を特に必要とせず、しかもストレーナ
−以外の後処理設備を必要としない。その上砒素または
砒素化合物が除去される炭化水素中に反応性の高いオレ
フィン類が含まれていても、砒素または砒素化合物の除
去時にこれらオレフィン類が重合したりするトラブルが
発生しないという効果が得られる。
Main mastication effect: According to the method of the present invention, highly concentrated arsenic in a fluid can be removed with a high removal rate using a small amount of catalyst. Moreover, no pre-treatment equipment is particularly required for removal, and furthermore, no post-treatment equipment other than a strainer is required. Furthermore, even if highly reactive olefins are contained in the hydrocarbon from which arsenic or arsenic compounds are removed, problems such as polymerization of these olefins will not occur during the removal of arsenic or arsenic compounds. It will be done.

以下本発明を実施例により説明するが、本発明はこれら
実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

なお実施例中の%はとくに断わりがない限り重量基準で
ある。
Note that the percentages in the examples are based on weight unless otherwise specified.

宋施■1 触媒の銅含有量が41%であり、細孔半径40〜300
人の細孔容積が0.140m1/gであり、かつ比表面
積が140rrf/gである砒素除去用触媒を調製した
Song Shi■1 The copper content of the catalyst is 41%, and the pore radius is 40-300.
A catalyst for arsenic removal having a human pore volume of 0.140 m1/g and a specific surface area of 140 rrf/g was prepared.

上記の触媒5 mlを固定床反応器(8mmφ×100
wwn)に充填し、砒素が220 ppb含まれたナフ
サに、さらにトリブチルアルシンを砒素量として1.o
ooppb添加して液空間速度(L、H,S、V)5時
間−1常温で通油した。
Transfer 5 ml of the above catalyst to a fixed bed reactor (8 mmφ x 100
wwn) and added tributylarsine to the naphtha containing 220 ppb of arsenic, with an arsenic content of 1. o
ooppb was added and the oil was passed through at room temperature for 5 hours at liquid hourly space velocity (L, H, S, V).

このようにして砒素の除去処理がなされた後のナフサ中
には、通算の通油量が、20.0001/g−触媒の時
点で砒素が24 ppb含まれており、砒素の除去率は
98%であった。
After arsenic removal treatment has been carried out in this way, the naphtha contains 24 ppb of arsenic at a total oil flow rate of 20.0001/g-catalyst, and the arsenic removal rate is 98. %Met.

犬施湾l。Inuse Bay l.

流動床式接触分解装置より副生ずる下記組成の03留分
かちなる原料ガスを用いて砒化水素の除去を行った。
Hydrogen arsenide was removed using a raw material gas consisting of fraction 03 having the following composition, produced as a by-product from a fluidized bed catalytic cracker.

プロピレン  69.4モル% プロパン   30.2# C2留分    0,2 〃 C4留分    0,2 〃 砒化水素   5001)l)b 実施例1で使用した触媒2mlを固定床反応器(7mm
φX46awa)に充填した。上記の原料ガスを常温、
常圧にてガス空間速度(G、H,S、V。
Propylene 69.4 mol% Propane 30.2 # C2 fraction 0.2 C4 fraction 0.2 Hydrogen arsenide 5001) l) b 2 ml of the catalyst used in Example 1 was transferred to a fixed bed reactor (7 mm
φX46awa) was filled. The above raw material gas is heated to room temperature.
Gas space velocity (G, H, S, V) at normal pressure.

)500時間−1で流通した。) 500 h-1.

このようにして砒化水素の除去処理がなされた後の原料
ガス中には、通算の通気量がI×1071/1−触媒の
時点で。砒化水素がl0E)I)b含まれており、砒化
水素の除去率は98%であった。
In the raw material gas after hydrogen arsenide has been removed in this manner, the total aeration amount is I x 1071/1-catalyst. Hydrogen arsenide was contained in l0E)I)b, and the hydrogen arsenide removal rate was 98%.

丈旌透旦 原料ガスを流動床式接触分解装置より副生ずるC3留分
に代えて、1.07容量%の砒化水素を含む窒素ガスを
用いた以外は、実施例2と同様にして砒化水素の除去処
理を行った。
Hydrogen arsenide was produced in the same manner as in Example 2, except that nitrogen gas containing 1.07% by volume of hydrogen arsenide was used instead of the C3 fraction by-produced from the fluidized bed catalytic cracker as the raw material gas of Changjeong Chiangdan. The removal process was performed.

固定床反応器出口ガス中の砒化水素濃度が5モルppm
に達した時点で、砒化水素含有ガスの通気を止め(貫流
破過点)、以下の式により砒素吸着容量を求めた。
Hydrogen arsenide concentration in fixed bed reactor outlet gas is 5 mol ppm
At the point when the hydrogen arsenide-containing gas was reached, the ventilation of the hydrogen arsenide-containing gas was stopped (throughflow breakthrough point), and the arsenic adsorption capacity was determined using the following formula.

砒素吸着容量(%)= 第1表に結果を示す。Arsenic adsorption capacity (%) = Table 1 shows the results.

ル較珂ユ 市販触媒である日揮化学(株)製 商品名N−202D
を用いた以外は、実施例2と同様にして砒化水素の除去
処理を行った。
Commercially available catalyst manufactured by JGC Chemical Co., Ltd. Product name: N-202D
Hydrogen arsenide removal treatment was carried out in the same manner as in Example 2, except that .

このようにして砒化水素の除去処理がなされた後の原料
ガス中には通算の通気量が5X106N/1−触媒の時
点で砒化水素が1oppb含まれており、砒化水素の除
去率は98%であった。ただし通算の通気量がlX10
7N/N−触媒の時点で砒化水素が500 ppb含ま
れており、砒化水素の破過が認められた。
After hydrogen arsenide has been removed in this way, the raw gas contains 1 opppb of hydrogen arsenide when the total aeration amount is 5X106N/1-catalyst, and the hydrogen arsenide removal rate is 98%. there were. However, the total ventilation volume is lx10
At the time of the 7N/N-catalyst, 500 ppb of hydrogen arsenide was contained, and hydrogen arsenide breakthrough was observed.

ル較泗ユ 市販触媒(13種類)を用いた以外は、実施例3と同様
にして砒化水素の除去処理を行った。
Hydrogen arsenide removal treatment was carried out in the same manner as in Example 3, except that commercially available catalysts (13 types) were used.

第1表に、触媒名、触媒の銅含有量、細孔半径40〜3
00人の細孔容積、触媒の比表面積、触媒組成および砒
素吸着容量を示す。
Table 1 shows the catalyst name, the copper content of the catalyst, and the pore radius of 40 to 3.
00 pore volume, specific surface area of the catalyst, catalyst composition and arsenic adsorption capacity.

第1表より本発明に係る砒素の除去方法は安価でしかも
効率よく砒素化合物を除去できるとともに、触媒寿命が
長いことがわかる。
Table 1 shows that the method for removing arsenic according to the present invention can remove arsenic compounds at low cost and efficiently, and has a long catalyst life.

代理人  弁理士  鈴 木 俊一部 手続補正書 昭和62年 6月18日 特許庁長官  黒 1)明 雄  殿()1、事件の表
示 昭和62年 特 許願 第117,272号2、発明の
名称 流体中の砒素除去方法 名称  東燃石油化学株式会社 方式6へ 7、補正の内容 (1)明細゛占用3頁第7行において、[(特公昭59
−33408丹公報)」とあるのを、 「(特公昭59−33408号公報)。」と補正する。
Agent Patent Attorney Shun Suzuki Partial Procedural Amendment June 18, 1988 Commissioner of the Patent Office Kuro 1) Akio Tono () 1, Indication of the Case 1988 Patent Application No. 117,272 2, Title of the Invention Name of arsenic removal method in Tonen Petrochemical Co., Ltd. Method 6 to 7, Contents of amendment (1) In the specification, page 3, line 7,
-33408 Tan Publication)" should be amended to read "(Special Publication No. 59-33408)."

(2)回出第13頁第1行〜第2行において、r5X1
061 Aト触媒」とあるのを、r5X10’“1/1
−触媒」と補正する。
(2) In the first and second lines of circulation page 13, r5X1
061 A catalyst" is replaced with r5X10'"1/1
-Catalyst”.

Claims (3)

【特許請求の範囲】[Claims] (1)30〜55重量%の銅を含有し、細孔半径40〜
300Åの細孔容積が0.12ml/g以上であり、か
つ比表面積が100m^2/g以上である、酸化銅が担
体に担持された触媒と、砒素を含有する流体とを、接触
させることを特徴とする流体中の砒素除去方法。
(1) Contains 30-55% by weight of copper and has a pore radius of 40-50% by weight
A catalyst in which copper oxide is supported on a carrier and has a pore volume of 300 Å of 0.12 ml/g or more and a specific surface area of 100 m^2/g or more is brought into contact with a fluid containing arsenic. A method for removing arsenic from a fluid, characterized by:
(2)酸化銅が酸化第二銅である特許請求の範囲第1項
に記載の方法。
(2) The method according to claim 1, wherein the copper oxide is cupric oxide.
(3)担体がアルミナである特許請求の範囲第1項また
は第2項に記載の方法。
(3) The method according to claim 1 or 2, wherein the carrier is alumina.
JP62117272A 1987-05-14 1987-05-14 Removing method for arsenic in fluid Granted JPS63283725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62117272A JPS63283725A (en) 1987-05-14 1987-05-14 Removing method for arsenic in fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117272A JPS63283725A (en) 1987-05-14 1987-05-14 Removing method for arsenic in fluid

Publications (2)

Publication Number Publication Date
JPS63283725A true JPS63283725A (en) 1988-11-21
JPH0364166B2 JPH0364166B2 (en) 1991-10-04

Family

ID=14707651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117272A Granted JPS63283725A (en) 1987-05-14 1987-05-14 Removing method for arsenic in fluid

Country Status (1)

Country Link
JP (1) JPS63283725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505736A (en) * 2003-09-19 2007-03-15 ユニヴァーシティー オヴ ワイオミング Apparatus and method for removing arsenite and arsenate from water
JP2007263678A (en) * 2006-03-28 2007-10-11 Taiyo Nippon Sanso Corp Method and device for analyzing trace impurity in hydride gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505736A (en) * 2003-09-19 2007-03-15 ユニヴァーシティー オヴ ワイオミング Apparatus and method for removing arsenite and arsenate from water
JP2007263678A (en) * 2006-03-28 2007-10-11 Taiyo Nippon Sanso Corp Method and device for analyzing trace impurity in hydride gas

Also Published As

Publication number Publication date
JPH0364166B2 (en) 1991-10-04

Similar Documents

Publication Publication Date Title
KR100608474B1 (en) Olefin purification by adsorption of acethylenics and regeneration of adsorbent
EP0342898B1 (en) Method of removing mercury from hydrocarbon oils
CN101490105B (en) Process to produce polyolefins using metallocene catalysts
CN103031147B (en) A kind of catalysis conversion method processing high-nitrogen stock
US7368618B2 (en) Process for removal of oxygenates from a paraffin stream
TW200829546A (en) Dividing wall separation in light olefin hydrocarbon processing
EP2115099A1 (en) Oxidative desulfurization and denitrogenation of petroleum oils
HU205164B (en) Continuous process for extracting mercaptan from basic material with high olefin content
CN103031148B (en) The catalysis conversion method of processing high-nitrogen stock
WO2003048087A1 (en) Purification of polyolefin feedstocks using multiple adsorbents
CN101535219B (en) Process for removal of oxygenates from a paraffin stream
US4877920A (en) Process for removing arsine impurities in process streams
CN114437852B (en) PAO20 base oil and preparation method thereof
CN101173192A (en) Desulfurization method for diesel oil
JPS6322183B2 (en)
US2692295A (en) Polymerization of olefins with catalyst of cobalt on coconut charcoal pretreated with nitric acid
TW201418194A (en) Sulphur adsorption before oligomerization plants
JPS63283725A (en) Removing method for arsenic in fluid
US20240075426A1 (en) Heterogeneous desulfurization catalyst
US7678943B2 (en) Process for producing hydroperoxides
JPH03213115A (en) Removal of carbonyl sulfide in fluid
JPS6017772B2 (en) Method for removing arsenic from hydrocarbons
CN1273567C (en) Method of eliminating arsenic in acetylene containing hydrocarbon and dearsenic agent
CN1218786A (en) Process for producing ethylene and propene by catalytic thermal cracking
CN109694735B (en) Hydrogenation dechlorination method for alkylate oil