JPS63283466A - Dc high voltage generator - Google Patents

Dc high voltage generator

Info

Publication number
JPS63283466A
JPS63283466A JP11466187A JP11466187A JPS63283466A JP S63283466 A JPS63283466 A JP S63283466A JP 11466187 A JP11466187 A JP 11466187A JP 11466187 A JP11466187 A JP 11466187A JP S63283466 A JPS63283466 A JP S63283466A
Authority
JP
Japan
Prior art keywords
output
voltage
inverter
high voltage
voltage generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11466187A
Other languages
Japanese (ja)
Inventor
Tadashi Sato
忠 佐藤
Yasuo Yamashita
山下 泰郎
Keimei Kojima
啓明 小島
Tomoe Kurosawa
黒沢 巴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11466187A priority Critical patent/JPS63283466A/en
Publication of JPS63283466A publication Critical patent/JPS63283466A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure reliability, by a method wherein a DC switch and a capacitor filter on the side of high voltage are removed and high-speed interception is effected on the side of low voltage. CONSTITUTION:An inverter 7 is formed by a GTO thyristor 2 and an insulating transformer 3 while an output, rectified by rectifiers 4, 5 through full-wave rectification, is applied in multiple stages to obtain the high-voltage output of DC. Short-circuit current is limited by reactors 6. The GTO thyristors 2 are operated by a pulse, generated by a pulse generator 8, and the insulating transformer 3 boosts an output voltage to 4 times whereby full-wave rectified waveform is obtained as the output voltage of both terminals of the rectifier 5. Further, a switching element is operated while shifting the phase thereof by 180/n deg.. According to this method, the phase of ripples, accompanying the commutation of the inverter 7, is shifted by 180/n deg. in the same manner, therefore, the ripples may be reduced to 1/n even when a smoothing filter is not employed for the output.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核融合プラズマの加熱や電流駆動を行うイオ
ンビームのイオンの加速を行う直流発生器に係り、特に
、イオン源内部での放電破壊時に高速で短絡電流を遮断
し、イオン源の保護とコンデイショニイングによる耐電
圧性能向上に好適な大容量直流高電圧発生器に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a DC generator that accelerates ions in an ion beam that heats nuclear fusion plasma and drives current, and in particular, The present invention relates to a large-capacity DC high-voltage generator that is suitable for rapidly interrupting short-circuit current in the event of breakdown and improving withstand voltage performance through protection and conditioning of ion sources.

〔従来の技術〕[Conventional technology]

従来の装置は、例えば、昭和58年電気学会全国大会講
演論文集第61頁および第63頁において記載のように
、イオン源に直接接続される高電圧直流回路に高速で開
閉できる直流スイッチを設けた大容量直流高電圧発生器
を、イオン源の加速電源として使用してきた。
Conventional devices are equipped with a DC switch that can open and close at high speed in a high-voltage DC circuit directly connected to the ion source, as described in Proceedings of the 1981 National Conference of the Institute of Electrical Engineers of Japan, pages 61 and 63. A large-capacity DC high-voltage generator has been used as an accelerating power source for an ion source.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、イオン源内部で必然的に発生するイ
オンビーム引き出し電極間の放電に伴う短絡電流を高速
で遮断し、イオン源の耐電圧性能の向上を行う直流スイ
ッチとして、GTOサイリスタを多数直列に接続し、高
電圧下で使用していた。次の核融合装置では、500k
Vから1000kV以上と従来の五倍以上の高い電圧で
動作する直流スイッチが必要であり、GTOサイリスタ
の直列接続の個数として従来の五倍の六百個以上が必要
となる。しかし、六百個のGTOサイリスタを同時に高
速で開閉することは困難であり、スイッチの信頼性を確
保することも困難であると予想される。
In the above conventional technology, a large number of GTO thyristors are connected in series as a DC switch that quickly interrupts the short-circuit current accompanying the discharge between the ion beam extraction electrodes that inevitably occurs inside the ion source, and improves the withstand voltage performance of the ion source. was connected and used under high voltage. The next fusion device will have 500k
A DC switch that operates at a voltage higher than V to 1000 kV, which is five times higher than the conventional one, is required, and the number of GTO thyristors connected in series is 600 or more, five times the conventional one. However, it is difficult to simultaneously open and close 600 GTO thyristors at high speed, and it is expected that it will be difficult to ensure the reliability of the switches.

本発明の目的は、高電圧側の直流スイッチとコンデンサ
フィルタを除去し高速の遮断を低電圧側で行うことによ
り、信頼性の高いイオン源の加速電源用の大容量直流高
電圧発生器を提供することにある。
An object of the present invention is to provide a highly reliable large-capacity DC high-voltage generator for the acceleration power supply of an ion source by eliminating the DC switch and capacitor filter on the high-voltage side and performing high-speed shutoff on the low-voltage side. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

直流電源からn個のインバータで交流を作り、n個の絶
縁トランスの一次側に供給し、二次側の出力を整流器で
整流し、n個の整流出力を加えることにより、n倍の電
圧の直流出力を得る。n個のインバータの動作周波数を
同一にし、インバータの動作位相を180/n度ずつず
らすことにより、n個の整流出力のリップルの位相がず
れ、リップル低減用のコンデンサが、直流出力部分で不
用となる。その結果、絶縁トランス−次側のインバータ
を高速で遮断することで、二次側の直流出力の高速遮断
が達成され、上記目的は達成される。
By creating alternating current from a DC power source using n inverters, supplying it to the primary side of n isolation transformers, rectifying the secondary side output with a rectifier, and adding n rectified outputs, a voltage of n times Obtain DC output. By making the operating frequencies of the n inverters the same and shifting the operating phases of the inverters by 180/n degrees, the phases of the ripples of the n rectified outputs are shifted, and the ripple reduction capacitor is no longer needed in the DC output section. Become. As a result, by cutting off the inverter on the downstream side of the isolation transformer at high speed, the DC output on the secondary side can be cut off at high speed, and the above object is achieved.

〔作用〕[Effect]

第1図において、直流電圧Eを発生する直流電源と、イ
ンバータ、絶縁トランス、整流器を各n個持つ回路にお
いて、第1図に示すように記号をつける。絶縁トランス
は、インバータの出力電圧のピーク値Eをに倍に昇圧す
る。整流器は五個の整流用ダイオードより構成され、絶
縁トランスの二次側出力ピーク値kEの交流台形波°を
全波整流する。整流用ダイオードDelの両端に発生す
る電圧波形は、第2図、第3図に示すものになる。イン
バータ1からnまでを、180 / n度ずつ位相をず
らして開閉素子を動作させているので、インバータの転
流に伴うリップルの位相も同様に180/n度ずつずれ
るので、第2図に示すように100%のリップルを含ん
でいても、出力電圧nkEに含まれるリップは、k E
 / n k E、すなわち、第3図に示すように、出
力に平滑用のフィルタを使用しない条件でも、リップル
は1 / nにできる。
In FIG. 1, a circuit having a DC power source that generates DC voltage E, n inverters, insulation transformers, and rectifiers is given symbols as shown in FIG. The isolation transformer doubles the peak value E of the output voltage of the inverter. The rectifier is composed of five rectifying diodes, and performs full-wave rectification of the AC trapezoidal wave of the secondary side output peak value kE of the isolation transformer. The voltage waveforms generated across the rectifying diode Del are as shown in FIGS. 2 and 3. Since the switching elements of inverters 1 to n are operated with a phase shift of 180/n degrees, the phase of the ripple due to inverter commutation is also shifted by 180/n degrees, as shown in Figure 2. Even if the output voltage nkE includes 100% ripple, the rip included in the output voltage nkE is k E
/nkE, that is, as shown in FIG. 3, the ripple can be reduced to 1/n even without using a smoothing filter for the output.

リップルを平滑にするフィルタが不用となる結果、低電
圧側のインバータを高速で遮断することで、高電圧側の
出力電流を遮断でき、信頼性の高いイオン源加速電源用
大容量直流高電圧発生器を提供できる。
As a result of eliminating the need for a filter to smooth ripples, the output current on the high voltage side can be cut off by quickly shutting off the inverter on the low voltage side, resulting in a highly reliable large-capacity DC high voltage generator for the ion source accelerating power supply. We can provide equipment.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。直流
電源1は、最大−2,5kV、6000Aの直流出力が
得られ、定電圧制御により−0,25kVから−2,5
kVまで出力電圧を変更できる。
An embodiment of the present invention will be described below with reference to FIG. The DC power supply 1 can obtain a maximum DC output of -2.5kV and 6000A, and can be controlled from -0.25kV to -2.5kV by constant voltage control.
Output voltage can be changed up to kV.

GTOサイリスタ2と絶縁トランス3によりインバータ
7を作り、整流器4と5で余波整流した出力を多段に加
え、直流の高電圧出力を得る。リアクトル6は、フェラ
イトコアやアモルファス鉄心等も併用し、図示していな
いイオン源の放電による短絡電流を限流する。
An inverter 7 is made by the GTO thyristor 2 and an isolation transformer 3, and the output rectified by the rectifiers 4 and 5 is added to multiple stages to obtain a DC high voltage output. The reactor 6 also uses a ferrite core, an amorphous iron core, or the like to limit short-circuit current caused by discharge from an ion source (not shown).

パルス発生器8で作ったパルスでGTOサイリスタ2の
動作周波数fは300Hzで、最大2.5kV、600
Aの交流を作り、絶縁トランス3は、出力電圧を四倍に
昇圧し、整流器5の両端の出力電圧としては、はぼ、−
10kVで最大150Aの全波整流波形が得られる。イ
ンバータと整流器を五十個、すなわち、第1図のnを5
0とすると、出力として、最大−500kV、150A
を得る。
The operating frequency f of the GTO thyristor 2 is 300Hz with the pulse generated by the pulse generator 8, and the maximum voltage is 2.5kV, 600Hz.
The isolation transformer 3 boosts the output voltage by four times, and the output voltage across the rectifier 5 becomes -
A full wave rectified waveform of maximum 150A can be obtained at 10kV. Fifty inverters and rectifiers, that is, n in Figure 1 is 5.
When set to 0, the maximum output is -500kV, 150A
get.

従って、絶縁トランス3としては、五十段目の絶縁トラ
ンスT60として、−500kV以上の絶縁耐力が必要
である。また、一般的にm番の絶縁トランスの絶縁耐力
は一10mkV以上必要である。
Therefore, as the insulation transformer 3, the 50th stage insulation transformer T60 is required to have a dielectric strength of -500 kV or more. Further, the dielectric strength of the m-th isolation transformer is generally required to be 110 mkV or more.

インバータフの動作方法として、パルス発生(支)8で
、2nfに相当する2x50x300=30k Hzの
周期のパルス列を作り、第1図に示すようにjの300
 o zの範囲で、2n=100個のパルスに1から1
1.1′からn′に相当する1から50.1′から50
’の符号をつけ、1から1′の期間GT○サイリスタG
 at とG d l をオン状態にし、G b i 
とGas をオフにした後、1′から次の1のパルスの
期間GalとGdtをオフ状態にし、G b 1 とG
 C1をオン状態にする。
As for the operation method of the inverter, the pulse generator (support) 8 generates a pulse train with a period of 2x50x300 = 30kHz, which corresponds to 2nf, and
1 to 1 in 2n = 100 pulses in the range o z
1 to 50 corresponding to 1.1' to n'.1' to 50
' and the period from 1 to 1' GT○thyristor G
at and G d l are turned on, and G b i
After turning off and Gas, Gal and Gdt are turned off during the period from 1' to the next 1 pulse, and G b 1 and G
Turn on C1.

2段目のGTOサイリスタGaz、Gbz+ Gcz+
Gdzに対しても、パルス2と2′で同じオンオフ制御
を行う。これを順次n=50段目まで繰り返すことによ
り、動作周波数fに対し、360/2n度ずつ位相がず
れたオンオフを行うことができる。出力電圧のリップル
の基本周波数は2nf/ 30 k Hzである。また
、リップルも、次の段のリップるとの重畳が無視でき、
かつ、コンデンサフィルタを使用しない条件で、1 /
 n、すなわち、出力に対しリツブルイ直1150=2
%である。
2nd stage GTO thyristor Gaz, Gbz+ Gcz+
The same on/off control is performed for Gdz using pulses 2 and 2'. By repeating this sequentially up to the n=50th stage, it is possible to perform on/off operations with a phase shift of 360/2n degrees with respect to the operating frequency f. The fundamental frequency of the output voltage ripple is 2nf/30 kHz. In addition, the ripple can be ignored because it overlaps with the ripple in the next stage.
And under the condition that no capacitor filter is used, 1/
n, that is, the output is 1150 = 2
%.

また、リップルの基本周波数が2nfであるため、コン
デンサフィルタを出力側に使用しても、インバータの動
作周波数から必要とする値に比較し1 / nの小さい
値で、リップルを低減する効果がある。
Also, since the fundamental frequency of ripple is 2nf, even if a capacitor filter is used on the output side, it is effective in reducing ripple with a value 1/n smaller than the value required from the inverter's operating frequency. .

インバータ7および整流器4,5のインバータと出力の
あいだに、リップルを低減するコンデンサフィルタを使
用していないので、低電圧側に設けたインバータ7を出
力側の短絡時に、短絡状態を検出し、遮断指令信号によ
り高速で遮断することで、高電圧側の直流出力も高速遮
断ができる。
Since a capacitor filter to reduce ripple is not used between the inverter and the output of the inverter 7 and rectifiers 4 and 5, when the inverter 7 installed on the low voltage side is short-circuited on the output side, the short-circuit condition is detected and shut off. High-voltage DC output can also be cut off quickly by cutting it off at high speed using a command signal.

インバータに使用する開閉素子として、本実施例では、
自己消弧素子であるGT○サイリスタを使用したが、使
用する電圧や電流により、真空管やトランジスタ、SI
サイリスタ等の自己消弧素子が利用できる。
In this example, the switching elements used in the inverter are as follows:
I used a GT○ thyristor, which is a self-extinguishing element, but depending on the voltage and current used, it may be necessary to use a vacuum tube, transistor, or SI.
Self-extinguishing devices such as thyristors can be used.

絶縁トランス3は、−次と二次間の静電的に蓄積される
エネルギをできるだけ小さくする必要があるため、同一
鉄心断面積でも巻数を少なくできる商用より高い周波数
が好適である。
Since the isolation transformer 3 needs to minimize the electrostatically accumulated energy between the negative and secondary transformers, it is preferable to use a higher frequency than the commercial one, which allows the number of turns to be reduced even with the same core cross-sectional area.

また、絶縁トランス3に蓄積された静電エネルギが、イ
オン源の放電部分に過度に流入すると、耐電圧性能の向
上が困難になるので、流入電流と流入エネルギを制限す
る限流リアクトルを挿入する。限流リアクトルは、フェ
ライトコアやアモルファス鉄心も併用し、コアや鉄心で
サージエネルギの吸収を行う。
Furthermore, if the electrostatic energy accumulated in the isolation transformer 3 excessively flows into the discharge section of the ion source, it will be difficult to improve the withstand voltage performance, so a current limiting reactor is inserted to limit the inflow current and inflow energy. . Current limiting reactors also use ferrite cores and amorphous iron cores, and the cores and iron cores absorb surge energy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高速の遮断を最大2.5kVの低電圧
側で行い、500kVの高電圧側も高速の遮断ができる
ので、信頼性の高いイオン源の加速電源用の大容量直流
高電圧発生器が得られる。
According to the present invention, high-speed shutoff can be performed on the low voltage side of a maximum of 2.5 kV, and high-speed shutoff can also be performed on the high voltage side of 500 kV, making it possible to perform high-speed shutoff on the high-voltage side of 500 kV. A generator is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1回は本発明の一実施例の回路構成と原理を示す結線
図、第2図は、第1図のダイオードの両端の電圧波形図
、第3図は、第1図の出力電圧波形を示す特性図である
Part 1 is a wiring diagram showing the circuit configuration and principle of an embodiment of the present invention, Fig. 2 is a voltage waveform diagram at both ends of the diode in Fig. 1, and Fig. 3 is a diagram showing the output voltage waveform in Fig. 1. FIG.

Claims (1)

【特許請求の範囲】 1、直流電源と複数のインバータ及び複数の整流器を備
えた直流発電器において、 前記各インバータの動作周波数を同一にし、前記インバ
ータの動作位相を、180/n度ずつ、ほぼ均等にずら
すとともに、絶縁トランスと整流器出力の加算回路によ
り直流の高電圧を作つたことを特徴とする直流高電圧発
生器。 2、動作周波数として、商用周波数よりも高い周波数を
用いることを特徴とする特許請求の範囲第1項に記載の
直流高電圧発生器。 3、前記インバータは自己消弧素子を開閉素子として使
用したものであることを特徴とする特許請求の範囲第2
項に記載の直流高電圧発生器。 4、前記整流器の出力に限流リアクトルを設けたことを
特徴とする特許請求の範囲第3項に記載の直流高電圧発
生器。 5、前記インバータの動作周波数と前記インバータの個
数の積の二倍の周波数のパルス発生器でインバータの駆
動位相を制御したことを特徴とする特許請求の範囲第1
項に記載の直流高電圧発生器。
[Claims] 1. In a DC generator including a DC power supply, a plurality of inverters, and a plurality of rectifiers, the operating frequency of each inverter is made the same, and the operating phase of the inverter is set approximately by 180/n degrees. A DC high voltage generator characterized in that it generates DC high voltage using an adding circuit of an isolation transformer and a rectifier output. 2. The DC high voltage generator according to claim 1, wherein a frequency higher than the commercial frequency is used as the operating frequency. 3. Claim 2, characterized in that the inverter uses self-extinguishing elements as switching elements.
The DC high voltage generator described in . 4. The DC high voltage generator according to claim 3, characterized in that a current limiting reactor is provided at the output of the rectifier. 5. Claim 1, characterized in that the drive phase of the inverter is controlled by a pulse generator with a frequency twice the product of the operating frequency of the inverter and the number of inverters.
The DC high voltage generator described in .
JP11466187A 1987-05-13 1987-05-13 Dc high voltage generator Pending JPS63283466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11466187A JPS63283466A (en) 1987-05-13 1987-05-13 Dc high voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11466187A JPS63283466A (en) 1987-05-13 1987-05-13 Dc high voltage generator

Publications (1)

Publication Number Publication Date
JPS63283466A true JPS63283466A (en) 1988-11-21

Family

ID=14643404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11466187A Pending JPS63283466A (en) 1987-05-13 1987-05-13 Dc high voltage generator

Country Status (1)

Country Link
JP (1) JPS63283466A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081362A (en) * 2011-10-03 2013-05-02 Boeing Co:The System and methods for high power dc/dc converter
CN109039079A (en) * 2017-06-09 2018-12-18 台达电子工业股份有限公司 The converter circuit and its circuit board layout structure of DC to DC
US10601325B2 (en) 2017-06-09 2020-03-24 Delta Electronics, Inc. DC-to-dC converter circuit and circuit board layout structure for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141679A (en) * 1982-02-17 1983-08-23 Toshiba Corp High voltage generator
JPS5970147A (en) * 1982-10-12 1984-04-20 富士通株式会社 Parallel operation system for up-down voltage converter
JPS61189167A (en) * 1985-02-15 1986-08-22 Hitachi Ltd Switching power source
JPS61197766A (en) * 1985-02-27 1986-09-02 Yamaha Motor Co Ltd Power transmission device of wind power generator
JPS6264259A (en) * 1985-09-11 1987-03-23 Mitsubishi Electric Corp Dc stabilizing power source device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141679A (en) * 1982-02-17 1983-08-23 Toshiba Corp High voltage generator
JPS5970147A (en) * 1982-10-12 1984-04-20 富士通株式会社 Parallel operation system for up-down voltage converter
JPS61189167A (en) * 1985-02-15 1986-08-22 Hitachi Ltd Switching power source
JPS61197766A (en) * 1985-02-27 1986-09-02 Yamaha Motor Co Ltd Power transmission device of wind power generator
JPS6264259A (en) * 1985-09-11 1987-03-23 Mitsubishi Electric Corp Dc stabilizing power source device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081362A (en) * 2011-10-03 2013-05-02 Boeing Co:The System and methods for high power dc/dc converter
CN109039079A (en) * 2017-06-09 2018-12-18 台达电子工业股份有限公司 The converter circuit and its circuit board layout structure of DC to DC
US10601325B2 (en) 2017-06-09 2020-03-24 Delta Electronics, Inc. DC-to-dC converter circuit and circuit board layout structure for the same
CN109039079B (en) * 2017-06-09 2020-09-11 台达电子工业股份有限公司 DC-DC converter circuit and circuit board layout structure thereof

Similar Documents

Publication Publication Date Title
Huang et al. 15 kV SiC MOSFET: An enabling technology for medium voltage solid state transformers
Qin et al. Solid-state transformer architecture using AC–AC dual-active-bridge converter
Kummari et al. An isolated high-frequency link microinverter operated with secondary-side modulation for efficiency improvement
EP3657661A1 (en) Conversion circuit, control method, and power supply device
McMurray The thyristor electronic transformer: A power converter using a high-frequency link
CN111725831A (en) Flexible direct-current power distribution network with coexisting multi-type converters and fault isolation method thereof
Zheng et al. 7.2 kV three-port single-phase single-stage modular soft-switching solid-state transformer with active power decoupling and reduced dc-link
WO2011052364A1 (en) Power conversion device
Shi et al. Design and implementation of a 100 kW SiC filter-less PV inverter with 5 kW/kg power density and 99.2% CEC efficiency
Gui et al. A simple control to reduce device over-voltage caused by non-active switch loop in three-level ANPC converters
Nayak et al. A soft-switched PWM technique for a single stage isolated DC-AC converter with synchronous rectification
Chen et al. 10 kV SiC MOSFET based medium voltage power conditioning system for asynchronous microgrids
JPS63283466A (en) Dc high voltage generator
Xu et al. 7.2 kv/100kva solid state transformer based on half bridge llc resonant converter and 15kv sic ac switch
Tashiro et al. Improvement of Light-Load Efficiency by using a Six-Arm Converter with Series-Parallel Switching
CN108923680B (en) High-voltage side direct coupling electric precipitation pulse power supply
CN212462803U (en) Flexible direct-current power distribution network with coexisting multi-type converters
Chakraborty et al. Design concept of a high power high frequency power supply for feeding 500 kV, 100 mA Cockcroft-Walton generator
CN212785193U (en) Combinable switch type power supply structure for arc plasma
JP2010283919A (en) Auxiliary power supply for vehicle
JPS61236373A (en) Inverter
CN108173431B (en) High-voltage direct-current energy-taking converter based on synchronous conduction technology
JP2012244680A (en) Power converter
Xu et al. Development of 8 MW power supply based on pulse step modulation technique for auxiliary heating system on HL-2A
JPH0114818B2 (en)