JPS63283202A - Microwave line equipment - Google Patents

Microwave line equipment

Info

Publication number
JPS63283202A
JPS63283202A JP62117073A JP11707387A JPS63283202A JP S63283202 A JPS63283202 A JP S63283202A JP 62117073 A JP62117073 A JP 62117073A JP 11707387 A JP11707387 A JP 11707387A JP S63283202 A JPS63283202 A JP S63283202A
Authority
JP
Japan
Prior art keywords
groove
projection
line
conductor
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62117073A
Other languages
Japanese (ja)
Inventor
Yoichi Kaneko
洋一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yagi Antenna Co Ltd
Original Assignee
Yagi Antenna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yagi Antenna Co Ltd filed Critical Yagi Antenna Co Ltd
Priority to JP62117073A priority Critical patent/JPS63283202A/en
Publication of JPS63283202A publication Critical patent/JPS63283202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)

Abstract

PURPOSE:To reduce line loss and to facilitate the assembling of a semiconductor element, by providing a groove for transmitting a microwave provided on the surface of a conductor, and a projection having length over 1/4 of the wavelength of a transmission signal provided along the center part of the groove and height less than the surface of the conductor. CONSTITUTION:Waveguide structure is formed where the center part of the bottom of the groove 3 provided on the surface 2 of the conductor is protruded, and a transmission path in which an electromagnetic wave is confined and propagated is formed on the bottom part of the groove 3. In other words, the height of the projection is set at the wavelength exceeding 1/4-wave of a transmission wave so as to set the frequency of the transmission signal higher than a cut off frequency decided by the cross-sectional structure of the groove, and the propagation of the electromagnetic wave is cut off by reducing the horizontal width of the upper aperture part of the groove 3 sufficiently less than the wavelength of 1/2. In an open type ridge line 6 constituted in such way, assuming the height h1 of the projection 5 as the 1/4-wave, the energy of the electromagnetic wave to be propagated is concentrated in the periphery of the projection 5 at the time of propagating electromagnetic wave through the waveguide structure in the inside of the groove 3, and field strength (e) goes to zero at the bottom planes on both sides, and shows the maximum value at the upper end of the projection 5. In other words, the propagation mode becomes the one in which an ordinary waveguide having the horizontal width (a)=2h1+t and the height (b) is folded in two approximately. Therefore, the line loss can be reduced, and easy adjustment can be performed.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、マイクロ波およびミリ波の伝送線路として用
いられるマイクロ波線路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a microwave line device used as a microwave and millimeter wave transmission line.

[従来技術とその欠点] 従来、マイクロ波またはミリ波帯の集積回路としては、
マイクロストリップ線路が一般に用いられている。これ
は誘電体基板上の導体膜をホトエツチングにより所望の
形状に加工したものであり、回路@置の小形化に適する
反面、基本的に線路損失が導波管に比較して非常に大き
く、周波数が高くなる程、装置の性能が劣化するという
問題があった。特に問題となる装置の例としては、低雑
音増幅器、高出力増幅器、フィルタ、比較的長い伝送線
路などの場合である。このような場合、導波管を使用す
れば損失は十分少なくできるが、寸法、加工性、微細な
半導体素子との整合性などの面では前者のマイクロスト
リップ線路より著しく劣っている。上記のように従来の
手段ではいずれも大変不具合であるという問題があった
[Prior art and its drawbacks] Conventionally, as a microwave or millimeter wave band integrated circuit,
Microstrip lines are commonly used. This is a conductor film on a dielectric substrate processed into a desired shape by photo-etching, and although it is suitable for downsizing circuits, it basically has much higher line loss than waveguides, and There was a problem in that the higher the value, the worse the performance of the device. Examples of devices of particular concern include low-noise amplifiers, high-power amplifiers, filters, and relatively long transmission lines. In such cases, the loss can be sufficiently reduced by using a waveguide, but it is significantly inferior to the former microstrip line in terms of size, workability, compatibility with fine semiconductor elements, etc. As mentioned above, all of the conventional means have the problem of being very inconvenient.

[発明の目的コ 本発明は上記の実情に鑑みてなされたもので、マイクロ
波線路として、立体回路である導波管並の線路損失に押
えることができ、且つマイクロストリップ線路と同様な
平面構造を採ることにより半導体素子などの組み込みを
容易にしたマイクロ波線路装置を提供することを目的と
する。
[Purpose of the Invention] The present invention has been made in view of the above-mentioned circumstances, and is capable of suppressing the line loss as much as a waveguide, which is a three-dimensional circuit, as a microwave line, and has a planar structure similar to a microstrip line. It is an object of the present invention to provide a microwave line device in which it is easy to incorporate semiconductor elements and the like by adopting the following.

[発明の要点] 本発明は、導体表面に設けた溝の底の中央部を突起させ
た導波構造とし、溝の底部に電磁波を閉じ込めて伝搬さ
せる伝送路を構成する。すなわち、溝の断面構造によっ
て決まるカットオフ周波数に対して伝送信号周波数が高
くなるように突起の高さを伝送波の4分の1波長以上と
し、溝の上部の開口部の横幅を半波長より十分小さくし
て電磁波の伝搬をカットオフするようにしたものである
[Summary of the Invention] The present invention has a waveguide structure in which the center of the bottom of a groove provided on the surface of a conductor is protruded, and constitutes a transmission path in which electromagnetic waves are confined and propagated at the bottom of the groove. In other words, the height of the protrusion is set to be at least a quarter wavelength of the transmitted wave so that the transmission signal frequency is higher than the cutoff frequency determined by the cross-sectional structure of the groove, and the width of the opening at the top of the groove is set to be less than half a wavelength. It is designed to be sufficiently small to cut off the propagation of electromagnetic waves.

[発明の実施例コ 以下、図面を今照して本発明の一実施例を説明する。第
1図は、本発明によるマイクロ波線路装置の基本的な線
路構造を示すもので、導体板1の表面2に1条の溝3が
設けられている。そして、溝3の底面4の中央部には、
その長手方向に沿って突起5が設けられ、開放型リッジ
線路6が形成される。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the basic line structure of the microwave line device according to the present invention, in which a single groove 3 is provided on the surface 2 of a conductive plate 1. In the center of the bottom surface 4 of the groove 3,
A protrusion 5 is provided along the longitudinal direction, and an open ridge line 6 is formed.

しかして、上記開放型リッジ線路6において、第2図に
示すように溝3は全幅をW、深さをり。
In the open ridge line 6, as shown in FIG. 2, the groove 3 has a total width of W and a depth of W.

とし、突起5は厚さをt、高さをhl、外周長を89両
側の間隔をbとする。従って、上記突起5の周面長さa
の値は「a−2hx +tJとなる。
The protrusion 5 has a thickness of t, a height of hl, an outer circumference of 89, and a spacing on both sides of b. Therefore, the circumferential surface length a of the projection 5
The value of is ``a-2hx +tJ.

上記のように構成された開放型リッジ線路6は、電磁波
が溝3内部の導波構造を伝搬する際、突起5の高さhl
を4分の1波長、つまり、突起5の左右側面の外周長a
を半波長以上とすると、伝搬する1lifi波のエネル
ギは、突起5の周囲に集中し、突起5の両側の間隔すの
空隙に沿う電界強度eは、両側の底面で零となり、突起
5の上端で最大となる。すなわち、この伝搬モードは、
通常の導波管で横幅a−2h1 +t、高さbの寸法の
ものを2つに折曲げたものに近似したものとなる。従っ
て、線路寸法設計の目安は、伝搬モードの波長λとカッ
トオフ波長λCとの関係が λC〉λ λC−28″F2 (2ht +t)J+P4h1を満
足すればよく、突起5の高さhlは厚さtが小さい場合
、前記説明に一致して決定できる。厚さtが無視できな
い場合、上式を用いてhlを減じればよい。
In the open ridge line 6 configured as described above, when the electromagnetic wave propagates through the waveguide structure inside the groove 3, the height of the protrusion 5 is hl.
is a quarter wavelength, that is, the outer circumference a of the left and right sides of the protrusion 5
When is more than half a wavelength, the energy of the propagating 1lifi wave is concentrated around the protrusion 5, and the electric field strength e along the gap on both sides of the protrusion 5 becomes zero at the bottom of both sides, and at the top of the protrusion 5. Maximum at . That is, this propagation mode is
This is similar to a normal waveguide having dimensions of width a-2h1 +t and height b, which is bent in two. Therefore, as a guideline for line dimension design, the relationship between the wavelength λ of the propagation mode and the cutoff wavelength λC should satisfy λC>λ λC−28″F2 (2ht +t)J+P4h1, and the height hl of the protrusion 5 should be If the thickness t is small, it can be determined in accordance with the above explanation.If the thickness t cannot be ignored, hl can be reduced using the above formula.

次に溝3の上部開口部では、電界分布e′のモードに対
し、カットオフ波長λCは λc−2w<<λ となり、電磁波エネルギは上方の開口部へ伝搬できず、
突起5の周辺に閉じ込められる。これにより所期の目的
を達成することができる。また、溝3の開口幅Wを半波
長に対し十分小さくしておけば、突起5の高さhlを溝
3の深さり、に近づけてもよい。
Next, at the upper opening of the groove 3, the cutoff wavelength λC becomes λc-2w<<λ for the mode of the electric field distribution e', and the electromagnetic wave energy cannot propagate to the upper opening.
It is confined around the protrusion 5. This makes it possible to achieve the intended purpose. Further, if the opening width W of the groove 3 is made sufficiently smaller than a half wavelength, the height hl of the protrusion 5 may be made closer to the depth of the groove 3.

また、上記開放型リッジ線路6のマイクロ波線路の特性
インピーダンス及び線路損失は、前記等価導波管の寸法
から容易に求めることができる。
Further, the characteristic impedance and line loss of the microwave line of the open ridge line 6 can be easily determined from the dimensions of the equivalent waveguide.

次に上記開放型リッジ線路6の計算例を示す。Next, an example of calculation for the open ridge line 6 will be shown.

a−19(mm) 、b−1(mm)の時の特性インピ
ーダンスZ1は Zo−52,7(Ω) であり、導体として例えば銅を使用したときの線路損失
は、 L−0,91(dB/m) である。これは厚さが0.8 (mm)のテフロン系基
板を使用した同じ特性インピーダンスの線路損失 L−3〜4 (dB/m) と比較すると、損失が約4分の1になっていることが分
かる。本発明の線路は、特性インピーダンスは^めにす
るのがよく、b−2(mm)では、Za =105.4
 (Ω) 、L−0,48(dB/m)と大幅に改善さ
れる。
The characteristic impedance Z1 when a-19 (mm) and b-1 (mm) is Zo-52,7 (Ω), and the line loss when using copper as the conductor, for example, is L-0,91 ( dB/m). This means that the loss is approximately one-fourth of the line loss L-3 to 4 (dB/m) with the same characteristic impedance using a Teflon-based board with a thickness of 0.8 (mm). I understand. The characteristic impedance of the line of the present invention is preferably set to ^^, and at b-2 (mm), Za = 105.4
(Ω), L-0.48 (dB/m), which is significantly improved.

次に本発明によるマイクロ波線路を固体増幅器に応用し
た場合について第3図及び第4図を参照して説明する。
Next, a case where the microwave line according to the present invention is applied to a solid-state amplifier will be explained with reference to FIGS. 3 and 4.

同図に於いて7は基板で、この基板7の上面に入力信号
を伝送するためのマイクロストリップ線路7aが形成さ
れている。このマイクロストリップ線路7aは、上記開
放型リッジ線路6で構成した入力線路10の突起5の中
間の切欠き部8に接続され、基板7の裏面導体9は底面
4に接続されている。切欠き部8の高さはインピーダン
ス変換に関係しており、この場合にはマイクロストリッ
プ線路7allが低インピーダンスである。また、導体
のスタブ11.12は、入力線路10とGaAs (ガ
リュームひ素)FETモジュール15の入力側の整合を
取るためのもので、突起5に設けられたそれぞれの孔1
3.14に貫通され、静電容量が調節できるようになっ
ている。また、上記FETモジュール15ニは、GaA
SFETチップ16が取付けられている。そして、この
FETチップ16のゲート電極リード線17は、突起5
の右端に取付けたチップコンデンサ18に接続され、同
時にバイアス端子19とも接続されている。また、FE
Tチップ16のドレイン電極のリード線29も同様に、
出力線路20の突起24の左端に取付けたチップコンデ
ンサ21に接続され、同時にバイアス端子22とも接続
されている。上記FETチップ16のソース電極は接地
されている。また、上記出力線路20の突起24に沿っ
て導体のスリーブ23が装着されている。このスリーブ
23は、出力線路20の特性インピーダンスを静電容量
付加により部分的に変化させるもので、その長さを出力
線路20の導波管に相当する管内波長の4分の1にする
ことで、インピーダンス変換器として動作させるもので
ある。
In the figure, 7 is a substrate, and a microstrip line 7a for transmitting input signals is formed on the upper surface of this substrate 7. The microstrip line 7a is connected to the notch 8 in the middle of the protrusion 5 of the input line 10 constituted by the open ridge line 6, and the back conductor 9 of the substrate 7 is connected to the bottom surface 4. The height of the notch 8 is related to impedance conversion, and in this case, the microstrip line 7all has a low impedance. Further, the conductor stubs 11 and 12 are for matching the input line 10 and the input side of the GaAs (gallium arsenide) FET module 15, and are for each hole 1 provided in the protrusion 5.
3.14 is penetrated so that the capacitance can be adjusted. Further, the FET module 15d is made of GaA
A SFET chip 16 is attached. The gate electrode lead wire 17 of this FET chip 16 is connected to the protrusion 5.
It is connected to a chip capacitor 18 attached to the right end of the terminal, and is also connected to a bias terminal 19 at the same time. Also, FE
Similarly, the lead wire 29 of the drain electrode of the T-chip 16 is
It is connected to the chip capacitor 21 attached to the left end of the protrusion 24 of the output line 20, and is also connected to the bias terminal 22 at the same time. The source electrode of the FET chip 16 is grounded. Further, a conductor sleeve 23 is attached along the protrusion 24 of the output line 20. This sleeve 23 partially changes the characteristic impedance of the output line 20 by adding capacitance, and by making the length of the sleeve 23 one quarter of the wavelength in the pipe corresponding to the waveguide of the output line 20. , which operates as an impedance converter.

しかして、上記FETチップ16には直流バイアスを与
え、マイクロ波信号の増幅動作を行なわせる。
Thus, a DC bias is applied to the FET chip 16 to perform amplification of the microwave signal.

そして、このFETチップ16により増幅されたマイク
ロ波信号は、出力線路20の底面25に設けた凹型のス
ロット26を介して裏面の導波管出力端子27から導波
管30に取出される。上記スロット26の突起部の間隙
28は、長さが4分の1管内波長で出力線路20の特性
インピーダンスを導波管出力端子27の特性インピーダ
ンスに変換する役割をもっている。
Then, the microwave signal amplified by this FET chip 16 is taken out to the waveguide 30 from the waveguide output terminal 27 on the back surface through a concave slot 26 provided on the bottom surface 25 of the output line 20. The gap 28 between the projections of the slot 26 has a length of 1/4 of the tube wavelength and has the role of converting the characteristic impedance of the output line 20 into the characteristic impedance of the waveguide output terminal 27.

上記のように開放型リッジ線路6を用いて構成された固
体増幅器は、回路損失が少なく高利得高出力が得られ、
調整も容易であるなど多くの利点を有している。また、
上記実施例で示したように本発明による開放型リッジ線
路6は、従来のマイクロストリップ線路や導波管とも容
易に相互接続でき、高い汎用性が得られるものである。
The solid-state amplifier configured using the open ridge line 6 as described above has low circuit loss, high gain, and high output.
It has many advantages such as easy adjustment. Also,
As shown in the above embodiments, the open ridge line 6 according to the present invention can be easily interconnected with conventional microstrip lines and waveguides, providing high versatility.

なお、上記実施例では、スタブ11.12及びスリーブ
23を金属導体により構成したが、誘電体を用いて構成
しても同様に静電容l装荷の効果が得られる。
In the above embodiment, the stubs 11, 12 and the sleeve 23 are made of metal conductors, but even if they are made of a dielectric material, the same effect of capacitance l loading can be obtained.

[発明の効果〕 以上詳記したように本発明によれば、伝送損失が少なく
、半導体素子や異種の線路との相互接続が容易であると
共に回路調整も容易な、マイクロ波集積回路に適した線
路を提供することができ、高性能なマイクロ波線路及び
回路装置を実現し得るものである。また、本発明による
線路装置は、胴体表面側からみて解放形の、加工の容易
な構造であるにも拘らず、電搬する電磁波を底部に閉じ
込めて電搬することができる。
[Effects of the Invention] As detailed above, the present invention provides a microwave integrated circuit suitable for microwave integrated circuits, which has low transmission loss, is easy to interconnect with semiconductor elements and different types of lines, and is easy to adjust the circuit. It is possible to provide a high-performance microwave line and circuit device. Further, although the line device according to the present invention has an open structure when viewed from the surface of the body and is easy to process, it is possible to confine electromagnetic waves to the bottom and propagate the electromagnetic waves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるマイクロ波線路の基本
構造を示す斜視図、第2図は同実施例の動作説明図、第
呻図は本発明を適用した固体増幅ヰ 器の実施例を示す平面図、第今図は同固体増幅器の断面
図である。 1・・・導体板、2・・・表面、3・・・溝、4・・・
底面、5・・・突起、6・・・開放型リッジ線路、7・
・・基板、7a・・・マイクロストリップ線路、10・
・・入力線路、11゜12・・・スタブ、15・GaA
sFETモジュール、16・・・GaAsFETチップ
、18・・・チップコンデンサ、19、22・・・バイ
アス端子、20・・・出力線路、23・・・スリーブ、
26・・・スロット、27・・・導波管出力端子、30
・・・導波管。 出願人代理人 弁理士 鈴 江 武 彦第1図    
  第2図 第3図 第4図 手続補正書 昭和 6争、6.24 日
Fig. 1 is a perspective view showing the basic structure of a microwave line according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of the same embodiment, and Fig. 2 is an embodiment of a solid-state amplifier to which the present invention is applied. This is a plan view showing the same solid-state amplifier, and the second figure is a cross-sectional view of the same solid-state amplifier. 1... Conductor plate, 2... Surface, 3... Groove, 4...
Bottom surface, 5... Protrusion, 6... Open ridge line, 7.
... Board, 7a... Microstrip line, 10.
...Input line, 11゜12...Stub, 15.GaA
sFET module, 16...GaAsFET chip, 18...chip capacitor, 19, 22...bias terminal, 20...output line, 23...sleeve,
26... Slot, 27... Waveguide output terminal, 30
...Waveguide. Applicant's agent Patent attorney Takehiko Suzue Figure 1
Figure 2 Figure 3 Figure 4 Procedural amendments Showa 6 dispute, June 24th

Claims (5)

【特許請求の範囲】[Claims] (1)導体表面に設けられたマイクロ波伝送用の溝と、
この溝の中央部に沿って設けられた伝送信号波長の4分
の1以上で且つ上記導体表面以下の高さを有する突起と
を具備したことを特徴とするマイクロ波線路装置。
(1) A groove for microwave transmission provided on the conductor surface,
A microwave line device characterized by comprising a protrusion provided along the central portion of the groove and having a height of one-fourth or more of the transmission signal wavelength and less than or equal to the surface of the conductor.
(2)上記溝の上部開口部の横幅を半波長より小さく設
定したことを特徴とする特許請求の範囲第1項記載のマ
イクロ波線路装置。
(2) The microwave line device according to claim 1, wherein the width of the upper opening of the groove is set to be smaller than half a wavelength.
(3)上記の溝内設けられたの突起部にマイクロ波半導
体素子のリード線を接続してなる特許請求の範囲第1項
記載のマイクロ波線路装置。
(3) The microwave line device according to claim 1, wherein a lead wire of a microwave semiconductor element is connected to the protrusion provided in the groove.
(4)上記溝内の突起部に近接して局部的に線路の静電
容量を増加させるスタブを設け、インピーダンス整合機
能を付与したことを特徴とする特許請求の範囲第1項記
載のマイクロ波線路装置。
(4) The microwave line according to claim 1, characterized in that a stub is provided close to the protrusion in the groove to locally increase the capacitance of the line, thereby imparting an impedance matching function. road device.
(5)上記溝内の突起部に沿って、導体または誘電体の
スリーブを装着することにより、線路の特性インピーダ
ンスを変化させることを特徴とする特許請求の範囲第1
項記載のマイクロ波線路装置。
(5) The characteristic impedance of the line is changed by installing a conductor or dielectric sleeve along the protrusion in the groove.
Microwave line device as described in .
JP62117073A 1987-05-15 1987-05-15 Microwave line equipment Pending JPS63283202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62117073A JPS63283202A (en) 1987-05-15 1987-05-15 Microwave line equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62117073A JPS63283202A (en) 1987-05-15 1987-05-15 Microwave line equipment

Publications (1)

Publication Number Publication Date
JPS63283202A true JPS63283202A (en) 1988-11-21

Family

ID=14702740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62117073A Pending JPS63283202A (en) 1987-05-15 1987-05-15 Microwave line equipment

Country Status (1)

Country Link
JP (1) JPS63283202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109197A (en) * 2006-10-23 2008-05-08 Japan Radio Co Ltd Ridge waveguide center feed slot array antenna
JP4816726B2 (en) * 2006-03-31 2011-11-16 日本電気株式会社 Waveguide coupler
WO2013027268A1 (en) * 2011-08-23 2013-02-28 株式会社日立製作所 Electromagnetic wave propagation medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816726B2 (en) * 2006-03-31 2011-11-16 日本電気株式会社 Waveguide coupler
JP2008109197A (en) * 2006-10-23 2008-05-08 Japan Radio Co Ltd Ridge waveguide center feed slot array antenna
JP4531033B2 (en) * 2006-10-23 2010-08-25 日本無線株式会社 Ridge waveguide center-fed slot array antenna
WO2013027268A1 (en) * 2011-08-23 2013-02-28 株式会社日立製作所 Electromagnetic wave propagation medium

Similar Documents

Publication Publication Date Title
US4679249A (en) Waveguide-to-microstrip line coupling arrangement and a frequency converter having the coupling arrangement
JP3515811B2 (en) Impedance matching circuit
WO2023060879A1 (en) Broadband microwave power amplifier
US8131246B2 (en) High-frequency circuit having filtering function and reception device
JPS6349402B2 (en)
JP3169972B2 (en) Waveguide-microstrip line converter
JP3444318B2 (en) NRD guide device
JPS63283202A (en) Microwave line equipment
JP3175876B2 (en) Impedance transformer
JP3430060B2 (en) High frequency semiconductor device
JPH07226609A (en) Directional coupler
JPH11122009A (en) Impedance converter
JPH03211870A (en) Monolithic microwave integrated circuit
JPH0376301A (en) Impedance conversion circuit
JPS5846570Y2 (en) Ultra high frequency transistor amplifier circuit
JPH0155773B2 (en)
JP2001044717A (en) Microwave semiconductor device
JP3042063B2 (en) Microwave circuit
JPS6141164B2 (en)
JPH09260976A (en) Field effect transistor amplifier
JPS5849042B2 (en) Microwave transistor circuit device
JP2004349741A (en) Nrd guide converter
JPH05259709A (en) Matching circuit using high specific dielectric constant board
JPH04288714A (en) Bias circuit for high output amplifier
JP2001185919A (en) Microwave circuit