JPS63283078A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS63283078A
JPS63283078A JP62118003A JP11800387A JPS63283078A JP S63283078 A JPS63283078 A JP S63283078A JP 62118003 A JP62118003 A JP 62118003A JP 11800387 A JP11800387 A JP 11800387A JP S63283078 A JPS63283078 A JP S63283078A
Authority
JP
Japan
Prior art keywords
light
receiving surface
surface electrode
semiconductor film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62118003A
Other languages
Japanese (ja)
Other versions
JP2680577B2 (en
Inventor
Masayuki Iwamoto
岩本 正幸
Koji Minami
浩二 南
Kaneo Watanabe
渡邉 金雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62118003A priority Critical patent/JP2680577B2/en
Publication of JPS63283078A publication Critical patent/JPS63283078A/en
Application granted granted Critical
Publication of JP2680577B2 publication Critical patent/JP2680577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To minimize a drop in an output voltage due to a reduction in the potential energy by a method wherein a photodetecting face electrode and a semiconductor film which are faced by sandwiching an insulating film are brought into partially direct contact with each other. CONSTITUTION:A photodetecting face electrode 1, a light-transmitting insulating film 2, a semiconductor film 3 and a rear electrode 4 are arranged in succession from the light-incident side on one main face of a substrate 5; the photodetecting face electrode 1 and the semiconductor film 3 which are faced by sandwiching the insulating film 2 are brought into partially direct contact with each other via through holes 6. By this setup, an electric surrent flows in such a way that it is concentrated on partially direct contact parts of the photodetecting face electrode 1 and the semiconductor film 3; accordingly, although the potential energy is reduced locally at the direct contact parts, a defect level is filled by a concentrated carrier; it is possible to minimize a drop in an output voltage due to a reduction in the potential energy and to reduce a series resistance component.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は、太陽電池や光センサ等に利用される光起電力
装置に関する0 (ロ) 従来の技術 薄嗅状の光電変換素子音用いた光起電力装置の昨型例が
特公昭53−37718号公報に開示されている。第1
図は、斯る先行技術に開示された光起電力装置を示し、
光入射側からSnO2、ITO等の透光性導電酸化物(
TCO)の受光面電極中、pn接合或いはpln 接合
等の半導体接合?備えた非晶質シリコンを主体とする半
導体膜13+及びA1等の金属層を含む背面電極141
が順次積層配置されている。特開昭57−95677号
公報に開示された光起電力装置は、上記半導体接合を備
えた半導体II&!+31において、光入射側の受光面
電極(11に接して配置されるp型或いはn型不純物層
として背面側の主に光電変換動作する層に較べ光学的バ
ンドギヤ、・Iプの広い非晶質シリコンカーバイド層を
用い、斯る層での光吸収を減じる所謂窓効果を得る構造
となっている。
[Detailed Description of the Invention] A) Industrial Application Field The present invention relates to photovoltaic devices used in solar cells, optical sensors, etc. A recent example of a photovoltaic device is disclosed in Japanese Patent Publication No. 53-37718. 1st
The figure shows a photovoltaic device disclosed in such prior art,
Transparent conductive oxides such as SnO2 and ITO (
Semiconductor junction such as pn junction or pln junction in the light receiving surface electrode of TCO)? A back electrode 141 including a semiconductor film 13+ mainly made of amorphous silicon and a metal layer such as A1.
are arranged in a stacked manner. The photovoltaic device disclosed in Japanese Unexamined Patent Publication No. 57-95677 is a semiconductor II &! equipped with the above-mentioned semiconductor junction. +31, the light receiving surface electrode (11) on the light incident side is a p-type or n-type impurity layer disposed in contact with the optical band gear, and an amorphous material with a wide Ip compared to the layer on the back side that mainly performs photoelectric conversion. The structure uses a silicon carbide layer to obtain a so-called window effect that reduces light absorption in such a layer.

然し乍ら、これら光起電力装置にあっては、受光面電極
と導電型不純物層との界面に存在する多数の欠陥のため
に、界面付近のポテンシャル・エネルギが低下し、光電
変換特性における出力電圧全減少せしめる原因となって
いた。斯る出力電圧の減少?防ぐ方策として、導電型不
純物層における導電型決定不純物のドープ量全多くしへ
ビードープとしたり、また受光面電極との界面に絶縁物
を配挿する構造が試みられた。
However, in these photovoltaic devices, due to the large number of defects existing at the interface between the light-receiving surface electrode and the conductive impurity layer, the potential energy near the interface decreases, and the total output voltage in the photoelectric conversion characteristics decreases. This was the cause of the decrease. Such a decrease in output voltage? As measures to prevent this, attempts have been made to increase the total amount of doping of the conductivity type determining impurity in the conductivity type impurity layer, making it heavy doped, and to provide a structure in which an insulator is placed at the interface with the light-receiving surface electrode.

ところが、斯る構造によれば、ヘビードープとすると光
吸収量が増大するために、窓層としての作用が損なわれ
る結果、出力電流が減少し、また界面絶Rnは直列抵抗
成分全形成して電力損失の原因となる、 l/i  発明が解決しようとする問題点本発明は上述
の如く光吸収量の増大による出力電流の大幅な減少や、
直列抵抗成分による電力損失を実質的に招くことなく受
光面電極と半導体験との界面におけるポテンシャルエネ
ルギの低下?解決しようとするものである□ (2)間9点全解決するための手段 本発明光起電力装置は上記問題点解決すべく、光入射側
から受光面電極、絶縁物、半導体接合金偏えた半導体験
及び背面電極全順次配置すると共に、上記絶縁膜全挾ん
で対向する受光面電極と半導体−全部分的に直接当接さ
せたことを特徴とする。
However, in such a structure, when heavily doped, the amount of light absorption increases, which impairs its function as a window layer, resulting in a decrease in output current, and the interface disconnection Rn results in the formation of all series resistance components, resulting in a loss of power. Problems to be Solved by the Invention As mentioned above, the present invention solves the problem of a significant decrease in output current due to an increase in the amount of light absorption,
Reducing the potential energy at the interface between the light-receiving surface electrode and the semiconductor layer without substantially incurring power loss due to the series resistance component? □ (2) Means for solving all 9 points In order to solve the above problems, the photovoltaic device of the present invention has a light-receiving surface electrode, an insulator, and a semiconductor bonded metal which are biased from the light incident side. The semiconductor device is characterized in that the semiconductor layer and the back electrode are all arranged in sequence, and the semiconductor layer is partially brought into direct contact with the light-receiving surface electrode that faces across the entirety of the insulating film.

(ホ)作 用 上述の如く絶縁[r挾んで対向する受光面電極と半導体
1111部分的に直接当接させたことによって、電流は
斯る受光面1!極と半導体装の部分的な直接当接部に集
中して流れる。
(e) Function As described above, by directly bringing the semiconductor 1111 into direct contact with the light-receiving surface electrodes that face each other with insulation [r] in between, the current flows through the light-receiving surface 1! The flow is concentrated in the partial direct contact area between the pole and the semiconductor device.

(へ)実施例 第1図は本発明光起電力装置の一実施例全示し、光入射
側から、S n O2、ITO等のTcoからなる受光
面電極(11と、シリコンナイトライド等の透光性絶縁
11j(2)と、半導体接合金偏えた非晶質シリコン全
主体とする半導体膜13!と、A1等の金属層を含む背
面電極14+i支持体として作用する込光性且つ絶縁性
の例えばガラスからなる基板15+の一主面に順次配置
すると共に、上記絶縁114i% +21 i挾んで対
向する受光面電極111と半導体験131に部分的に直
接当接させるべく上記絶縁1(2)に微小なスルーホー
ル16+161・・・が離散的に分散して穿たれている
〇例えばその具体例全説明すると、基板t5+の一主面
1csno2の受光面電極(11會約5000A熱CV
D法で形成し、その受光面電極11)上にシリコンナイ
トライドの絶縁物121 全豹300 A S IH4
とNH3f主原料ガスとする高周波プラズマCVD法に
より堆積する。このときの形成条件に、SiSiH42
0SCCNHs40SCCM、基板温度250 ’c、
反応ガス圧力0.5Torrである0次にこの絶縁物1
21にフォトリソグラフィ法により、直径100〜20
0Aのスルーホー7L/(5116+・・・ゲ、約30
0OAの間隔を隔てて開孔率、即ち有効受光面積に対す
るスルーホール16!161・・・の総面積が占める割
合が約01〜596となるように穿つOそして、半導体
II 131として、p型非晶質シリコンカーバイド層
(3p)、1型非晶質シリコン層(31)、及びn型微
結晶シリコン層(3n)k、それぞれ150X、5oo
oX、400χ、SiH4を主原料ガスとし、p型層(
3p)にはB2H6及びCH4’i、n型層(3n)に
tiPH3に添加シタ高周波プラズマCVD法により形
成する。従って、半導体膜13Iのp型層(3p)は絶
縁物121中に穿たれたスルーホール(6i161・・
・全貫通して部分的に受光面電極tl+と直接当接する
ことになる)最後に、背面電極14+としてAlv5o
ooX真空蒸着により形成する。
Embodiment Fig. 1 shows an entire embodiment of the photovoltaic device of the present invention. A photoinsulating layer 11j (2), a semiconductor film 13 consisting entirely of amorphous silicon with semiconductor bonding gold, and a back electrode 14+i containing a metal layer such as A1, which is a light-transmitting and insulating layer that acts as a support. For example, they are sequentially arranged on one main surface of the substrate 15+ made of glass, and the insulation 1(2) is placed in direct contact with the light-receiving surface electrode 111 and the semiconductor layer 131, which face each other with the insulation 114i% +21i in between. Minute through-holes 16+161... are drilled in a discrete manner.For example, to explain the complete example, a light-receiving surface electrode on one main surface 1csno2 of the substrate t5+ (11 times approximately 5000A thermal CV
A silicon nitride insulator 121 is formed by the D method, and a silicon nitride insulator 121 is formed on the light receiving surface electrode 11).
The film is deposited by high-frequency plasma CVD using NH3f and NH3f as main raw material gases. At this time, SiSiH42
0SCCNHs40SCCM, substrate temperature 250'c,
This insulator 1 of zero order with a reaction gas pressure of 0.5 Torr
21 with a diameter of 100 to 20 mm by photolithography method.
0A through-hole 7L/(5116+...ge, approx. 30
The through holes 16!161... are drilled at intervals of 0OA so that the aperture ratio, that is, the ratio of the total area of the through holes 16 to the effective light receiving area is about 01 to 596. Crystalline silicon carbide layer (3p), type 1 amorphous silicon layer (31), and n-type microcrystalline silicon layer (3n)k, 150X, 5oo, respectively
oX, 400χ, SiH4 as main raw material gas, p-type layer (
3p) is formed by B2H6 and CH4'i, and the n-type layer (3n) is added to TiPH3 by high frequency plasma CVD. Therefore, the p-type layer (3p) of the semiconductor film 13I has through holes (6i161...) drilled in the insulator 121.
・Finally, Alv5o is used as the back electrode 14+.
Formed by ooX vacuum deposition.

第2図実線は斯る構成の光起電力装置に対しAM−1,
100m W/cm 、の疑似太陽光を輻箔するソーラ
シュミレータによるV−I特性を示している。破線の比
較例1は本発明実施例構造からシリコンナイトライドの
絶縁物121 ’に除去した構造の光起電力装置のV−
I特性であり、また一点鎖線の比較例2は絶縁物(2)
に有するもののスルーホール+61ihl・・・が穿た
れていない構造の光起電力装置のV−I特性である。尚
、本発明実施例乃至比較例の構造は上記以外同一構成で
ある。
The solid line in Figure 2 indicates the AM-1,
It shows the VI characteristics obtained by a solar simulator that emits simulated sunlight of 100 mW/cm. Comparative Example 1 indicated by the broken line shows the V- of a photovoltaic device having a structure in which silicon nitride insulator 121' is removed from the structure of the embodiment of the present invention.
Comparative Example 2 indicated by the dashed line is an insulator (2).
This is the VI characteristic of a photovoltaic device having a structure in which the through holes +61ihl... are not drilled. The structures of the embodiments of the present invention to comparative examples are the same except for the above.

このように本発明構造の光起電力装置は、比較例1に比
して出力電圧が向上し光電変換効率が9゜596から1
1.5%に上昇したり一方、比較例2と比較すると、絶
縁物121に受光面電極巾と半導体膜13Iとの間に配
挿したにも拘らず出力電流の低下金招かない。尚、比較
例2の光電変換効率は2.6%であった0 第3図は開孔率と光電変換効率の関係?示している□開
孔率は、有効受光面積に対するスル−ホール(〔;1(
6I・・・の総面積が占める割合であり、半導体装1;
引が受光面電極11)と直接当接する割合と等しい。
As described above, the photovoltaic device having the structure of the present invention has an improved output voltage compared to Comparative Example 1, and a photoelectric conversion efficiency of 9°596 to 1.
On the other hand, when compared with Comparative Example 2, the output current does not decrease even though the insulator 121 is disposed between the light-receiving surface electrode width and the semiconductor film 13I. In addition, the photoelectric conversion efficiency of Comparative Example 2 was 2.6%.0 Figure 3 shows the relationship between the aperture ratio and photoelectric conversion efficiency? The □ open area ratio shown is the through hole ([;1(
6I... is the percentage occupied by the total area of semiconductor device 1;
This is equal to the rate at which the contact surface directly contacts the light-receiving surface electrode 11).

開孔率096は絶縁祷121にスルーホール+6116
1・・・かないことを意味し、比較例2に相当する。一
方、開孔率100%は絶縁@121が存在しないこと全
意味し、比較例1に相当する^今、比較例の光電変換効
率は、比較例1が9.5%、比較例2が2.6%であっ
た0従って、比較例より高い光電変換効率を得るための
開化率は、0.1〜5%、好適には01〜2%、より好
適には0.25〜196であることが判る。
Open area ratio 096 is insulation 121 through hole +6116
1: means not present, and corresponds to Comparative Example 2. On the other hand, a porosity of 100% means that there is no insulation @121, and corresponds to Comparative Example 1. Now, the photoelectric conversion efficiency of Comparative Example 1 is 9.5%, and Comparative Example 2 is 2. Therefore, the aperture ratio for obtaining a photoelectric conversion efficiency higher than that of the comparative example is 0.1 to 5%, preferably 01 to 2%, and more preferably 0.25 to 196. I understand that.

第4図は本発明光起電力装置の他の実施例を示している
^即ち、斯る実施例の特徴は、受光面電極11)として
絶縁物121及び半導体膜131が被着される側の面を
粗面化した所謂テクスチュア構造とし、当該テクスチュ
ア構造を利用して絶縁@121に直接スルーホール1f
)l161・・・全形成したところにある。上記受光面
電極中のテクスチュア構造は、特開昭61−28831
4号公報のように受光面電極(しを被着後、当該受光面
電極中のエツチングレートの異方性を利用した工・ンチ
ングによるもの、或いは受光面電極11)を構成するT
COとして粒径の大きい例えば特公昭62−7716号
公報のように1000AJI上のものを用いて直接粗面
化する方法等がある。本実施例では熱CVD法により平
均粒径約3000A頃上部での摸厚約7oooX、底部
の噂厚約300OA、即ち高低差約400OAのSnO
2からなる受光面電極+11i形成した。引き続きテク
スチュア構造の受光面電極(し上に、ノンドープな非晶
質シリコンカーバイドからなる絶縁[121’!r高周
波プラズマCVD法により形成した。
FIG. 4 shows another embodiment of the photovoltaic device of the present invention. That is, the feature of this embodiment is that the insulating material 121 and the semiconductor film 131 are coated as the light-receiving surface electrode 11). The surface has a so-called textured structure with a roughened surface, and the through hole 1f is directly connected to the insulation @121 using the textured structure.
)l161...It is completely formed. The texture structure in the above light-receiving surface electrode is disclosed in Japanese Patent Application Laid-Open No. 61-28831.
As in Publication No. 4, the T forming the light-receiving surface electrode (by etching using the anisotropy of the etching rate in the light-receiving surface electrode after deposition, or the light-receiving surface electrode 11)
There is a method of directly roughening the surface using CO having a large particle size, for example, one having a diameter of 1000 AJI or more as disclosed in Japanese Patent Publication No. 62-7716. In this example, the thermal CVD method was used to produce SnO with an average grain size of about 3000A, a sample thickness of about 7oooX at the top, a rough thickness of about 300OA at the bottom, that is, a height difference of about 400OA.
A light-receiving surface electrode +11i consisting of 2 was formed. Subsequently, an insulating layer made of non-doped amorphous silicon carbide was formed on the textured light-receiving surface electrode by high-frequency plasma CVD.

このときの形成条件は、主原料ガスとし−てSiH4及
びC2H4會用い、SSiH420SCC,CC2H4
1005CC、基板温度40で、反応圧力2’rorr
である。この形成条件は、半導体として使用される非晶
質シリコンカーバイドに比して低温形成で、価電子制御
用のB2H6、PH3等のガス?使用しない。斯る形成
条件により得られる非晶質シリコンカーバイドの絶縁喚
tz+ue中の5l−H2結合量が7XIQ”濯−3と
多く、その結果ステ・ツブカバレッジが悪くなり、テク
スチュア構造の受光面電極1]+の底部にはほとんど成
鞠されす、例えば預上部に約10OAの膿全成騎したと
き事実上10%以下の開孔率を持った絶縁駿121全直
接堆積することができる。その後、第1図の実施例と同
様にp型非晶質シリコンカーバイド層(3p)、1型非
晶質シリコン層(31)、n型R結晶シリコン!(3n
)のp1n重合金備えた半導体膜(3(と、A1の背面
電極(4)を順次積層して光起電力装置全完成させる。
The formation conditions at this time were to use SiH4 and C2H4 as the main raw material gas, SSiH420SCC, CC2H4
1005CC, substrate temperature 40, reaction pressure 2'rorr
It is. The formation conditions are lower temperature formation than amorphous silicon carbide used as a semiconductor, and gases such as B2H6 and PH3 for controlling valence electrons. do not use. The amount of 5l-H2 bonded in the insulation layer of amorphous silicon carbide obtained under such formation conditions is as high as 7XIQ'', resulting in poor step-to-tube coverage, and the textured light-receiving surface electrode 1] For example, when about 10 OA of pus is fully grown on the deposited part, the insulation layer 121 with a porosity of less than 10% can be directly deposited. As in the embodiment shown in Figure 1, a p-type amorphous silicon carbide layer (3p), a 1-type amorphous silicon layer (31), and an n-type R crystalline silicon! (3n) are used.
) and the back electrode (4) of A1 are sequentially laminated to complete the entire photovoltaic device.

そして、斯る光起電力装置に対しへM−1,100mW
/需2の疑似太陽光線を照射したところ、12%の光電
変換効率を得た。尚、絶縁11(2)の存在しないテク
スチュア構造のみによる光起電力装置の光電変換効率に
105%であり、従って本発明の実施により1.5%の
光電変換効率の向上が図れたり 第5図は本発明光起電力装置の更に他の実施例を示して
いる0斯る実施例の特徴は絶縁物121のスルーホール
+61)61・・・全受光面電極INが貫通し半導体装
(31と直接当接したところにある0即ち、第1図及び
第4図の実施例は何れも受光面電極中全形成後、絶縁膜
12;及び半導体1f31に順次積層していた関係で、
絶縁@121のスルーホー/l/+61161・・・中
には半導体装131が充填されていた。それに対し本実
施例は、背面電極14I’!に基板側に形成するか或い
は当該背面電極14!が支持体としての基板を兼ねるこ
とにより、形成順序が逆転したために、最後に形成され
る受光面電極Il+がヌル−ホーzL/l6161・・
・中に充填され、半導体装13Iと部分的に直接当接す
ることになる0 (ト)発明の効果 本発明光起電力装置は以上の説明から明らかな如く、絶
縁111−Pんで対向する受光面電極と半導体[一部分
的に直接当接させたことに工って、電流は斯る受光面電
極と半導体装の部分的な直接当接部に集中して流れるの
で、直接当接部での局所的なポテンシャルエネルギの低
下を招くものの、集中したキャリアにより欠陥準位が埋
められるために、斯るポテンシャルエネルギの低下によ
る出力電圧の減少を最小限に抑圧し、直列抵抗成分の低
減が図れる結果、直列抵抗成分による電力損失を縮小す
ることができ、光電変換効率の上昇を達成し得る。
And for such a photovoltaic device M-1,100mW
/ When irradiated with simulated sunlight of Demand 2, a photoelectric conversion efficiency of 12% was obtained. It should be noted that the photoelectric conversion efficiency of a photovoltaic device with only a textured structure without the presence of insulation 11(2) is 105%, and therefore, by implementing the present invention, the photoelectric conversion efficiency can be improved by 1.5%. 2 shows still another embodiment of the photovoltaic device of the present invention. The feature of this embodiment is that the entire light-receiving surface electrode IN passes through the through hole of the insulator 121 +61) and the semiconductor device (31) In other words, in the embodiments shown in FIGS. 1 and 4, the insulating film 12; and the semiconductor 1f31 were sequentially laminated after the light-receiving surface electrode was completely formed.
Through hole /l/+61161 of insulation@121... semiconductor device 131 was filled inside. In contrast, in this embodiment, the back electrode 14I'! or the back electrode 14! Since the formation order is reversed due to the substrate also serving as a support, the light-receiving surface electrode Il+ formed last is null-ho zL/l6161...
・The photovoltaic device of the present invention has a light-receiving surface that faces the semiconductor device 111-P with the insulation 111-P, as is clear from the above description. The electrode and the semiconductor [Due to the fact that the electrode and the semiconductor device are in partial direct contact, the current flows in a concentrated manner in the partial direct contact between the light-receiving surface electrode and the semiconductor device. However, since the defect levels are filled by concentrated carriers, the decrease in output voltage due to such a decrease in potential energy can be suppressed to a minimum, and the series resistance component can be reduced. Power loss due to series resistance components can be reduced, and photoelectric conversion efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光起電力装置の一実施例を示す断面図、
第2図は出力電圧−電流特性図、第3図は開孔率と光電
変換効率との関係を示す曲線図、第4図は他の実施例を
示す断面図、第5図は更に他の実施例を示す断面図、第
6図は従来例を示す断面図である。 11)・・・受光面電極、+21・・・絶縁−,131
・・・半導体襖、(41・・・背面電極、(6I・・・
ス/L/−ホール。
FIG. 1 is a sectional view showing an embodiment of the photovoltaic device of the present invention;
Fig. 2 is an output voltage-current characteristic diagram, Fig. 3 is a curve diagram showing the relationship between the aperture ratio and photoelectric conversion efficiency, Fig. 4 is a sectional view showing another example, and Fig. 5 is a further example. A sectional view showing the embodiment, and FIG. 6 is a sectional view showing a conventional example. 11)... Light receiving surface electrode, +21... Insulation -, 131
... Semiconductor sliding door, (41... Back electrode, (6I...
S/L/-Hall.

Claims (3)

【特許請求の範囲】[Claims] (1)光入射側から受光面電極、絶縁膜、半導体接合を
備えた半導体膜及び背面電極を順次配置すると共に、上
記絶縁膜を挾んで対向する受光面電極と半導体膜を部分
的に直接当接させたことを特徴とする光起電力装置。
(1) A light-receiving surface electrode, an insulating film, a semiconductor film with a semiconductor junction, and a back electrode are sequentially arranged from the light incident side, and the light-receiving surface electrode and semiconductor film facing each other with the insulating film in between are partially directly contacted. A photovoltaic device characterized by being brought into contact with each other.
(2)上記受光面電極の絶縁膜側界面は凹凸であること
を特徴とした特許請求の範囲第1項記載の光起電力装置
(2) The photovoltaic device according to claim 1, wherein the interface on the insulating film side of the light-receiving surface electrode is uneven.
(3)上記絶縁膜及び半導体膜はシリコン化合物ガスを
主原料ガスとした気相成長法により形成されることを特
徴とした特許請求の範囲第1項若しくは第2項記載の光
起電力装置。
(3) The photovoltaic device according to claim 1 or 2, wherein the insulating film and the semiconductor film are formed by a vapor phase growth method using a silicon compound gas as a main raw material gas.
JP62118003A 1987-05-14 1987-05-14 Photovoltaic device Expired - Fee Related JP2680577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62118003A JP2680577B2 (en) 1987-05-14 1987-05-14 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62118003A JP2680577B2 (en) 1987-05-14 1987-05-14 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPS63283078A true JPS63283078A (en) 1988-11-18
JP2680577B2 JP2680577B2 (en) 1997-11-19

Family

ID=14725647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62118003A Expired - Fee Related JP2680577B2 (en) 1987-05-14 1987-05-14 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP2680577B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143569A (en) * 1988-11-25 1990-06-01 Agency Of Ind Science & Technol Photoelectric conversion element
JP4562220B2 (en) * 1999-06-22 2010-10-13 シャープ株式会社 Thin film solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079757U (en) * 1983-11-07 1985-06-03 京セラ株式会社 solar cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079757U (en) * 1983-11-07 1985-06-03 京セラ株式会社 solar cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143569A (en) * 1988-11-25 1990-06-01 Agency Of Ind Science & Technol Photoelectric conversion element
JP4562220B2 (en) * 1999-06-22 2010-10-13 シャープ株式会社 Thin film solar cell

Also Published As

Publication number Publication date
JP2680577B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US5730808A (en) Producing solar cells by surface preparation for accelerated nucleation of microcrystalline silicon on heterogeneous substrates
EP0062471A2 (en) Thin film solar cell
JPH05243596A (en) Manufacture of laminated type solar cell
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
JPH11354820A (en) Photoelectric conversion element and manufacture thereof
JP2008243830A (en) Silicon thin film, integrated solar cell, module, and methods of manufacturing the same
JP2001189478A (en) Semiconductor element and manufacturing method therefor
JP2002057359A (en) Laminated solar battery
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JP2010087520A (en) Heterojunction photovoltaic cell with dual doping and method of manufacturing the same
JPH11112011A (en) Manufacture of photovolatic element
JPH05299677A (en) Solar battery and its manufacture
JPS63283078A (en) Photovoltaic device
JPH0122991B2 (en)
JPH05275725A (en) Photovoltaic device and its manufacture
JPS58215083A (en) Hetero-junction photoelectric element and device therefor
JP2744680B2 (en) Manufacturing method of thin film solar cell
JP2632740B2 (en) Amorphous semiconductor solar cell
JP2000082831A (en) Photovoltaic device
JP2002222969A (en) Laminated solar battery
JP2000150935A (en) Photovoltaic element
JP3753556B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4124309B2 (en) Photovoltaic device manufacturing method
JP2675323B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees