JPS63283073A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPS63283073A
JPS63283073A JP11688287A JP11688287A JPS63283073A JP S63283073 A JPS63283073 A JP S63283073A JP 11688287 A JP11688287 A JP 11688287A JP 11688287 A JP11688287 A JP 11688287A JP S63283073 A JPS63283073 A JP S63283073A
Authority
JP
Japan
Prior art keywords
temperature
sensing element
groove
diaphragm
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11688287A
Other languages
Japanese (ja)
Inventor
Satoru Ohata
覚 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11688287A priority Critical patent/JPS63283073A/en
Publication of JPS63283073A publication Critical patent/JPS63283073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To suppress a mutual thermal interference between a piezoresistance element and a temperature-sensing element thanks to an action by a low thermal-conductivity part to reduce the thermal interference by a method wherein the low thermal- conductivity part is installed between a diaphragm part and the temperature-sensing element. CONSTITUTION:A groove 9 is formed at the rear surface of an Si substrate 1 between a diaphragm part 2 and a third-layer part 8 where a temperature-sensing element 7 is formed. Because the groove 9 functions as a low thermal-conductivity part, a thermal influence by the temperature-sensing element 7 as a heat source installed on the thick-layer part 8 to be remote from the groove 9 becomes small with reference to piezoresistance elements 3-6 which are installed on the surface of the diaphragm part 2 acting as a distortion-causing part. In addition, the groove functions in such a way that an influence by the heat generated at the distortion-causing part or by the distortion due to the impressed pressure is hardly transmitted to the temperature- sensing element 7 formed at the thick-layer part 7. Thanks to an action by the groove 9 to reduce a thermal interference a change in temperature at a zero point of a bridge constituted by the piezoresistance elements 3-6 does not cause any hysteresis; a characteristic corresponding to a change in the external temperature is obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体圧力センサに関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to semiconductor pressure sensors.

(従来の技術) 半導体薄片から成るダイアフラム内に形成された所定の
抵抗領域をピエゾ抵抗素子として使用する圧力センサに
、温度補償を行なうためにセンサ自身の温度を測定する
感温素子がダイアフラム周辺の肉厚部に一体化された複
合センサがこれまでに提案されている。
(Prior art) A pressure sensor uses a predetermined resistance area formed in a diaphragm made of a thin semiconductor piece as a piezoresistive element, and a temperature sensing element that measures the temperature of the sensor itself is installed around the diaphragm to perform temperature compensation. Composite sensors integrated into thick parts have been proposed so far.

上記ピエゾ抵抗に電流が消費する熱、感温素子を流れる
電流が消費する熱は、それぞれ半導体基板上に成る熱平
衡状態での等温分布を持つ。従来、熱源となるピエゾ抵
抗素子の配置は、それらでホイートストンブリッジを形
成させることを考慮してダイアフラムの周辺部に対称的
に4つ配置し、熱分布が均一になるようにしていた。
The heat consumed by the current flowing through the piezoresistor and the heat consumed by the current flowing through the temperature sensing element each have an isothermal distribution in a thermal equilibrium state on the semiconductor substrate. Conventionally, four piezoresistive elements serving as a heat source have been arranged symmetrically around the diaphragm in consideration of forming a Wheatstone bridge, thereby ensuring uniform heat distribution.

しかしながら、感温素子を有する複合センサの場合は、
感温素子の発生する熱が、対称配置されたピエゾ抵抗に
よって形成された熱分布を乱し、肉厚部に位置している
感温素子を熱源とした非対称な熱分布を持つようになる
。ピエス抵抗および感温素子の発生した熱は、主として
半導体圧力センサを囲む圧力伝達媒体を介して散逸する
。したがって、感温素子のピエゾ抵抗素子に対する非対
称配置によって各ピエゾ抵抗素子への熱影響が異なって
しまう。このため、特に周囲温度の変化に対して各ピエ
ゾ抵抗の温度変化のばらつきが大きくなり、温度補償の
補償域を逸脱する可能性があった。また、上記のピエゾ
抵抗により構成したホイートストンブリッジに電圧を印
加した後のゼロ点の時間的変化が、長時間継続する現象
も生じた。
However, in the case of a composite sensor with a temperature sensing element,
The heat generated by the temperature sensing element disturbs the heat distribution formed by the symmetrically arranged piezoresistors, resulting in an asymmetrical heat distribution with the temperature sensing element located in the thick part as the heat source. The heat generated by the Piece resistor and the temperature sensing element is dissipated primarily through the pressure transmission medium surrounding the semiconductor pressure sensor. Therefore, the thermal influence on each piezoresistive element differs due to the asymmetrical arrangement of the temperature sensing element with respect to the piezoresistive element. For this reason, the variation in temperature change of each piezoresistor becomes large, especially with respect to a change in ambient temperature, and there is a possibility that the piezoresistor deviates from the compensation range of temperature compensation. Furthermore, a phenomenon occurred in which the temporal change in the zero point after applying a voltage to the Wheatstone bridge constructed of the piezoresistors described above continued for a long time.

上記の事情に鑑み、感温素子や制御回路、信号処理回路
等がダイアフラム部の囲りの肉厚部に均等に分布するよ
うに配置を考慮したり、上記ダイアフラム部内のピエゾ
抵抗を一箇所に集め、熱的影響の均一性を保とうとした
集積化センサがあった。しかしながら、肉厚部への諸回
路の配置は、それぞれの回路素子によって発生する熱量
が異なったりして、完全な対称性を保持するのが困難と
なる。また、ピエゾ抵抗を一箇所に集めると、ピエゾ抵
抗の占める領域が、ダイアフラム部の広い領域の平均値
となり、最適位置に配置できなくなる結果、非線形な応
答となる欠点があった。
In view of the above circumstances, consideration should be given to the placement of temperature sensing elements, control circuits, signal processing circuits, etc. so that they are evenly distributed in the thick part surrounding the diaphragm, and piezoresistors in the diaphragm are placed in one place. There have been integrated sensors that have attempted to maintain uniformity of thermal effects. However, when arranging various circuits in the thick portion, it is difficult to maintain complete symmetry because the amount of heat generated by each circuit element differs. Furthermore, if the piezoresistors are gathered in one place, the area occupied by the piezoresistors becomes an average value over a wide area of the diaphragm portion, making it impossible to arrange them at optimal positions, resulting in a nonlinear response.

さらに、起歪部であるダイアフラム部で発生する圧力印
加時の応力は、肉厚部に配置された補償用センサや信号
処理回路等の素子にまで影響を与え、信頼性の高い補償
ができなかった。
Furthermore, the stress generated when pressure is applied to the diaphragm part, which is a strain-generating part, affects elements such as compensation sensors and signal processing circuits placed in the thick part, making it impossible to perform highly reliable compensation. Ta.

(発明が解決しようとする問題点) 上記のように、従来の素子配置構造の複合センサにおい
ては、起歪部のダイアフラムの板厚が薄くなると、感度
が高くなり、熱分布の不平衡や熱分布の安定までに長時
間を要することにより、ゼロ点温度特性が悪化し、ゼロ
点ドリフトやゼロ点温度誤差が半導体圧力センサの特性
に大きく影響するという問題があった。そこで本発明は
、前記のような諸問題を解消できて高感度で信頼性の高
い半導体圧力センサを提供することを目的とする。
(Problems to be Solved by the Invention) As mentioned above, in a conventional composite sensor with an element arrangement structure, as the thickness of the diaphragm in the strain-generating part becomes thinner, the sensitivity increases, causing imbalance in the heat distribution and Since it takes a long time for the distribution to become stable, the zero point temperature characteristics deteriorate, and there is a problem in that zero point drift and zero point temperature error greatly affect the characteristics of the semiconductor pressure sensor. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a highly sensitive and reliable semiconductor pressure sensor that can solve the above-mentioned problems.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の半導体圧力センサは、半導体基板のダイアフラ
ム部の表面にピエゾ抵抗が設けられるとともに前記半導
体基板の周辺肉厚部に感温素子が設けられ、前記ピエゾ
抵抗を有するダイアフラム部と感温素子との間に低熱伝
導率部が介在された構造に構成される。
(Means for Solving the Problems) The semiconductor pressure sensor of the present invention includes a piezoresistor provided on the surface of a diaphragm portion of a semiconductor substrate, and a temperature sensing element provided in a peripheral thick portion of the semiconductor substrate, The structure is such that a low thermal conductivity section is interposed between a diaphragm section having resistance and a temperature sensing element.

(作 用) 本発明の半導体圧力センサにおいては、ピエゾ抵抗を有
するダイアフラム部と感温素子との間に介在している低
熱伝導率部によって、前記ピエゾ抵抗と感温素子相互の
熱的干渉が抑制され、その結果ピエゾ抵抗に対する感温
素子の発熱の影響が低減され、圧力センサのゼロ点温度
誤差およびゼロ点ドリフトの問題が解消される。
(Function) In the semiconductor pressure sensor of the present invention, the low thermal conductivity portion interposed between the diaphragm portion having a piezoresistor and the temperature sensing element prevents mutual thermal interference between the piezoresistor and the temperature sensing element. As a result, the effect of heat generation of the temperature sensitive element on the piezoresistor is reduced, and the problems of zero point temperature error and zero point drift of the pressure sensor are eliminated.

(実施例) 以下、図面に示した実施例に基いて本発明の詳細な説明
する。本発明一実施例の半導体圧力センサを第1図(a
)、(b)に示す。第1図(a)は上面から見た透視平
面図で、第1図(b)は断面図である。
(Example) Hereinafter, the present invention will be described in detail based on the example shown in the drawings. A semiconductor pressure sensor according to an embodiment of the present invention is shown in FIG.
) and (b). FIG. 1(a) is a perspective plan view seen from above, and FIG. 1(b) is a sectional view.

n型シリコン基板(1)には下面側の凹部により薄肉に
形成された起歪部としてのダイアフラム部(2)が形成
され、ダイアフラム部(2)の上面側に4個のP型ピエ
ゾ抵抗(3)、(4)、(5)、(6)が形成されてい
る。ダイアフラム部(2)周辺の肉厚部(8)の上面に
npnトランジスタから成る感温素子(7)が形成され
、ダイアフラム部(2)と感温素子(7)の設けられて
いる肉厚部(8)との間にはシリコン基板(1)の下面
に溝(9)が設けられている。この溝(9)は、ダイア
フラム部(2)形成時と同時に選択エツチングによって
、例えば、KOH液等により異方性エッチして、その溝
(9)のある部分の基板(1)の厚さはダイアフラム部
(2)の厚さとほぼ等しい厚さにする。
A diaphragm part (2) as a thin strain-generating part is formed in the n-type silicon substrate (1) by a recessed part on the lower surface side, and four P-type piezoresistors ( 3), (4), (5), and (6) are formed. A temperature sensing element (7) made of an npn transistor is formed on the upper surface of a thick part (8) around the diaphragm part (2), and the diaphragm part (2) and the thick part where the temperature sensing element (7) is provided (8), a groove (9) is provided on the lower surface of the silicon substrate (1). This groove (9) is formed by selective etching, for example, by anisotropic etching using KOH solution or the like, at the same time as forming the diaphragm part (2), so that the thickness of the substrate (1) at the portion where the groove (9) is located is The thickness should be approximately equal to the thickness of the diaphragm part (2).

シリコン単結晶より成る基板(1)はパイレックスガラ
スから成る台(10)にアノ−デックボンディング技術
により接合されている。
A substrate (1) made of silicon single crystal is bonded to a base (10) made of Pyrex glass by anode bonding technique.

上記のように構成された本発明一実施例の半導体圧力セ
ンサにおいては、感温素子(7)の感じる温度は、同一
単結晶の基板(1)内である上、同じ環境下に置かれて
いることから、はぼピエゾ抵抗(3)〜(6)の周辺の
温度を感知できる。溝(9)は低熱伝導率部と−なるた
め、溝(9)を隔てた肉厚部(8)上に置かれた熱源と
なる感温素子(7)の熱の影響は、起歪部であるダイア
フラム部(2)の面上に設けられたピエゾ抵抗(3)〜
(6)に対しては小さいものとなる。また、溝(9)の
作用は、起歪部に発生する熱や圧力印加による歪の影響
を肉厚部(8)に形成した感温素子(7)へ伝達し難く
している。
In the semiconductor pressure sensor of the embodiment of the present invention configured as described above, the temperature felt by the temperature sensing element (7) is within the same single crystal substrate (1) and is placed in the same environment. Therefore, the temperature around the piezoresistors (3) to (6) can be sensed. Since the groove (9) serves as a low thermal conductivity area, the effect of heat from the temperature-sensitive element (7), which serves as a heat source, placed on the thick wall part (8) across the groove (9) is due to the strain-generating area. The piezoresistor (3) provided on the surface of the diaphragm portion (2) is
(6) is small. Further, the effect of the groove (9) makes it difficult for the effects of heat generated in the strain-generating portion and strain caused by pressure application to be transmitted to the temperature-sensitive element (7) formed in the thick portion (8).

したがって、溝(9)による熱的干渉の低減作用により
、ピエゾ抵抗(3)〜(6)により構成したブリッジの
ゼロ点温度変化は、ヒステリシスが無く、外部温度の変
化に応じた特性となる。また、圧力印加時の起歪部であ
るダイアフラム部(2)に発生した歪は周辺の肉厚部(
8)に伝達するが、溝(9)により感温素子(7)まで
は伝達されない。そのため、温度補償用として使用する
感温素子(7)の信頼性が高まり、確度のある温度補償
が可能となる。
Therefore, due to the effect of reducing thermal interference by the groove (9), the zero point temperature change of the bridge constituted by the piezoresistors (3) to (6) has no hysteresis and has a characteristic that corresponds to a change in external temperature. In addition, the strain generated in the diaphragm part (2), which is the strain-generating part when pressure is applied, is caused by the surrounding thick wall part (
8), but is not transmitted to the temperature sensing element (7) due to the groove (9). Therefore, the reliability of the temperature sensing element (7) used for temperature compensation increases, and accurate temperature compensation becomes possible.

なお、本発明は上述した実施例に限らず、次のように変
形して実施することができる。すなわち、溝(9)を形
成する代りに、溝(9)に相当する部分のシリコンを完
全に除去し、分離された両者をポリミド等で接続した構
造にすることにより、熱的分離をより確実なものとする
ことができる。また、第1図(a)、(b)では溝(9
)をシリコン基板(1)の下面に形成したが、溝(9)
をシリコン基板(1)の上面に形成しても同等な効果を
得られる。
Note that the present invention is not limited to the embodiments described above, and can be implemented with the following modifications. In other words, instead of forming the groove (9), the silicon in the part corresponding to the groove (9) is completely removed and the separated two parts are connected with polyimide or the like, thereby making thermal isolation more reliable. It can be made into something. In addition, in FIGS. 1(a) and (b), the groove (9
) was formed on the bottom surface of the silicon substrate (1), but the groove (9)
The same effect can be obtained by forming the above on the upper surface of the silicon substrate (1).

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、半導体基板のダイ
アフラム部の表面にピエゾ抵抗が設けられるとともに前
記半導体基板の周辺肉厚部に感温素子が設けられた半導
体圧力センサにおいて、前記ダイアプラム部と感温素子
との間に低熱伝導率部を介在させた構造にしたことによ
り、低熱伝導率部による熱的干渉の低減作用によって前
記ピエゾ抵抗と感温素子相互の熱的干渉が抑制され、そ
の結果、ピエゾ抵抗により構成したブリッジのゼロ点温
度変化は、ヒステリシスが無く、外部温度変化に応じた
特性となり、圧力センサのゼロ点温度誤差およびドリフ
トの問題が解消される。
As detailed above, according to the present invention, in a semiconductor pressure sensor in which a piezoresistor is provided on the surface of a diaphragm portion of a semiconductor substrate and a temperature sensing element is provided in a peripheral thick portion of the semiconductor substrate, the diaphragm portion By having a structure in which a low thermal conductivity portion is interposed between the piezoresistor and the temperature sensing element, mutual thermal interference between the piezoresistor and the temperature sensing element is suppressed by the thermal interference reduction effect of the low thermal conductivity portion, As a result, the zero-point temperature change of the bridge made of piezoresistors has no hysteresis and has a characteristic that corresponds to external temperature changes, and the problems of zero-point temperature error and drift of the pressure sensor are solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明一実施例の半導体圧力セ
ンサを示し、第1図(a)は上面より見た透視子面図、
第1図(b)は断面図である。 1・・・半導体基板     2・・・ダイアフラム部
3.4,5,6・・・ピエゾ抵抗  7・・・感温素子
8・・肉厚部       9・・・低熱伝導率部(溝
)10・・・台
FIGS. 1(a) and 1(b) show a semiconductor pressure sensor according to an embodiment of the present invention, FIG. 1(a) is a transparent top view as seen from the top,
FIG. 1(b) is a sectional view. 1... Semiconductor substrate 2... Diaphragm portion 3.4, 5, 6... Piezoresistor 7... Temperature sensing element 8... Thick part 9... Low thermal conductivity part (groove) 10. ...stand

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板に形成されたダイアフラム部と、この
ダイアフラム部に設けられたピエゾ抵抗と、前記ダイア
フラム部の周辺肉厚部に設けられた感温素子とを具備し
て成る半導体圧力センサにおいて、前記ピエゾ抵抗と感
温素子との間に低熱伝導率部を介在させて成ることを特
徴とする半導体圧力センサ。
(1) A semiconductor pressure sensor comprising a diaphragm portion formed on a semiconductor substrate, a piezoresistor provided on the diaphragm portion, and a temperature sensing element provided on a peripheral thick portion of the diaphragm portion, A semiconductor pressure sensor characterized in that a low thermal conductivity section is interposed between the piezoresistor and the temperature sensing element.
(2)ピエゾ抵抗および感温素子が同一半導体基板に形
成され、低熱伝導率部が前記基板に形成された溝である
ことを特徴とする特許請求の範囲第1項記載の半導体圧
力センサ。(3)低熱伝導率部が半導体基板よりも熱伝
導率の低い物質で形成されたことを特徴とする特許請求
の範囲第1項記載の半導体圧力センサ。
(2) The semiconductor pressure sensor according to claim 1, wherein the piezoresistor and the temperature sensing element are formed on the same semiconductor substrate, and the low thermal conductivity portion is a groove formed in the substrate. (3) The semiconductor pressure sensor according to claim 1, wherein the low thermal conductivity portion is formed of a material having a lower thermal conductivity than the semiconductor substrate.
JP11688287A 1987-05-15 1987-05-15 Semiconductor pressure sensor Pending JPS63283073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11688287A JPS63283073A (en) 1987-05-15 1987-05-15 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11688287A JPS63283073A (en) 1987-05-15 1987-05-15 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS63283073A true JPS63283073A (en) 1988-11-18

Family

ID=14697974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11688287A Pending JPS63283073A (en) 1987-05-15 1987-05-15 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS63283073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145810A (en) * 1990-06-25 1992-09-08 Oki Electric Industry Co., Ltd. Fabrication process of semiconductor pressure sensor for sensing pressure applied

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146019A (en) * 1979-05-01 1980-11-14 Toshiba Corp Pressure detector of semiconductor
JPS55163880A (en) * 1979-06-07 1980-12-20 Hitachi Ltd Semiconductor strain gauge bridge circuit
JPS5839069A (en) * 1981-08-31 1983-03-07 Shimadzu Corp Semiconductor diaphragm
JPS6030554B2 (en) * 1978-11-15 1985-07-17 松下電器産業株式会社 printing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030554B2 (en) * 1978-11-15 1985-07-17 松下電器産業株式会社 printing device
JPS55146019A (en) * 1979-05-01 1980-11-14 Toshiba Corp Pressure detector of semiconductor
JPS55163880A (en) * 1979-06-07 1980-12-20 Hitachi Ltd Semiconductor strain gauge bridge circuit
JPS5839069A (en) * 1981-08-31 1983-03-07 Shimadzu Corp Semiconductor diaphragm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145810A (en) * 1990-06-25 1992-09-08 Oki Electric Industry Co., Ltd. Fabrication process of semiconductor pressure sensor for sensing pressure applied

Similar Documents

Publication Publication Date Title
US4986127A (en) Multi-functional sensor
US4320664A (en) Thermally compensated silicon pressure sensor
US4333349A (en) Binary balancing apparatus for semiconductor transducer structures
JP2783059B2 (en) Process state detection device, semiconductor sensor and its status display device
KR100741520B1 (en) Semiconductor pressure sensor having diaphragm
US4530244A (en) Semiconductor pressure transducer
US3967188A (en) Temperature compensation circuit for sensor of physical variables such as temperature and pressure
US7866215B2 (en) Redundant self compensating leadless pressure sensor
JPH07103837A (en) Sensor for detecting physical amount
EP0083496B1 (en) Semiconductor pressure transducer
US3956927A (en) Strain gauge transducer apparatus
US20050081621A1 (en) Multiple technology flow sensor
US6559661B1 (en) Circuit configuration for compensating the temperature non-linearity of the characteristic curves of the piezoresistive measuring resistors connected in a bridge circuit
US4766655A (en) Method for fabricating a compensated silicon pressure sensing device
WO1996022515A1 (en) Apparatus for detection of a diaphragm rupture in a pressure sensor
JPS63283073A (en) Semiconductor pressure sensor
JP2001183254A (en) Pressure sensor
JP2895262B2 (en) Composite sensor
JPS5887880A (en) Semiconductor diaphragm type sensor
JPH0455542B2 (en)
JPS6222272B2 (en)
JPH07311110A (en) Composite sensor and composite transfer device using it
JP3140033B2 (en) Semiconductor device
US3470738A (en) Compensation for voltage sensitivity of strain gage transducers
JP2001165797A (en) Semiconductor pressure sensor device