JPS6328279A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPS6328279A
JPS6328279A JP61168281A JP16828186A JPS6328279A JP S6328279 A JPS6328279 A JP S6328279A JP 61168281 A JP61168281 A JP 61168281A JP 16828186 A JP16828186 A JP 16828186A JP S6328279 A JPS6328279 A JP S6328279A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
piezoelectric
voltage
ring
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61168281A
Other languages
Japanese (ja)
Inventor
Yasuhiko Ishiwatari
恭彦 石渡
Takeo Tsukamoto
健夫 塚本
Masato Niibe
正人 新部
Yasuko Motoi
泰子 元井
Norio Kaneko
典夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61168281A priority Critical patent/JPS6328279A/en
Publication of JPS6328279A publication Critical patent/JPS6328279A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE: To improve the efficiency of an ultrasonic motor by directly forming a piezoelectric element on an elastic unit as a vibrator by thin film technique to prevent the element from being damaged and the operating efficiency from decreasing. CONSTITUTION:A rotor 3 as a moving element is contacted under pressure with the surface of an elastic ring 1 for forming a vibrator 1. The rotary force of the rotor 3 is transmitted through a rotary rod 4 to a load. A piezoelectric element 5 for forming an electro-mechanical converter group is directly secured by a thin film technique to the ring 1. The element 5 is supported by a vibration damper 7, such as a felt. The damper 7 is supported by a stationary unit 9. The element 5 is formed of a lower electrode formed on the ring 1, a piezoelectric material, and an upper electrode formed on the material.

Description

【発明の詳細な説明】 (技術分野〕 本発明は進行性振動波によって駆動される超音波モータ
、特にその振動体の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an ultrasonic motor driven by progressive vibration waves, and particularly to the structure of its vibrating body.

(従来技術) 超音波モータは、例えば汁電振動子に、電歪振動子等の
電気−機械変換素子群に周波電圧を印加した時に振動体
に生じる進行性振動波を駆動力として利用するもので、
従来の電磁、モータに比べて巻線を必要としない為、構
造が簡単で小型になり、低速回転時にも高トルクが得ら
れるという利点があり、近年注目されている。
(Prior art) An ultrasonic motor uses, as a driving force, progressive vibration waves generated in a vibrating body when a frequency voltage is applied to a group of electro-mechanical conversion elements such as an electrostrictive vibrator or an electrostrictive vibrator. in,
Compared to conventional electromagnetic motors and motors, they do not require windings, so they have a simple and compact structure, and have the advantage of being able to obtain high torque even when rotating at low speeds, and have attracted attention in recent years.

そして、かかる超音波モータとしては特開昭59−12
2385号公報、特開昭59−17898’8号公報、
特開昭59−2(11685号公報等で種々の構造のも
のが提案されている。
As such an ultrasonic motor, Japanese Patent Application Laid-Open No. 59-12
No. 2385, Japanese Unexamined Patent Publication No. 59-17898'8,
Various structures have been proposed in Japanese Unexamined Patent Publication No. 11685 (JP-A-59-2).

これら公報等で開示される超音波モータ本体は確かに小
型であるが、使用される電気−機械変換は前記素子への
印加電圧に対する素子の変位量、即ち、干−夕のトルク
に関連する量、Kは比例定数、dは素子の厚み、■は素
子の膜厚ノJ向に印加する印加電圧である)の関係から
して所定のトルクを9!Iるためには印加電圧としては
数10V以上の電圧か必要であった。
Although the ultrasonic motor body disclosed in these publications is certainly small, the electro-mechanical conversion used is the amount of displacement of the element with respect to the voltage applied to the element, that is, the amount related to the torque of the drying process. , K is a proportionality constant, d is the thickness of the element, and ■ is the applied voltage applied in the J direction of the film thickness of the element), the predetermined torque is 9! In order to achieve this, it was necessary to apply an applied voltage of several tens of volts or more.

その為、使用電圧か数10Vであることに起因する複雑
、大型な電気回路部分を含むモータ装置は差稈小型とな
り得ない問題かあった。
For this reason, there is a problem that the motor device, which includes a complicated and large electric circuit portion due to the working voltage of several tens of volts, cannot be made smaller.

そこで従来の超音波モータでは干−夕装置全体を小望化
する為に可能な限り電気−m核変換素子の厚みを例えは
0.5mm程度の薄いものにしていtこ。
Therefore, in conventional ultrasonic motors, the thickness of the electro-m nuclear transmutation element is made as thin as possible, for example, about 0.5 mm, in order to make the entire drying device small.

この様に素子の厚みを薄くした場合には素子に対する印
加電圧を低くすることかでき、結果的に干−夕装置全体
を小型化することかてぎて前述の問題は解決できるもの
のこの様な薄い素子を接着剤(例えは熱硬化+′l接着
剤)で振動体上に接着する際に、接着に際して素子に加
わる圧力て素子か(6損するという問題か生じていた。
When the thickness of the element is reduced in this way, the voltage applied to the element can be lowered, and as a result, the entire drying device can be made smaller, which can solve the above-mentioned problem. When a thin element is bonded onto a vibrating body using an adhesive (for example, a thermosetting adhesive), a problem arises in that the pressure applied to the element during bonding causes loss of the element.

一方この問題を回避すべく慎重に作業を行った場合には
作業性か勇しく低下するという問題もあった。
On the other hand, if the work was carried out carefully to avoid this problem, there was also the problem that the workability deteriorated dramatically.

更にこの破損、作業性の悪さという問題に加えて素子の
厚みか薄い従来のモータでは接着剤を用いる方式によっ
て生じる特有な問題、即ち接着剤層によって素子の振動
エネルギーが吸収され、厚いバルク圧電材を用いた場合
に比して効率が劣るという問題も生していた。
Furthermore, in addition to this problem of damage and poor workability, conventional motors with thin elements have a unique problem caused by the method of using adhesive, namely, the vibration energy of the element is absorbed by the adhesive layer, There was also the problem that the efficiency was lower than when using .

(目 的) 本発明の目的は低電圧駆動が可能で、かつ薄い電気−機
械変換素子を用いたとしても前述の様な欠点、即ち素子
の破損、作業性の低下、効率の低下という欠点の牛しる
ことのない超音波モータを1是供せんとi−るもので、
その特徴とする処は電気−機械変換素子を蒸着法、スパ
ッタリング法等を主とする薄膜化技術をもって振動体上
に直接形成した点に存するものである。
(Objective) The object of the present invention is to enable low-voltage driving and to avoid the above-mentioned drawbacks such as damage to the device, reduced workability, and reduced efficiency even when a thin electro-mechanical conversion element is used. We would like to provide you with an ultrasonic motor that will not cause any noise.
Its feature lies in the fact that the electro-mechanical transducer is directly formed on the vibrating body using thin film techniques such as vapor deposition and sputtering.

(実施例) 以下図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は、本発明を適用した超音波子−夕の一実施例の
断面Hにして、1は振動体を形成する弾性体リングで、
該リング1の表面IAは移動体としての回転子3に加圧
接触している。4は負荷(不図示)に回転子3の回転力
を伝達する回転棒、5は弾性体リング1に後述の方法で
直接固着された電気−機械変換素子群を形成する圧電素
子で、該圧電素子5はフェルト等の吸振材7で支持され
ている。9は吸振材7を支持する固定体である。前述し
た圧電素子5は第3図に示す様に弾+l1体すングl上
に成膜された下部電極5A、圧電材(イ$45 B、該
圧電性材料5B上に成膜された−1一部電極5Cにより
形成される。
FIG. 1 shows a cross section H of an embodiment of an ultrasonic waveform to which the present invention is applied, and 1 is an elastic ring forming a vibrating body;
The surface IA of the ring 1 is in pressure contact with a rotor 3 as a moving body. 4 is a rotating rod that transmits the rotational force of the rotor 3 to a load (not shown); 5 is a piezoelectric element forming an electro-mechanical transducer group directly fixed to the elastic ring 1 by a method described later; The element 5 is supported by a vibration absorbing material 7 such as felt. 9 is a fixed body that supports the vibration absorbing material 7. As shown in FIG. 3, the piezoelectric element 5 described above includes a lower electrode 5A formed on the elastic body 5A, a piezoelectric material ($45B), and a -1 film formed on the piezoelectric material 5B. A portion is formed by the electrode 5C.

次に第3図を用いて原電素子5の製造方法について述べ
ると、弾性体リング1上にまず−F部電極5Aを構成す
る透明電極であるTTO膜を電子ヒーム蒸看法で形成す
る。尚この下部電極5Aとしては前記以外の透明電極で
あっても良いし、Afl、Cu、Au−Cr等の金属材
料を真空基肴法、スパッタリング法によって形成しても
良い。
Next, referring to FIG. 3, a method of manufacturing the electromagnetic element 5 will be described. First, a TTO film, which is a transparent electrode constituting the -F part electrode 5A, is formed on the elastic ring 1 by an electron beam evaporation method. Note that the lower electrode 5A may be a transparent electrode other than those described above, or may be formed of a metal material such as Afl, Cu, Au-Cr, etc. by a vacuum substrate method or a sputtering method.

次に下部電極5A十に圧電竹材料5Bを成膜する。この
圧電(’ll材上してはPZT(チタン酸ジルコン酸鉛
)を用い、かつ高周波反応性マグネ1〜ロンスパッタ法
を用い、酸素とアルゴンの混合雰囲気中でPZTの粉末
焼結体ターゲラ]・をスパッタして成膜した。尚該実施
例では前述の高周波反応性マグネトリンスバッタ法を用
いたが、PZTの製イ去としてイオンブレーテイングン
1、CVD法、電子ビーム蒸着法等を用いることができ
る。
Next, a film of piezoelectric bamboo material 5B is formed on the lower electrode 5A. This piezoelectric material (PZT (lead zirconate titanate) was used as the material, and the PZT powder sintered body Targela was produced in a mixed atmosphere of oxygen and argon using the high-frequency reactive magnetron sputtering method) The film was formed by sputtering.Although the above-mentioned high-frequency reactive magnetron sputtering method was used in this example, ion blating 1, CVD method, electron beam evaporation method, etc. were used to remove the PZT. be able to.

前述のPZTの成膜時の基板温度、熱処理条件としては
種々温度、種々の条件が適用可能であるが該実施例の場
合は300℃であり、該成膜後は大気中で600℃の条
件下で2時間熱処理を行なった。
Various temperatures and various conditions can be applied as the substrate temperature and heat treatment conditions during the above-mentioned PZT film formation, but in the case of this example, the temperature was 300°C, and after the film formation, the temperature was 600°C in the atmosphere. Heat treatment was carried out for 2 hours under the condition.

かかる工程の後に原電材料5B上に上部電極5Cとして
のAnを真空蒸着を用いた成膜する。
After this step, an An film as the upper electrode 5C is formed on the raw electrical material 5B using vacuum evaporation.

上述の様にして圧電素子5を弾性体リング1に薄膜化技
術によって直接固着した後に第2図に示す様に分極処理
を行なう。この電極は、弾性体リングlの表面に生ずる
進行性振動波(尚この振動波か生ずる理論については前
述の公報等で既に知られた事であるのでここでは省略す
る)の波長をλと−4−るど、その坏のビッヂて第2図
示の様に5Ba、5Bb、5Bc、5Bd、5Be、 
 5Bf5Bg、5Bhと形成される。干−全1ij4
Φハ峙には5 B a 、  5 B c 、  5 
B c 、  5 B dの電極?+Tには周波′市月
−曲11から所定の周波数の1ilj動′市丹か印加さ
4)、また5Be、5Bf、58g、5Bhの電棒君f
には周波電圧舌!11から出力さオ]る周波電圧の周波
Wから90°イ☆相のず第1た周Qil数の高周波′1
七1Fを出力する′電圧源13からの1(μφ)j電圧
か印加さjする。前述の分極は1[モ成さ4した電極の
5Ba。
After the piezoelectric element 5 is directly fixed to the elastic ring 1 by the thin film technique as described above, a polarization process is performed as shown in FIG. This electrode has a wavelength of λ and − 4- As shown in the second diagram, the bits are 5Ba, 5Bb, 5Bc, 5Bd, 5Be,
Formed as 5Bf5Bg and 5Bh. Dried - total 1ij4
ΦHa faces 5 B a , 5 B c , 5
B c , 5 B d electrode? To +T, a predetermined frequency of 1ilj motion from 11 is applied to +T4), and electric bokunf of 5Be, 5Bf, 58g, and 5Bh is applied.
There is a frequency voltage tongue! 90 degrees from the frequency W of the frequency voltage output from 11
A voltage of 1 (μφ)j from the voltage source 13 which outputs 71F is applied. The polarization mentioned above is 1 [5Ba of the 4 electrode.

5 B c 、  5 B f 、  5 B hと5
8 1) 、  5 B d 、  5 Be、58g
の芥’Fii 4→! Ii丁に夫々逆向きの電圧を印
加し、Iiいに隣り合う堕域の分極−1j向か逆向きと
なる杆(、′処理する。尚この実施例の分極処理条件は
(気中で200℃の温度下で30v〜100Vの曲流電
圧(この電圧は圧電材料58のrp、i、厚にLi’、
 シて変filさlt:)を305ト印加したもσ)′
111ある。前述の′市44i J!T 5 B a 
〜5 B dと5 B e 〜5 B hの各々If’
 ij! 371″1振動波4発11さυる為に第2図
示の様にλ5′4すらしIC配置さねている。
5 B c , 5 B f , 5 B h and 5
8 1), 5 B d, 5 Be, 58g
'Fii' 4→! Apply voltages in opposite directions to Ii and process the rods (,') so that the polarization of the fallen region adjacent to Ii is in the -1j direction or in the opposite direction.The polarization treatment conditions in this example are (200 A bending voltage of 30v to 100V at a temperature of
Even if 305 bits of filt:) were applied, σ)'
There are 111. The aforementioned 'City 44i J! T 5 B a
~5 B d and 5 B e ~5 B h, respectively If'
ij! 371'' In order to generate 11 vibrations of four vibration waves, even λ5'4 is arranged as shown in the second diagram.

前述した様に第1図乃¥第3図示実施例におりる超音波
モータの動作理論は前記の公開公報等で既知の事である
ので詳述しないか、′電圧源11゜13に前述の如ぎ周
波数の周知電圧を印加することによりバー電素子5か振
動し、弾性体リング1の表面上に進行+’を振動波か発
生し、弾11I体リング1に加H−接触した回転子か摩
擦駆動され、回転子3か回転するものである。
As mentioned above, the operating theory of the ultrasonic motor shown in the embodiment shown in FIGS. By applying a known voltage with a certain frequency, the bar electric element 5 vibrates and generates a vibration wave traveling +' on the surface of the elastic ring 1. The rotor 3 is driven by friction, and the rotor 3 rotates.

木実JノN例にお+Jる圧電材料5Bの膜Jゾと電圧源
I+、!3からの駆動型1■との関係は第4図に示す通
りである。第41ン1から判る様に駆動電圧3v〜IO
Vという低重′月ていす才]のモータも正常、かつ良り
fに動作し、た。また各モータの駆動トルクは夫々10
〜1.2Kg−cmの範囲であって、回転数は約500
 rpmである。前述した千−夕の駆動電圧はIC化さ
れた駆動回路の駆動電圧に合致しlご、例えは5■稈度
か望ましい。
For example, the membrane of the piezoelectric material 5B and the voltage source I+,! The relationship between drive type 1 and drive type 3 is as shown in FIG. As you can see from No. 41 No. 1, the driving voltage is 3V to IO
The motor of the low-heavy motor called V was also operating normally and in good condition. Also, the driving torque of each motor is 10
~1.2Kg-cm, and the rotational speed is approximately 500
rpm. The driving voltage of the above-mentioned Chi-Yu corresponds to the driving voltage of the IC-based driving circuit, and is preferably about 1, for example, 5cm.

1;J、 lの事等からして圧電4A15Bの膜厚10
0μm以下、好ましくは10〜50 p m程度である
1; Considering J, l, etc., the film thickness of piezoelectric 4A15B is 10
It is 0 μm or less, preferably about 10 to 50 pm.

12お、本実施例では圧?tt材料5BとしてPZTを
用いたか、かかる44旧に限定されるものではノ、二く
、PLZT、BTO,Pl)TiO3,Pl)(I、a
、Ti)03等圧?it+’lを示すものならば何でも
よく各々について結晶性の良い膜を得る作製条イ!]、
熱処理条件又は成膜法等を適宜選定することによって手
記実施例と同様の効果を期待L2うるものである。
12 Oh, pressure in this example? PZT was used as the tt material 5B, or PLZT, BTO, Pl) TiO3, Pl) (I, a
, Ti)03 isobaric? Any film that exhibits it+'l can be used to produce a film with good crystallinity. ],
By appropriately selecting the heat treatment conditions, film forming method, etc., it is expected that the same effects as in the example described above can be obtained L2.

また圧電素子の代りに電歪素子を用いkものても同様な
効果を得ることが可能て、電歪44T」のハ〜IP、!
化によV)低電圧駆動化が即行てぎることは言うまても
ない。
It is also possible to obtain the same effect by using an electrostrictive element instead of a piezoelectric element, and the electrostrictive 44T' IP!
It goes without saying that V) low-voltage driving will be achieved immediately.

また、((実施例ては、第1図に示すことく、弾(’[
休、回転子としてリング状のものを用いて回転させる干
−タを開示したが、弾(’1体、移動体の形状はこオl
に限定されるものではなく、たとえは、第5図V承すJ
二うに楕円形状とし、弾1′1体1の周一1に前記実施
例の場合と同様lざブJ法て形成した圧電素子(不図示
)により進行+1振動dシを発生させ、この周ト、ない
しは周上の一区間Rを移動ii)能な移動子3を設ける
様にしてもよい。
In addition, ((In the example, as shown in FIG. 1, bullets ('[
Kyuu disclosed a rotor that rotates using a ring-shaped rotor, but the shape of the moving body is
For example, but not limited to, Figure 5
A piezoelectric element (not shown) formed on the circumference 1 of the bullet 1'1 by the l-shaped J method as in the case of the previous embodiment generates a traveling +1 vibration d. , or may be provided with a mover 3 capable of moving in one section R on the circumference.

また、第6図に示ずj:うに、弾性体1を平板状とし、
平板状弾性体1の表面に前記第1実施例の場合と同様な
方法で形成した圧電素子5により進行(’I振動波を発
生させ、この圧電素子5に対向する(i7置に移動7−
3を設けたりニアモータとしても良い。
In addition, as shown in FIG. 6, the elastic body 1 is in the form of a flat plate,
A traveling ('I) vibration wave is generated by a piezoelectric element 5 formed on the surface of the flat elastic body 1 in the same manner as in the first embodiment, and is opposed to this piezoelectric element 5 (moved to position i7).
3 may be provided or a near motor may be used.

更に第7図に示すJ:うに弾11体1を棒状とし、棒状
・押(’1体1の表面上に進行性振動波を発生させ、移
動子3を駆動するりニアモータ状のものでもよい。
Furthermore, the J: sea urchin bullet 11 body 1 shown in FIG. .

いずわの形態乃至これから類推しつる形態の超音波モー
タにおいても、圧電オΔ旧又(J電歪4(旧を薄膜化技
術により直接弾11体上に形成することにより前記第1
実施例同扛、低電圧駆動可能な超音7皮千−夕か得られ
る。
Even in the ultrasonic motor of the current form or the form that can be inferred from this, the first
By using the same method as in the embodiment, an ultrasonic seven-skin which can be driven at low voltage is obtained.

(発明の効果) IJ+本発明に係る超音波モータは、薄膜化技術に」;
り圧電素子を振動体としての弾性体上に直接形成したこ
とにより、以下の効果か生しるものてある。
(Effect of the invention) IJ+The ultrasonic motor according to the present invention is applicable to thin film technology.
By forming the piezoelectric element directly on the elastic body serving as the vibrating body, the following effects are produced.

(11電気−機械変1秦素子を仰(’I体上手接着する
T程かなくなったのて、電気−機械変換素子の破損事故
はなくなり、また作業++1も層しく向上し、モータを
安価に提供できるという効果も生し・るものである。
(11 Electrical-mechanical change 1 Look up the Qin element ('I) Since the T-bond on the upper part of the body has disappeared, there have been no accidents of damage to the electro-mechanical converting element, and work ++1 has also been further improved, making motors cheaper. It also has the effect of being able to provide services.

(2)電気−機械変換素子か薄膜化することにより極め
て低い′市11にJ:り干−タを回転できる為にモータ
の駆動回路等の電気回路か小型、軽量化し1、千−タ装
置全体か小望化し、超音波モータの用途のより一層の拡
大か回持てきる。
(2) By making the electro-mechanical conversion element thinner, the electric circuit such as the motor drive circuit can be made smaller and lighter in order to be able to rotate the dryer. The overall size can be made smaller and the applications of the ultrasonic motor can be further expanded.

(a) (’I成途l−の分棒処岬か低電圧て、し、か
も絶縁イ((1を用いることなく大気中て行t4″1こ
とかてき、作業・+’tか向Iする等産業上々fましい
効果か!I−L、るものである。
(a) ('I will be able to perform the work in the atmosphere without using t4''1, and the work and +'t direction will be I-L is a very good effect on the industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(、発明の超音波千−夕の一実施例の断面図、 第2図は第1図示モータの圧電素子の電極配置図、 第3図は圧電素子の構成図、 第4図は圧電材料の膜厚と駆動電圧の関係図、第5図乃
至第7図は本発明の他の実施例にかかる超音波モータ要
部構成図である。 図において、1−振動体、3−移動体、5−圧電素子、
5A−下部電極、5B−圧電材料、5C−土部電極を示
す。
Fig. 1 is a sectional view of an embodiment of the ultrasonic wave according to the invention; Fig. 2 is a diagram of the electrode arrangement of the piezoelectric element of the motor shown in Fig. 1; Fig. 3 is a configuration diagram of the piezoelectric element; 5 is a diagram showing the relationship between the film thickness of the piezoelectric material and the drive voltage, and FIGS. 5 to 7 are configuration diagrams of main parts of an ultrasonic motor according to other embodiments of the present invention. In the figures, 1 - a vibrating body, 3 - moving body, 5-piezoelectric element;
5A-lower electrode, 5B-piezoelectric material, 5C-soil electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)位相差をもった周波電圧が印加される電気一機械
変換手段と、 所定の位相差をもって配置された前記手段が蒸着、スパ
ッタリング法等の薄膜化技術により直接固着され、前記
手段に基因する振動に応答して進行性振動波を発生する
振動体と、該振動波に応答して摩擦駆動される移動体と
を具備することを特徴とする超音波モータ。
(1) Electromechanical conversion means to which a frequency voltage with a phase difference is applied, and the means arranged with a predetermined phase difference are directly fixed by thin film technology such as vapor deposition or sputtering, and the 1. An ultrasonic motor comprising: a vibrating body that generates progressive vibration waves in response to vibrations; and a moving body that is frictionally driven in response to the vibration waves.
(2)前記手段は蒸着法により前記振動体に直接固着さ
れたことを特徴とする特許請求の範囲第(1)項記載の
超音波モータ。
(2) The ultrasonic motor according to claim (1), wherein the means is directly fixed to the vibrating body by a vapor deposition method.
(3)前記手段はスパッタリング法により前記振動体に
直接固着されたことを特徴とする特許請求の範囲第(1
)項記載の超音波モータ。
(3) The means is directly fixed to the vibrating body by a sputtering method.
Ultrasonic motor described in ).
JP61168281A 1986-07-17 1986-07-17 Ultrasonic motor Pending JPS6328279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168281A JPS6328279A (en) 1986-07-17 1986-07-17 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168281A JPS6328279A (en) 1986-07-17 1986-07-17 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS6328279A true JPS6328279A (en) 1988-02-05

Family

ID=15865106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168281A Pending JPS6328279A (en) 1986-07-17 1986-07-17 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS6328279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293094A (en) * 1989-09-08 1994-03-08 Massachusetts Institute Of Technology Miniature actuator
US5336958A (en) * 1990-12-19 1994-08-09 Nikon Corporation Ultrasonic motor unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293094A (en) * 1989-09-08 1994-03-08 Massachusetts Institute Of Technology Miniature actuator
US5336958A (en) * 1990-12-19 1994-08-09 Nikon Corporation Ultrasonic motor unit

Similar Documents

Publication Publication Date Title
Dong Review on piezoelectric, ultrasonic, and magnetoelectric actuators
US4933590A (en) Ultrasonic motor
SE456059B (en) PIEZOELECTRIC ENGINE
JPH05949B2 (en)
Park et al. Characteristics of the first longitudinal-fourth bending mode linear ultrasonic motors
JPH04112686A (en) Ultrasonic motor
EP0569673A1 (en) Ultrasonic travelling wave motor driven by tight-fitted actuators
JPH0534909B2 (en)
JPS6328279A (en) Ultrasonic motor
WO2007129987A1 (en) Piezoelectric micromotor construction and method of driving the same
JPS6331480A (en) Ultrasonic motor
Udayakumar et al. Piezoelectric thin film ultrasonic micromotors
Uchino Applied aspects of piezoelectricity
Glazounov et al. New torsional actuator based on shear piezoelectric response
Dong et al. Ring type uni/bimorph piezoelectric actuators
Jones et al. Adaptive devices for precise position control
Schaaf Pushy motors
JPH055838Y2 (en)
JP2000308377A (en) Piezoelectric vibrator, and ultrasonic motor using the piezoelectric vibrator and manufacture of the piezoelectric vibrator
Luo et al. A Cylinder-shaped Miniature Ultrasonic Motor Based on Pb (Mg1/3Nb 2/3) O3-PbTiO3 Single Crystals
JPS60183981A (en) Supersonic wave motor
JPH11145526A (en) Electromechanical conversion element, electromechanical conversion effect application element, and its manufacturing method
JPS60207467A (en) Supersonic motor
JPS60226781A (en) Supersonic wave motor
JPS60207466A (en) Supersonic motor