JPS63282288A - Method and device for producing electrolytic metallic foil - Google Patents

Method and device for producing electrolytic metallic foil

Info

Publication number
JPS63282288A
JPS63282288A JP11706187A JP11706187A JPS63282288A JP S63282288 A JPS63282288 A JP S63282288A JP 11706187 A JP11706187 A JP 11706187A JP 11706187 A JP11706187 A JP 11706187A JP S63282288 A JPS63282288 A JP S63282288A
Authority
JP
Japan
Prior art keywords
cathode
current
anode
foil
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11706187A
Other languages
Japanese (ja)
Inventor
Koji Nakatsugawa
中津川 広司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Circuit Foil Co Ltd
Original Assignee
Furukawa Circuit Foil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Circuit Foil Co Ltd filed Critical Furukawa Circuit Foil Co Ltd
Priority to JP11706187A priority Critical patent/JPS63282288A/en
Publication of JPS63282288A publication Critical patent/JPS63282288A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain dense metallic foil without any pinhole and micropore and having an excellent physical characteristic by supplying a pulse current between a cathode and an anode at least at the initial stage of electrodeposition in the production of electrolytic metallic foil. CONSTITUTION:An electrolyte contg. a metal ion is continuously supplied into the space between the cylindrical cathode 1 and the anodes 2a-2c, and the metal is electrodeposited on the cylindrical cathode 1 by electrolysis. In this case, a pulse current is supplied between the cylindrical cathode 1 and the anode 2a at least at the initial stage of electrodeposition. As a result, electrolysis is carried out by the pulse current having a high peak current at the initial stage of the formation of metallic foil by electrodeposition, hence many nuclei are generated, and foil is formed thereon. Accordingly, dense metallic foil can be stably produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解金属箔の製造方法とそれに用いる装置に関
し、更に詳しくは、良質の金属箔、とりわけ、材質が緻
密で物理的性質が優れ、ピンホール及びマイクロポロシ
ティ等が実質的に皆無の印刷回路用電解金属箔を製造す
る方法並びにそれに用いる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing electrolytic metal foil and an apparatus used therein, and more particularly, to a method for manufacturing electrolytic metal foil, and more particularly, to a metal foil of good quality, particularly a material that is dense and has excellent physical properties. The present invention relates to a method for manufacturing an electrolytic metal foil for printed circuits that is substantially free of pinholes, microporosity, etc., and an apparatus used therefor.

(従来の技術) 銅箔、鉄箔、ニー2ケル箔、亜鉛箔等の電解金属箔は、
通常、ステンレススチール、チタン、クロムめっきなど
でその表面が構成されている陰極円筒体を水平にして、
電着すべき金属のイオンを含む電解液に該円筒体を浸し
て、回転させ該陰極とそれに相対して配設された陽極と
の間に電波を通じ、該電解液の電解を行って金属を該円
筒体上に電着せしめた後、箔として剥離することにより
連続的に製造されている。
(Conventional technology) Electrolytic metal foils such as copper foil, iron foil, Nikel foil, zinc foil, etc.
The cathode cylinder, whose surface is usually made of stainless steel, titanium, chrome plating, etc., is placed horizontally.
The cylindrical body is immersed in an electrolytic solution containing ions of the metal to be electrodeposited, and is rotated to pass radio waves between the cathode and an anode disposed opposite to it to electrolyze the electrolytic solution to form the metal. It is manufactured continuously by electrodepositing it on the cylinder and then peeling it off as a foil.

電解金属箔のうち今日最も大量に生産されているものは
、印刷回路角電解鋼箔である。この電解銅箔は、その殆
どが次のような方法を用いて連続生産されている。
The most widely produced electrolytic metal foil today is printed circuit square electrolytic steel foil. Most of this electrolytic copper foil is continuously produced using the following method.

すなわち、ステンレススチール、チタン、クロムめっき
などでその表面が構成されている円筒体を水平にして、
その一部を、例えば硫酸銅−硫酸から成る電解液に浸し
、液中の円筒面に対面して配設された、例えば銅、鉛、
白金、白金系酸化物表面を有する対極との間に、円筒面
を陰極として直流電流を流し、電流の大きさと円筒の回
転速度とを調節して、電着銅が所望の厚みになったとき
丁度液中より空中へ出る如くし、空中において電着銅層
を円筒より剥離し、巻取ることにより電解鋼箔が生産さ
れている。
In other words, a cylindrical body whose surface is made of stainless steel, titanium, chrome plating, etc. is held horizontally,
A part of it is immersed in an electrolytic solution consisting of, for example, copper sulfate and sulfuric acid.
A direct current is passed between a counter electrode having a surface of platinum or a platinum-based oxide, using the cylindrical surface as a cathode, and the magnitude of the current and rotational speed of the cylinder are adjusted until the desired thickness of electrodeposited copper is achieved. Electrolytic steel foil is produced by peeling off the electrodeposited copper layer from the cylinder in the air, just as if it were coming out of the liquid into the air, and winding it up.

円筒陰極面に対面して配設された対極、即ち、陽極の構
造については、従来から良質の金属箔を得るため、また
生産性の向上のため、種々の提案がなされてきている。
Various proposals have been made regarding the structure of the counter electrode, that is, the anode, disposed facing the cylindrical cathode surface, in order to obtain high-quality metal foil and to improve productivity.

例えば、米国特許第1,978,037号に開示された
装置は、電解槽の中で円筒陰極に対面して配設された陽
極が左右2つに分割され、その間に電解液の通路となる
隙間が設けられている。
For example, in the device disclosed in U.S. Pat. No. 1,978,037, an anode disposed facing a cylindrical cathode in an electrolytic cell is divided into two parts, left and right, and a passage for electrolyte is formed between them. A gap is provided.

また、米国特許第1.952,762号においては、こ
の陽極間の間隙が3ケ所に形成されたものが開示されて
いる。
Further, US Pat. No. 1,952,762 discloses a device in which gaps between the anodes are formed at three locations.

これらの装置においては、複数の陽極表面の電流密度は
実質的に同一であるが、複数個の陽極に異る電流密度の
電流を供給する方法や装置も提案されている0例えば、
米国特許第3.799,847号の方法においては、電
流密度は段階的に変化せしめられている。すなわち、複
数の段階を、第1の段階、最終段階及びそれ以外の中間
の段階とに分け、基本的には後の段階へ行くほど大きな
電流密度で電流が供給されている。また、米国特許第3
,674,656号に開示された方法においては、電解
製箔の最終段階に、分離した陽極を配し、この最終段階
の陽極にそれ以外の陽極より大きな電流密度の電流を供
給している。
In these devices, the current densities on the surfaces of the plurality of anodes are substantially the same, but methods and devices for supplying currents with different current densities to the plurality of anodes have also been proposed.
In the method of US Pat. No. 3,799,847, the current density is varied stepwise. That is, the plurality of stages are divided into a first stage, a final stage, and other intermediate stages, and basically, current is supplied at a higher current density as the stage progresses to a later stage. Also, U.S. Patent No. 3
, 674,656, a separate anode is placed at the final stage of the electrolytically formed foil, and a current with a higher current density is supplied to this final stage anode than to the other anodes.

(発明が解決しようとする問題点) 上記したように、従来から知られている電解金属箔の製
造方法とそれに用いる装置は、いずれも水平に回転する
円筒陰極と、これに対面して電解液中に配設された複数
個の陽極との間に直流電流を流して陰極面上に電着した
金属層を剥離して金属箔を得ている。これらの方法にお
いて、金属箔の物理的性質、表面状態を好ましいものに
し、またピンホール及びマイクロポロシティ等の発生を
防止するため、液組成、電流密度、さらに、特に添加剤
或いはさらに陰極の表面状態などが検討され、工夫され
てきているが、決して充分ではない、特に金属箔の物理
的性質、表面状態を好ましいものにするための条件がピ
ンホール及びマイクロポロシティ等の発生を防止するた
めには必ずしも好ましいものであるとは言えない。
(Problems to be Solved by the Invention) As described above, conventionally known methods for producing electrolytic metal foil and devices used therefor all involve a horizontally rotating cylindrical cathode and an electrolytic solution facing the cylindrical cathode. A direct current is passed between the cathode and a plurality of anodes disposed therein, and the metal layer electrodeposited on the cathode surface is peeled off to obtain a metal foil. In these methods, in order to make the physical properties and surface condition of the metal foil preferable and to prevent the occurrence of pinholes, microporosity, etc., the liquid composition, current density, and especially additives or the surface condition of the cathode are controlled. Although these methods have been studied and devised, they are by no means sufficient. In particular, the physical properties of metal foil and the conditions for making the surface condition favorable are insufficient to prevent the occurrence of pinholes and microporosity. This cannot necessarily be said to be desirable.

本発明は、従来技術における上記問題点を解消し、ピン
ホールやマイクロポロシティが実質的に皆無であり、ま
た質が緻密で物理的性質が優れた金属箔を安定して生産
することを可能にした新規な電解金属箔の製造方法とそ
れに用いる装置を提供することを目的とする。
The present invention solves the above-mentioned problems in the conventional technology, and makes it possible to stably produce metal foil that has virtually no pinholes or microporosity, is dense in quality, and has excellent physical properties. The purpose of the present invention is to provide a novel method for producing electrolytic metal foil and an apparatus used therefor.

(問題点を解消するための手段) 本発明の電解金属箔の製造方法は、水平に回転する陰極
円筒と、該円筒面に相対して配設された陽極との間に、
該陰極円筒に電着すべき金属のイオンを含有する電解液
を満たして電解を行い、該陰極円筒上に金属を電着せし
めた後、箔状に剥離せしめる電解金属箔の製造方法にお
いて、少なくとも電着初期段階において、該陰極と該陽
極間にパルス電流を供給することを特徴とする。
(Means for Solving the Problems) The method for manufacturing electrolytic metal foil of the present invention provides a method for producing an electrolytic metal foil between a horizontally rotating cathode cylinder and an anode disposed opposite to the cylindrical surface.
A method for producing an electrolytic metal foil, in which the cathode cylinder is filled with an electrolytic solution containing ions of the metal to be electrodeposited, electrolysis is performed, the metal is electrodeposited on the cathode cylinder, and then the metal is peeled off into a foil shape, comprising at least the steps of: In the initial stage of electrodeposition, a pulse current is supplied between the cathode and the anode.

本発明の電解金属箔の製造装置は、水平に回転する陰極
円筒、該円筒面に相対して配設された複数側の陽極、該
陰極円筒と該陽極とが形成する空間を満たす電解液より
構成され、該複数個の陽極のうち、少なくとも、金属の
電着初期段階の電着をつかさどる陽極と陰極間にパルス
電流を供給するためのパルス電源発生系を設けたことを
特徴とする。
The electrolytic metal foil manufacturing apparatus of the present invention comprises a horizontally rotating cathode cylinder, a plurality of anodes disposed opposite to the cylindrical surface, and an electrolytic solution filling the space formed by the cathode cylinder and the anode. The present invention is characterized in that a pulsed power generation system is provided for supplying a pulsed current between at least one of the plurality of anodes, which is responsible for the initial stage of electrodeposition of metal, and an anode and a cathode.

本発明方法及び装置を定義するために用いられている「
電解初期段階」なる用語は、次の様に定義される。すな
わち、一般に金属箔の形成過程をみると、初期段階にお
いては、陰極表面上に多数の電着層が発生し、この核か
ら陰極表面に垂直な方向に電着が進行すると共に、水平
方向(横方向)にも電着金属が生長して相互につながり
、薄い金属膜が生成し、その後電着は厚さ方向に進行し
て所要厚さの金属の電着層が形成されるが、電着層が発
生してから薄い金属膜が生成するまでの過程を本発明に
おける「電着初期段階」と言う。
The term "used to define the method and apparatus of the present invention"
The term "initial electrolysis stage" is defined as follows. In other words, in general, when looking at the formation process of metal foil, in the initial stage, many electrodeposited layers are generated on the cathode surface, and electrodeposition progresses from this core in a direction perpendicular to the cathode surface, and also in a horizontal direction ( The electrodeposited metal also grows and connects with each other (in the lateral direction) to form a thin metal film, and then the electrodeposition progresses in the thickness direction to form an electrodeposited layer of metal of the required thickness. The process from the generation of a deposited layer until the formation of a thin metal film is referred to as the "initial stage of electrodeposition" in the present invention.

本発明方法においては、この電着初期段階において、パ
ルス電流を供給し、電着層の発生数を増し、横(水平)
方向によく連続した緻密な金属薄膜を形成せしめ、これ
をベースに電着層を垂直方向に生長せしめて、ピンホー
ルやマイクロポロシティが無い緻密な組織を有する金属
箔を製造せんとするものである。
In the method of the present invention, in the initial stage of electrodeposition, a pulse current is supplied to increase the number of electrodeposited layers, and to
The purpose is to form a dense metal thin film that is well continuous in the direction, and then grow an electrodeposited layer in the vertical direction based on this to produce a metal foil with a dense structure free of pinholes and microporosity. .

本発明において用いられるパルス電流の波形としては、
例えば、添付した第1a〜lf図に示される様な矩形波
、三角波及び正弦交流波など、従来、例えば、米国特許
第4,468,293号に記載されているものが挙げら
れる。
The waveform of the pulse current used in the present invention is as follows:
Examples include rectangular waves, triangular waves, and sinusoidal alternating current waves as shown in the accompanying Figures 1a-lf, as well as those conventionally described in, for example, US Pat. No. 4,468,293.

第1a〜lf図のパルス波形のうち、一般に多く用いら
れているのは、第1a図もしくは第1d図に示される矩
形のものであるが、この矩形波のパルスは高周波パルス
(例えば、トランジスタ制御の如きスイッチング方式に
よって発生せしめられる)であっても、低周波パルス(
例えば、サイリスタ位相制御方式によって発生せしめら
れる)であってもよい。
Of the pulse waveforms shown in Figures 1a to lf, the rectangular ones shown in Figures 1a or 1d are commonly used. Low frequency pulses (generated by switching methods such as
For example, it may be generated by a thyristor phase control method).

11aNlf図において、tlはパルス印加時間を表し
、t2はパルス休止時間を表し、T(=tl+t2)は
周期を表し、i□はピーク電流値を表し、12はベース
電流値を表す。
In the diagram 11aNlf, tl represents the pulse application time, t2 represents the pulse rest time, T (=tl+t2) represents the period, i□ represents the peak current value, and 12 represents the base current value.

第1d図に示すパルス電波は1通常、パルス印加時間(
tl)、パルス電流密度(もしくはピーク電流値il)
あるいは平均電流密度、及び周期Tあるいはデユーティ
−サイクルθ (=10/T)で規定される。
The pulsed radio wave shown in Fig. 1d is 1. Normally, the pulse application time (
tl), pulse current density (or peak current value il)
Alternatively, it is defined by the average current density and the period T or duty cycle θ (=10/T).

本発明においては、要は、電着層の発生数が多くなるよ
うにパルス電流の条件が設定されればよく、そのために
必要かつ十分なピーク電流値及び電流の休止時間があれ
ばよい、ピーク電流値i1は、他の一般の陽極(アノー
ド)の電流密度より高い方が良く、平均電流値は、他の
一般の陽極の電流密度に近い値が目安となる。なお、他
の一般の陽極の電流密度は、液組成、液温、液流速など
の液条件及び装置によって異るが、通常は、30〜80
A(アンペア)/d*2である。
In the present invention, the essential point is that the conditions of the pulse current are set so that a large number of electrodeposited layers are generated, and that there is only a necessary and sufficient peak current value and current pause time. The current value i1 should preferably be higher than the current density of other general anodes, and the average current value should be close to the current density of other general anodes. Note that the current density of other general anodes varies depending on the liquid conditions such as liquid composition, liquid temperature, and liquid flow rate, and the equipment, but is usually 30 to 80.
A (ampere)/d*2.

本発明方法において、矩形波のパルスを用いる場合、上
記したtlは3〜30m5ec(ミリ秒)、t2は10
m5ec以上であるのが好ましい。
In the method of the present invention, when a square wave pulse is used, the above tl is 3 to 30 m5ec (milliseconds), and t2 is 10
It is preferable that it is more than m5ec.

ベース電流12−が存在する場合にも、電着層を多発せ
しめるに必要な電流の低下と再通電があればよく、電流
の低下値と休止時間を必要以上に大きくとるのは、箔の
生成速度の点で不利である。
Even when the base current 12- is present, it is sufficient to reduce the current and re-energize it to produce multiple electrodeposited layers. Disadvantageous in terms of speed.

通常iは40〜30OA/dm2にも達し、他方12は
ilの 1/3〜0であり、好ましくは 175〜Oで
ある。
Usually i reaches 40-30 OA/dm2, while 12 is 1/3-0 of il, preferably 175-0.

なお、本発明装置に用いるパルス電流発生系に用いるパ
ルス電源としては、サイリスタ位相制御方式、トランジ
スタ制御のようなスイッチング方式などによるパルス電
源が挙げられる。
The pulse power source used in the pulse current generation system used in the device of the present invention includes a pulse power source using a switching method such as a thyristor phase control method or a transistor control method.

パルス電流を供給する陽極は、上記電着初期段階の第1
の陽極のみでも良く、また陽極が多数に分割されている
場合、最初の段階の第1から複数個であってもよい、全
陽極にパルス電流を供給してもよいが、パルス電源は通
常の直流電源よりも高価であるし、電流の消費も大きい
ので、最初の段階のみをパルスとすることで合目的な箔
が得られれば、その方が経済的である。
The anode that supplies the pulsed current is used in the first stage of the initial stage of electrodeposition.
If the anode is divided into many parts, a pulsed current may be supplied to all the anodes starting from the first one in the first stage. Since it is more expensive than a DC power supply and consumes a large amount of current, it would be more economical if a suitable foil could be obtained by pulsing only the first stage.

以下に本発明を図面に則して説明する。The present invention will be explained below with reference to the drawings.

第2図は、本発明装置の1例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing one example of the device of the present invention.

図において1は円筒陰極であり、その円筒面の一部もし
くは全部を電解液に浸し、水平な中心軸1aのまわりで
回転可能となるよう配設される。2a、2b、2cは陽
極であって、回転円筒陰極1の電解液中の円筒面に相対
して配設される。3は回転円筒陰極1と陽極2a、2b
、2cとの間に形成された空間である。この空間3の幅
は格別限定されるものではなく、実際上は数ミリメート
ルから数10ミリメートルの間を適宜に選定すればよい
In the figure, reference numeral 1 denotes a cylindrical cathode, which is arranged such that part or all of its cylindrical surface is immersed in an electrolytic solution and is rotatable around a horizontal central axis 1a. Anodes 2a, 2b, and 2c are disposed opposite to the cylindrical surface of the rotating cylindrical cathode 1 in the electrolyte. 3 is a rotating cylindrical cathode 1 and anodes 2a and 2b.
, 2c. The width of this space 3 is not particularly limited, and in practice it may be appropriately selected from several millimeters to several tens of millimeters.

この空間3に電解液を満たす如くに、該空間3の最下端
に配した給液管4から電解液が連続的に供給され、2a
 、2cの上端より溢流する。
Electrolytic solution is continuously supplied from a liquid supply pipe 4 arranged at the lowest end of this space 3 so as to fill this space 3 with electrolytic solution, and 2a
, 2c overflows from the upper end.

回転円筒陰極の円筒面と陽極2aとの間にはパルス電流
を流し、陽極2b、2cとの間には直流電流を流す、陽
極2bと20とに同一直流電源を接続してもよく、また
、回転円筒陰極との間に夫々に異なる大きさの電流を流
す方式のものであってもよい。
A pulse current is passed between the cylindrical surface of the rotating cylindrical cathode and the anode 2a, and a direct current is passed between the anodes 2b and 2c.The same DC power source may be connected to the anodes 2b and 20. , and a rotating cylindrical cathode, in which currents of different magnitudes are passed between the two.

円筒陰極lと陽極2aとの間に流すパルス電流は、第1
d図に示すごときピーク電流とオフ電流のものでもよく
、また第1a図に示すごときピーク電流とベース電流の
ものでもよい、またピーク電流の時間1.およびオフ電
流或いはベース電流の時間t2も他の設備要件や液条件
に合せて選定することができる。ピーク電流値およびベ
ース電流値についても同様に選定できる。
The pulse current flowing between the cylindrical cathode l and the anode 2a is the first
The peak current and off-state current as shown in Figure d may be used, or the peak current and base current as shown in Figure 1a may be used. The off current or base current time t2 can also be selected in accordance with other equipment requirements and liquid conditions. The peak current value and base current value can be similarly selected.

また、陽極2aの長さも幾らでなければならないという
ものでなく、他の条件と生成箔の特性とに合せて選定で
き、又陽極2aを複数に分割し、例えば初めの方をピー
ク電流のより高いもの、後の方をピーク電流のそれ程高
くないものという様に使い分けることもできる。尚、パ
ルス電流が完全な矩形波でなければならないというもの
でないことは言う迄もない。
In addition, the length of the anode 2a is not limited to a certain length, and can be selected according to other conditions and the characteristics of the produced foil.Also, the anode 2a can be divided into multiple parts, for example, the first one has a higher peak current. It is also possible to use one with a high peak current and the other with a peak current that is not so high. It goes without saying that the pulse current does not have to be a perfect rectangular wave.

陽極2a、2bの夫々と回転円筒陰極1との間には電流
波形および電圧・電流値の異なる電流が流されるので陽
極2aと2bとの間に絶縁体5が配される。絶縁体5の
材料は、必要な耐熱性、耐薬品性のあるものならいかな
るものであっても良いが、例えば、フェノール樹脂、ポ
リプロピレン樹脂などで作られる。
Since currents having different current waveforms, voltages, and current values are passed between each of the anodes 2a and 2b and the rotating cylindrical cathode 1, an insulator 5 is disposed between the anodes 2a and 2b. The insulator 5 may be made of any material as long as it has the necessary heat resistance and chemical resistance, and is made of, for example, phenol resin, polypropylene resin, or the like.

図において6a、6b、6cは陽極2a。In the figure, 6a, 6b, and 6c are anodes 2a.

2b、2cの夫々の電源へのリードである。These are leads to the respective power supplies of 2b and 2c.

(発明の実施例) 円筒表面がチタンで構成された直径500m+*。(Example of the invention) The cylindrical surface is made of titanium and has a diameter of 500m++.

円筒部の長さ450+amの円筒陰極1と円弧の内表面
が鉛で構成された陽極2a、2b、2cとを相互の間隔
が1811厘となるように組合せて第2図の如き装置を
組立てた。
A device as shown in Fig. 2 was assembled by combining a cylindrical cathode 1 with a cylindrical portion length of 450+ am and anodes 2a, 2b, and 2c whose arcuate inner surfaces were made of lead so that the distance between them was 1811 mm. .

電解液は給液管4から供給され、陰陽極間の空間3を流
れて陽極2a 、2cの上端から溢流し、排出管7より
電解槽8の外に排出される。
The electrolytic solution is supplied from the liquid supply pipe 4, flows through the space 3 between the cathode and anode, overflows from the upper ends of the anodes 2a and 2c, and is discharged from the electrolytic cell 8 through the discharge pipe 7.

陽極2aの高さは30mm、絶縁体5はフェノール樹脂
板で作成され、厚さは18mmであった。
The height of the anode 2a was 30 mm, and the insulator 5 was made of a phenol resin plate and had a thickness of 18 mm.

電解液ハc u ”  100 g/l 、 H2S 
Oa70g/l、にかわ 2g/lの組成を有し、液温
度は60℃であった。
Electrolyte solution: 100 g/l, H2S
The composition was 70 g/l of Oa and 2 g/l of glue, and the liquid temperature was 60°C.

円筒陰極1と陽極2aとの間にはオンタイム10m5e
c、オフタイム30 m5ec 、平均電流40A/d
a2(ピーク電流の計算値160 A/as2)のパル
ス電流を流し、陽極2b、2cは1つの直流整流器に接
続し、円筒陰極1との間に5OA/da2の直流電流を
流した。
There is an on-time of 10m5e between the cylindrical cathode 1 and anode 2a.
c, off time 30 m5ec, average current 40A/d
A pulse current of a2 (calculated peak current: 160 A/as2) was passed, the anodes 2b and 2c were connected to one DC rectifier, and a DC current of 5OA/da2 was passed between the anodes 2b and 2c and the cylindrical cathode 1.

電解後の銅箔の厚みが18川となるように円筒陰極を回
転して銅箔を連続生産した。
Copper foil was continuously produced by rotating the cylindrical cathode so that the thickness of the copper foil after electrolysis was 18 mm.

得られた銅箔は、ピンホール、マイクロポリシティが皆
無であった。
The obtained copper foil was free of pinholes and microporosity.

比較例 陽極2aを2b、2cと同一の直流整流器に接続し、5
0A/d+w2の電流を流した以外は実施例と同様にし
て銅箔を連続生産した。得られた銅箔にはピンホール、
マイクロポリシティの存在が見られた。
Comparative example anode 2a was connected to the same DC rectifier as 2b and 2c, and 5
Copper foil was continuously produced in the same manner as in the example except that a current of 0 A/d+w2 was passed. The resulting copper foil has pinholes,
The existence of micropolicies was observed.

(発明の効果) 上記したところより明らかなように、本発明方法におい
ては、銅箔の電着生成の初期において、ピーク電流が大
きなパルス電流に依る電解が行なわれて多数の核発生が
みられ、その上に箔の形成が行なわれるので、質が緻密
で、物理的性質が優れ、ピンホール及びマイクロポロシ
ティ等が実質的に皆無の金属箔を安定して生産すること
ができる。
(Effects of the Invention) As is clear from the above, in the method of the present invention, electrolysis using a pulsed current with a large peak current is performed at the initial stage of electrodeposition formation on copper foil, and a large number of nuclei are generated. Since the foil is formed thereon, it is possible to stably produce a metal foil that is dense in quality, has excellent physical properties, and is virtually free of pinholes, microporosity, and the like.

また、全陽極にパルス電源を接続するよりも電解初期段
階にのみパルス電流を用いる方が、コスト高なパルス電
源の台数が少なくてよく、また電解重流のコストも低く
て済み経済的である。
In addition, it is more economical to use a pulsed current only in the initial stage of electrolysis than to connect a pulsed power supply to all anodes because it requires fewer expensive pulsed power supplies and the cost of electrolytic heavy current is low. .

更に本発明方法を適用するに当って、従来の電解装置を
大巾に改良する必要もなく、また実用化のために解決す
べき新たな困難や問題点も存在せず、本発明方法及び装
置の実用的価値は大である。
Furthermore, in applying the method of the present invention, there is no need to significantly improve the conventional electrolyzer, and there are no new difficulties or problems to be solved for practical use. has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1a〜lf図は、本発明に用いるパルス電流の波形の
例を示す。 第2図は、本発明装置の一例を示す断面模式図である。 1・・・回転円筒体、 2a、2b、2c川陽極、4・
・・電解液供給管、5・・・絶縁体、6a、6b、6c
mリード線、 7・・・排出管、    8・・・電解槽、9・・・ラ
イニング。
Figures 1a to 1f show examples of pulsed current waveforms used in the present invention. FIG. 2 is a schematic cross-sectional view showing an example of the device of the present invention. 1... Rotating cylindrical body, 2a, 2b, 2c river anode, 4.
... Electrolyte supply pipe, 5 ... Insulator, 6a, 6b, 6c
m lead wire, 7...discharge pipe, 8...electrolytic cell, 9...lining.

Claims (1)

【特許請求の範囲】 1、水平に回転する陰極円筒と、該円筒面に相対して配
設された陽極との間に、該陰極円筒に電着すべき金属の
イオンを含有する電解液を満たして電解を行い、該陰極
円筒上に金属を電着せしめた後、箔状に剥離せしめる電
解金属箔の製造方法において、少なくとも電着初期段階
において、該陰極と該陽極間にパルス電流を供給するこ
とを特徴とする方法。 2、水平に回転する陰極円筒、該円筒面に相対して配設
された複数個の陽極、該陰極円筒と該陽極とが形成する
空間を満たす電解液より構成され、該複数個の陽極のう
ち、少なくとも、金属の電着初期段階の電着をつかさど
る陽極と陰極間にパルス電流を供給するためのパルス電
源発生系を設けたことを特徴とする電解金属箔の製造装
置。
[Claims] 1. An electrolytic solution containing metal ions to be electrodeposited on the cathode cylinder is placed between a horizontally rotating cathode cylinder and an anode disposed opposite to the cylinder surface. In a method for producing an electrolytic metal foil in which metal is electrodeposited on the cathode cylinder and then peeled off into a foil shape, a pulse current is supplied between the cathode and the anode at least in the initial stage of electrodeposition. A method characterized by: 2. Consists of a horizontally rotating cathode cylinder, a plurality of anodes disposed opposite to the cylindrical surface, and an electrolytic solution filling the space formed by the cathode cylinder and the anode; An apparatus for producing electrolytic metal foil, comprising at least a pulsed power generation system for supplying a pulsed current between an anode and a cathode that control the initial stage of electrodeposition of metal.
JP11706187A 1987-05-15 1987-05-15 Method and device for producing electrolytic metallic foil Pending JPS63282288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11706187A JPS63282288A (en) 1987-05-15 1987-05-15 Method and device for producing electrolytic metallic foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11706187A JPS63282288A (en) 1987-05-15 1987-05-15 Method and device for producing electrolytic metallic foil

Publications (1)

Publication Number Publication Date
JPS63282288A true JPS63282288A (en) 1988-11-18

Family

ID=14702457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11706187A Pending JPS63282288A (en) 1987-05-15 1987-05-15 Method and device for producing electrolytic metallic foil

Country Status (1)

Country Link
JP (1) JPS63282288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195289A (en) * 1992-01-24 1993-08-03 Permelec Electrode Ltd Apparatus for electrolytic production of metallic foil
EP0778361A3 (en) * 1995-12-06 1997-06-18 Mitsui Mining & Smelting Co
EP1063322A2 (en) * 1999-06-22 2000-12-27 Ga-Tek, Inc. (dba Gould Electronics, Inc.) Anode structure for manufacture of metallic foil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437039A (en) * 1977-08-30 1979-03-19 Inoue Japax Res Inc Production of elongated materials such as plate, strip or wire
JPS55100991A (en) * 1979-01-24 1980-08-01 Nippon Denkai Kk Manufacture of electrolytic metal foil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437039A (en) * 1977-08-30 1979-03-19 Inoue Japax Res Inc Production of elongated materials such as plate, strip or wire
JPS55100991A (en) * 1979-01-24 1980-08-01 Nippon Denkai Kk Manufacture of electrolytic metal foil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195289A (en) * 1992-01-24 1993-08-03 Permelec Electrode Ltd Apparatus for electrolytic production of metallic foil
EP0778361A3 (en) * 1995-12-06 1997-06-18 Mitsui Mining & Smelting Co
EP1063322A2 (en) * 1999-06-22 2000-12-27 Ga-Tek, Inc. (dba Gould Electronics, Inc.) Anode structure for manufacture of metallic foil
EP1063322A3 (en) * 1999-06-22 2001-08-22 Ga-Tek, Inc. (dba Gould Electronics, Inc.) Anode structure for manufacture of metallic foil

Similar Documents

Publication Publication Date Title
US5620581A (en) Apparatus for electroplating metal films including a cathode ring, insulator ring and thief ring
US4652348A (en) Method for the production of alloys possessing high elastic modulus and improved magnetic properties by electrodeposition
KR100195603B1 (en) A copper foil for a printed circuit board, a process and an apparatus for producing the same
JPH031391B2 (en)
EP0110463B1 (en) A process of electroforming a metal product and electroformed metal product
JPWO2008108341A1 (en) Method and apparatus for producing surface roughened copper plate, and surface roughened copper plate
US5489368A (en) Insoluble electrode structural material
US3470082A (en) Electroplating method and system
US3901771A (en) One-side electrocoating
JPH03229889A (en) Method and device for continuously coating conductive substrate using high-speed electrolytic method
US3970537A (en) Electrolytic treating apparatus
US1872290A (en) Corrugated or threaded anode
US20150247252A1 (en) Electrodeposition process of nickel-cobalt coatings with dendritic structure
JPS63282288A (en) Method and device for producing electrolytic metallic foil
CN114207190A (en) Method and device for electrolytically coating electrically conductive strips and/or fabrics by means of impulse technology
JPH0733598B2 (en) Method and apparatus for manufacturing metal foil
CN1276131C (en) Continuous electroforming process to form strip for battery electrodes and mandrel to be used in said process
JP2001355091A (en) Electrolytic copper foil manufacturing device
US4702812A (en) Electrolytic apparatus and a method of operating it
US3856653A (en) Platinum clad tantalum anode assembly
US1951893A (en) Electrodeposition of metal alloys
CN110172728A (en) Feed liquid and its application, electrode foil and preparation method thereof
JP3745748B2 (en) Manufacturing method of mold by electroforming
CN214361806U (en) Electroplating device for treating tower internals with complex structures
CN218539874U (en) Novel titanium blue and coating film device