JPS63282245A - Bakehard type high strength can material and its production - Google Patents

Bakehard type high strength can material and its production

Info

Publication number
JPS63282245A
JPS63282245A JP11788887A JP11788887A JPS63282245A JP S63282245 A JPS63282245 A JP S63282245A JP 11788887 A JP11788887 A JP 11788887A JP 11788887 A JP11788887 A JP 11788887A JP S63282245 A JPS63282245 A JP S63282245A
Authority
JP
Japan
Prior art keywords
rolling
cold rolling
annealing
heating
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11788887A
Other languages
Japanese (ja)
Inventor
Takashi Inaba
隆 稲葉
Tsuneji Mori
森 常治
Yoshimitsu Miyaki
美光 宮木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11788887A priority Critical patent/JPS63282245A/en
Publication of JPS63282245A publication Critical patent/JPS63282245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To produce the titled can material which is capable of thinning by successively executing homonizing heat treatment, hot rolling, cold rolling, differential annealing and finish cold rolling to an Al alloy ingot having specific compsn. under specific conditions. CONSTITUTION:The Al alloy ingot contg., by weight, 0.10-0.80% Cu, 0.5-2.0% Mn, 0.5-2.0% Mg, 0.2-0.7% Fe and the balance consisting substantially of Al is subjected to the homonizing heat treatment by heating within 24hr at 550-600 deg.C and is thereafter applied to the cold rolling at >=50% rolling ratio. The ingot is then retained at 250-300 deg.C for 1-10hr at <10 deg.C/min heating and cooling ratio, is subjected to the differential annealing, is applied to the cold rolling at 15-35% rolling ratio and is thereafter subjected to complete annealing in such a manner that said ingot is retained at 430-600 deg.C for 10min at 100 deg.C/min heating and cooling ratio, by which Cr and Mg are forcedly turned into solid solution so as to provide the bakehard effect to the ingot. The ingot is furthermore applied to the cold rolling at 30-80% final finish rolling ratio and the Al alloy plate material having 25-503mm average crystal grain width of the plate surface is formed, by which the can material having low earing and having excellent moldability is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はビール、炭酸、果汁用等々の缶(ボディ、エン
ド)に用いられるキャン材の製造に係り、より詳しくは
、焼付塗装(ベーキング)により硬化するベークハード
型アルミニウム合金からなり、缶材の薄肉化に耐え得る
高強度キャン材及びその製造方法に関する。 (従来の技術) ビール、炭酸、果汁用等々の飲料缶に用いられるアルミ
ニウム2ピース缶はボディとエンドからなり、それぞれ
固有の成形法により製造されている。ボディの成形は絞
り及びしごき加工(D・工加工)を主要成形とし、その
加工法からボディ材には一般にAA3004硬質板が多
用されている。 またエンドの成形は多段絞り張出し加工を主要成形とす
ることから、エンド材にはAA5052.5082.5
182硬質板が多用されている。 ところで、近年、コストダウンのために薄肉軽量化が進
められ、そのために素材のアルミニウム合金板に対して
高強度化が要望されてきている。 高強度化の方法としては様々な方法があるが、一般的な
方法としては固溶体強化、加工硬化による方法である。 この方法によれば、高強度化による薄肉化が可能ではあ
るものの、成形性が低下するという問題がある。 (発明が解決しようとする問題点) そこで、高強度で且つ成形性も向上できるキャン材の開
発が進められており、本発明者らは焼付塗装後に硬化す
るベークハード型キャン材を開発し、先に特開昭58−
126952号、同59−157249号を提案した。 これらの方法は所要成分のアルミニウム合金について均
質化熱処理、熱間圧延、冷間圧延、中間焼鈍等々の条件
をコントロールする方法であり、高強度材であるにも拘
らず加工性に優れたベークハード型キャン材を得ること
ができる。しかし、加工性は優れているものの、絞り加
工時に発生する耳の高さについては従来材と同じレベル
にとどまるため、高強度化による薄肉化を図る場合、耳
切れによるトラブルが発生する原因となる恐れがあり、
問題がある。 一方、ベークハード型のキャン材ではないが、絞り加工
時の耳の抑制に関しては、特開昭54−32113号に
提案されている方法がある。この方法は冷間圧延途中に
2回の中間焼鈍(部分焼鈍、完全焼鈍)を施して絞り耳
の高さを低くする方法である。これによれば、A Q 
−Mn −Mg系合金硬質板の結晶の大きさを30〜1
00μm程度にとどめることが可能となり、肌荒れの防
止も図ることができるとされている。しかし、か\るキ
ャン材を高強度化による薄肉化に用いた場合、結晶粒が
比較的大きく、そのレンジも広いため、張出し性に問題
がある。 本発明は、キャン材の高強度化による薄肉化に応えるべ
くなされたものであって、上記従来技術の欠点を解消し
、ベークハード型アルミニウム合金板材において、高強
度を保持しつつ低耳化、高成形性を可能とする高強度キ
ャン材及びその製造方法を提供することを目的とするも
のである。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、従来のベークハ
ード型アルミニウム合金キャン材の高強度を保持し、且
つ耳高、結晶粒粗大による肌荒れ及び成形性の低下等の
問題を解決できる方策を見い出すべく鋭意研究を重ねた
。 その結果、まず、低耳化については、仕上冷延率の低下
による方法と前記特開昭54−32113号の2回中間
焼鈍による方法が効果的であることを確認した。しかし
乍ら、いずれの方法にも問題があることが判明した。 すなわち、前者の仕上冷延率の低下による方法の場合、
例えば、4%の耳率を3%以下にするためには仕上冷延
率を大幅に低下させる必要があるが、それでは缶に要求
される強度が不足するという問題があり、低耳化のため
にこの方法をそのまま採用することは得策ではない。一
方、後者の2回中間焼鈍による方法の場合には、上記公
報に開示されている如く結晶粒が大きい場合(100μ
I以上)には肌荒れの問題があり、更には、本発明者の
調査により、結晶粒が50μm以上では張出し性の低下
が著しいという問題が生じる。 そこで、本発明者は、少なくとも結晶粒を50μm以下
にでき、仕上冷延率をあまり低下させない製造方法であ
れば、本発明の目的が達成できるとの知見を得て、仕上
冷延率を一定として2回中間焼鈍法と耳率、結晶粒、強
度、成形性との関係について更に詳細な調査研究を行っ
た。その結果、ベークハード型キャン材の製造に対して
は前述の2回中間焼鈍法の条件をそのままでは適用でき
ず、加熱冷却速度を含めた更に多くの因子を規制する必
要があることが判明した。 すなわち、耳率は、1回目の焼鈍条件に最も影響される
ものの、2回目の焼鈍条件にも可成り影響され、急速加
熱冷却条件で高温短時間加熱はど低くなること、また、
結晶粒、強度及び成形性も同様の条件はど優れることを
確認した。つまり、2回中間焼鈍法では特に2回目の焼
鈍条件を適切にコントロールすることにより、低耳化、
肌荒れ性、成形性に優れたベークハード型高強度キャン
材を得ることができることを見い出し、これに基づいて
更に製造工程の詳細な条件を検討し、本発明をなしたも
のである。 すなわち、本発明に係るベークハード型高強度キャン材
は、Cu:0.10〜0.80%、Mn:0゜5〜2.
0%、Mg:0.5〜2.0%及びFe:0.2〜0.
7%を含有し、残部が実質的にAlからなるアルミニウ
ム合金板材であって、板面の平均結晶粒幅が25〜50
μmであることを特徴とするものである。 また、本発明に係る上記ベークハード型高強度キャン材
の製造方法は、Cu:0.10〜0.80%、Mn:0
.5〜2.0%、Mg:0.5〜2.0%及びFe:0
.2〜0.7%を含有し、残部が実質的にAlからなる
アルミニウム合金の鋳塊につき、550〜600℃の温
度で24時間以内の加熱による均質化熱処理を施した後
、熱間圧延により2〜b 延を施し、その後、第1回目の中間焼鈍として、加熱冷
却速度10℃/min未満で250〜3oO℃に1〜1
0時間保持する部分焼鈍或いは加熱冷却速度100℃/
min以上で300〜4oO℃に2分以内保持する部分
焼鈍を施し、次いで圧延率15〜35%の冷間圧延を行
った後、ベークハード効果を付与するためのCu及びM
gを強制固溶させる第2回目の中間焼鈍として加熱冷却
速度100℃/minで430〜600℃に10分以内
保持する完全焼鈍を施し、しかる後に最終仕上圧延率3
0=80%の冷間圧延を行うことを特徴とするものであ
る。 以下に本発明を実施例に基づいて詳細に説明する。 まず、本発明のベークハード型アルミニウム合金からな
る高強度キャン材の化学成分限定理由を説明する。 Cu: CuはAl−Cu−Mg系のベークハード型高強度キャ
ン材に必須の元素であり、0.10%未満ではベークハ
ード効果がなく、また0、80%を超えるとベークハー
ド効果はあるものの、製造上、造塊時に割れ或いは熱間
圧延時に割れを招くことになる。したがって、Cu量は
0.10〜0.80%の範囲とする。 Mn: Mnは強度の向上及びAl−Fe−Mnの金属間化合物
形成による加工性向上に効果がある元素である。Mn量
が0.5%未満ではそのような効果がなく、また2、0
%を超えるとAn−Fe−Mnの巨大金属間化合物を形
成し、逆に加工性の低下を促すことになる。したがって
、Mn量は0.5〜2゜0%の範囲とする。 Mg: MgはCuと同じくベークハード型高強度キャン材に必
須の元素であると共に、Mg単独による固溶体強化に効
果がある元素である。Mg量が0.5%未満ではそれら
の効果がなく、また2、0%を超えるとCu添加の場合
と同様の製造上の問題が生ずることになる。したがって
、Mg量は0.5〜2.0%の範囲とする。 Fe: FeはMnとの組合せによるAΩ−Fe−Mnの金属間
化合物を形成し、加工性向上に効果がある元素である。 Fe量が0.2%未満ではその効果がなく、また0、7
%を超えると巨大な上記金属間化合物を形成して加工性
を低下させることになる。 したがって、Fe量は0.2〜0.7%の範囲とする。 なお、上記元素を必須成分とするアルミニウム合金には
Si、Zn、Cr、Ti、B等々の不純物が随伴され得
るが、各元素ともSiS2.5%、ZnS3.25%、
Cr≦0.3%、TiS2.2%、B≦0.05%の範
囲であれば、本発明の効果を損わないので許容される。 また、その他の不純物もできるだけ少ない方が望ましい
。 また、上記化学成分を有するベークハード型アルミニウ
ム合金板材では、板面の平均結晶粒幅が絞り加工後の耳
及び加工性(肌荒れ性、張出し性)に影響を及ぼすので
、板面の平均結晶粒幅を25〜50μmの範囲にする必
要があり、後述の本発明法の製造工程により容品に得る
ことができる。 なお、上記平均結晶粒幅が25μm未満の場合には、絞
り加工後の耳を低下させる立方体集合組織(100)<
001>の形成が少なく、耳高となり、また50μmを
超える場合には、絞り加工後の耳を低下させる上記集合
組織を形成し易くするものの、加工性の大幅な低下を招
くので、好ましくない。 次に、本発明法の製造工程について説明する。 上記化学成分を有するアルミニウム合金は常法により溶
解、鋳造し、得られた鋳塊に550〜600℃の温度で
24時間以内の加熱による均質化熱処理を施す必要があ
る。550℃未満の温度では均熱不充分による熱間圧延
割れや絞り加工後の耳高を招くことになり、また600
℃を超える温度の場合にはバーニングが発生し易くなる
ので、好ましくない。なお、加熱時間を24時間以内と
するのは、それ以上の加熱時間にしても効果が少ないた
めである。 均質化熱処理後の熱間圧延は通常の方法で行えばよいが
、熱間圧延終了後の板厚は、製品板についての絞り加工
後の耳及び加工性に影響を及ぼし、板厚が2r+a未満
では結晶粒が大きくなり、耳の抑制にとっては好ましい
ものの、張出し性や肌荒れ性を劣化させ、また8mmを
超えると逆に結晶粒が細かくなり、耳高となる。したが
って、最終熱間圧延板厚は2〜8mmとする必要がある
。 熱間圧延後、冷間圧延を行うが、この場合の冷間圧延率
が50%未満では熱間圧延の影響が部位により変化し易
く、実製造に際して安定性を欠くことになる。したがっ
て、熱間圧延後の冷間圧延は5o%以上の冷間圧延率で
行う必要がある。 上記冷間圧延後、中間焼鈍を2回行うが、その態様は部
分焼鈍(第1回)−軽圧延(冷間圧延)一完全焼鈍(第
2回)の工程によるものである。 まず、冷間圧延後の部分焼鈍は完全焼鈍の一歩手前にな
ることが重要である。これは、その後の軽圧延と完全焼
鈍との組合せにより低耳を得るための立方体集合組織を
形成することを目的とするためである。 本発明者の研究によれば、そのためには、部分焼鈍を加
熱冷却速度に応じて2通りの条件のいずれかで行う必要
がある。まず、加熱冷却速度が10℃/ll1n未満の
場合には、250〜300℃の温度に加熱することが適
切であり、250℃未満では上記効果が不充分となり、
また300℃を超えると完全焼鈍となり、部分焼鈍の意
義がなくなる。なお、この場合の保持時間は加熱温度に
より若干変化するが、安定性と生産性を考慮して1〜1
0時間の範囲とする。一方、加熱冷却速度が100℃/
min以上の場合には、300〜400℃の温度に加熱
することが適切であり、300℃未満では上記効果が不
充分となり、また400”Cを超えると完全焼鈍となり
、部分焼鈍の意義がなくなる。なお、この場合の保持時
間は、2分を超えると完全焼鈍となるので、2分以内で
実施する。 その後の軽圧延は適度の加工歪を与えるための冷間圧延
である。圧延率(軽圧延率)が15%未満では不足であ
り、35%を超えると過多となり、いずれもその後の完
全焼鈍において立方体集合組織の形成が不充分となる。 したがって、軽圧延は15〜35%の軽圧延率で実施す
る必要がある。 次の完全焼鈍は本発明法にとって最も重要な工程であっ
て、加熱冷却速度、加熱温度及び保持時間を適切にコン
トロールする必要がある。従来の完全焼鈍では加熱速度
のみを考慮し冷却速度を考慮しなかったのに対し、冷却
速度も規制対象とする。具体的には、加熱冷却速度が1
00℃/akin未満では結晶粒の成長が著しく加工性
の低下を招くことになり、また加熱温度が430℃未満
ではベークハード効果を得るためのCuの再固溶が不足
し、しかし600℃を超えるとバーニングを生じる。更
に保持時間は加熱温度にもよるが、10分を超えると時
間の浪費になると共に結晶粒の成長による加工性の低下
が著しくなる。したがって、完全焼鈍は加熱冷却速度1
00℃/min以上で、430〜600℃の温度で10
分以内の加熱条件で施すことが必要である。 完全焼鈍後の冷間圧延は、仕上冷延率をあまり低下させ
ないで強度の低下を防止しつつ、耳の抑制を図ることが
必要である。仕上冷延率が30%未満では強度が不充分
であり、しかし8o%を超えると絞り加工後の耳が高く
なる。したがって、最終仕上冷延率30〜80%で仕上
圧延を行う。 なお、以上の製造工程で得られたキャン材は、各種成形
過程中においてベーキングが施されるが、このベーキン
グの条件は特に制限されるものではない(例、200℃
X 10〜20m1n)。 (実施例) 次に本発明の実施例を示す。 太産且上 第1表に示す化学成分を有するアルミニウム合金の鋳塊
に580℃X10hrの均質化熱処理を施した後、熱間
圧延により4mmの板厚にし、その後、1.25mmま
で冷間圧延した。次いで第2表に示す各種条件で部分焼
鈍、軽圧延、完全焼鈍を施した後、最終圧延により板厚
0.3iamの製品板を得た。 これらの製品仮について、圧延のままとベーキング(2
00℃x 20 win)後の機械的性質を調べると共
に、耳率、張出し性及び板面の平均結晶粒幅を調べた。 それらの結果を第3表に示す。 なお、耳率は33膳■φポンチにて45%絞り率で絞り
加工したときの値であり、張出し性はエリクセン値(B
法)により評価した。 第3表より明らかなとおり、本発明範囲内の化学成分及
び製造工程により得られた製品板IE及び1工は、いず
れも圧延のままの引張強さくσB)よりもベーキング後
の引張強さが高いベークハード型の高強度材であること
を示すと共に、耳率は4%以下、張出し性は4.5■■
以上で低耳及び加工性が優れており、また結晶粒の平均
幅は25〜50μ■の範囲内であって、100μ鳳以上
の場合に生ずる肌荒れの問題は全くない。 これに対し、比較例IA〜ID及びIKは完全焼鈍条件
が本発明範囲外であるためにベークハード型となってお
らず、また比較例IF〜IH及びIJはベークハード型
を示してはいるものの、部分焼鈍条件又は軽圧延率が本
発明範囲外であるために平均結晶粒幅が本発明範囲外と
なり、耳率が4%以下とならず(比較例IF〜LH)、
張出し性が劣っている(比較例IF、IJ)。
(Industrial Application Field) The present invention relates to the production of can materials used for cans (bodies, ends) for beer, carbonated drinks, fruit juice, etc., and more specifically, the present invention relates to the production of can materials for cans (bodies, ends) for beer, carbonated drinks, fruit juice, etc. The present invention relates to a high-strength can material made of an alloy that can withstand thinning of can stock, and a method for manufacturing the same. (Prior Art) Two-piece aluminum cans used for beverage cans such as beer, carbonated drinks, and fruit juice cans consist of a body and an end, each of which is manufactured using a unique molding method. The main body forming process is drawing and ironing (D/machining), and due to this process, AA3004 hard plate is generally used as the body material. In addition, since the main process for forming the end is multi-stage drawing and stretching, the end material is AA5052.5082.5.
182 hard plate is often used. Incidentally, in recent years, efforts have been made to reduce thickness and weight in order to reduce costs, and for this reason, there has been a demand for higher strength of the aluminum alloy plate used as the material. There are various methods for increasing the strength, but common methods include solid solution strengthening and work hardening. According to this method, although it is possible to reduce the thickness by increasing the strength, there is a problem in that the moldability decreases. (Problems to be Solved by the Invention) Therefore, the development of canning materials that have high strength and improved formability is underway, and the present inventors have developed a bake-hard type canning material that hardens after baking coating. First published in 1988-
No. 126952 and No. 59-157249 were proposed. These methods are methods that control the conditions of homogenization heat treatment, hot rolling, cold rolling, intermediate annealing, etc. for the aluminum alloy of the required components, and are baked hard that has excellent workability despite being a high-strength material. You can get mold-canned materials. However, although it has excellent workability, the height of the edges that occur during drawing remains at the same level as conventional materials, so when trying to make the material thinner by increasing its strength, problems due to edge breakage may occur. There is fear;
There's a problem. On the other hand, although it is not a bake-hard type can material, there is a method proposed in JP-A-54-32113 for suppressing selvages during drawing processing. This method is a method in which intermediate annealing (partial annealing, complete annealing) is performed twice during cold rolling to lower the height of the drawing selvedge. According to this, AQ
-Mn -Mg-based alloy hard plate crystal size is 30~1
It is said that it is possible to keep the thickness to about 0.00 μm and prevent skin roughness. However, when such a can material is used to make the material thinner by increasing its strength, the crystal grains are relatively large and the range thereof is wide, so there is a problem in stretchability. The present invention has been made in response to the need for thinner can materials due to higher strength, and eliminates the drawbacks of the above-mentioned conventional techniques.In bake-hard type aluminum alloy sheet materials, it is possible to reduce the profile while maintaining high strength. The object of the present invention is to provide a high-strength can material that enables high formability and a method for producing the same. (Means for Solving the Problems) In order to achieve the above object, the present inventor has aimed to maintain the high strength of the conventional bake-hard type aluminum alloy can material, and to reduce roughness and formability due to the height of the edges and coarse grains. We conducted extensive research to find ways to solve problems such as the decline in As a result, it was first confirmed that the method of lowering the finish cold rolling rate and the method of two intermediate annealing described in JP-A No. 54-32113 are effective for lowering the edge. However, it has been found that both methods have problems. In other words, in the case of the former method of reducing the finishing cold rolling rate,
For example, in order to reduce the selvedge ratio from 4% to 3% or less, it is necessary to significantly reduce the finish cold rolling ratio, but this poses the problem of insufficient strength required for cans, and It is not a good idea to apply this method as is. On the other hand, in the case of the latter two-time intermediate annealing method, when the crystal grains are large (100 μm) as disclosed in the above publication,
I or above) has the problem of rough skin, and furthermore, according to the research conducted by the present inventors, when the crystal grain size is 50 μm or more, there is a problem that the overhang property is significantly reduced. Therefore, the inventor of the present invention found that the purpose of the present invention can be achieved with a manufacturing method that can reduce the grain size to at least 50 μm or less and does not significantly reduce the finish cold rolling rate. A more detailed research study was conducted on the relationship between the two-time intermediate annealing method, ear ratio, grain size, strength, and formability. As a result, it was found that the conditions of the two-time intermediate annealing method described above cannot be applied as is to the production of bake-hard type can materials, and that it is necessary to regulate many more factors, including the heating and cooling rate. . That is, although the selvage rate is most influenced by the first annealing conditions, it is also considerably influenced by the second annealing conditions, and under rapid heating and cooling conditions, high temperature short-time heating becomes lower.
It was confirmed that crystal grains, strength, and formability were also excellent under similar conditions. In other words, in the two-step intermediate annealing method, by appropriately controlling the second annealing conditions,
It was discovered that it was possible to obtain a bake-hard type high-strength can material with excellent surface roughness resistance and moldability, and based on this, the detailed conditions of the manufacturing process were further studied, and the present invention was completed. That is, the bake-hard type high-strength can material according to the present invention has Cu: 0.10 to 0.80%, Mn: 0°5 to 2.0%.
0%, Mg: 0.5-2.0% and Fe: 0.2-0.
7%, the remainder being substantially Al, and the average crystal grain width on the plate surface is 25 to 50%.
It is characterized by being μm. Further, the method for producing the bake-hard type high-strength can material according to the present invention includes Cu: 0.10 to 0.80%, Mn: 0
.. 5-2.0%, Mg: 0.5-2.0% and Fe: 0
.. An ingot of an aluminum alloy containing 2 to 0.7% of Al, with the remainder substantially consisting of Al, is subjected to homogenization heat treatment by heating at a temperature of 550 to 600°C for within 24 hours, and then hot rolled. 2-b elongation, and then, as the first intermediate annealing, heating and cooling rate of less than 10°C/min to 250-30°C for 1-1°C.
Partial annealing held for 0 hours or heating/cooling rate 100℃/
After performing partial annealing at 300 to 40oC for less than 2 minutes at a temperature of 300 to 400°C, followed by cold rolling at a rolling reduction of 15 to 35%, Cu and M are used to impart a bake-hard effect.
As a second intermediate annealing to forcibly dissolve g into a solid solution, complete annealing is performed by holding the temperature at 430 to 600 °C for less than 10 minutes at a heating and cooling rate of 100 °C/min, and then a final finishing rolling rate of 3
It is characterized by performing cold rolling of 0=80%. The present invention will be explained in detail below based on examples. First, the reason for limiting the chemical composition of the high-strength can material made of the bake-hard aluminum alloy of the present invention will be explained. Cu: Cu is an essential element for Al-Cu-Mg-based bake-hard type high-strength can materials. If it is less than 0.10%, there is no bake-hard effect, and if it exceeds 0.80%, there is a bake-hard effect. However, during manufacturing, cracks may occur during ingot formation or during hot rolling. Therefore, the amount of Cu is in the range of 0.10 to 0.80%. Mn: Mn is an element that is effective in improving strength and improving workability by forming an intermetallic compound of Al-Fe-Mn. There is no such effect when the amount of Mn is less than 0.5%, and when the amount of Mn is less than 0.5%, there is no such effect.
%, a giant intermetallic compound of An-Fe-Mn will be formed, which will conversely promote a decrease in workability. Therefore, the Mn content is set in the range of 0.5 to 2.0%. Mg: Like Cu, Mg is an essential element for bake-hard type high-strength can materials, and is also an element effective in solid solution strengthening using Mg alone. If the Mg amount is less than 0.5%, these effects will not be achieved, and if it exceeds 2.0%, manufacturing problems similar to those caused by the addition of Cu will occur. Therefore, the Mg amount is in the range of 0.5 to 2.0%. Fe: Fe is an element that forms an intermetallic compound of AΩ-Fe-Mn in combination with Mn and is effective in improving workability. If the amount of Fe is less than 0.2%, there is no effect, and if the amount of Fe is less than 0.2%,
If it exceeds %, a huge intermetallic compound will be formed and workability will be deteriorated. Therefore, the amount of Fe is set in the range of 0.2 to 0.7%. Note that impurities such as Si, Zn, Cr, Ti, and B may accompany an aluminum alloy containing the above elements as essential components, but each element contains 2.5% of SiS, 3.25% of ZnS, and 3.25% of ZnS.
The ranges of Cr≦0.3%, TiS2.2%, and B≦0.05% are acceptable because they do not impair the effects of the present invention. It is also desirable that other impurities be as small as possible. In addition, in bake-hard aluminum alloy sheets having the above chemical components, the average crystal grain width on the sheet surface affects the edges and workability (roughness, overhanging properties) after drawing, so the average crystal grain width on the sheet surface The width needs to be in the range of 25 to 50 μm, and can be obtained into a container by the manufacturing process of the present invention method described later. In addition, when the above-mentioned average grain width is less than 25 μm, a cubic texture (100) <
001>, resulting in an edge height, and if it exceeds 50 μm, it is not preferable because it facilitates the formation of the above-mentioned texture that lowers the edge after drawing, but it causes a significant decrease in workability. Next, the manufacturing process of the present invention will be explained. The aluminum alloy having the above chemical components must be melted and cast by a conventional method, and the resulting ingot must be subjected to homogenization heat treatment by heating at a temperature of 550 to 600°C for within 24 hours. If the temperature is less than 550°C, hot rolling cracks due to insufficient soaking and high edges after drawing will occur;
If the temperature exceeds .degree. C., burning is likely to occur, which is not preferable. The reason why the heating time is set to within 24 hours is that even if the heating time is longer than that, there is little effect. Hot rolling after homogenization heat treatment may be carried out in a normal manner, but the thickness of the plate after hot rolling will affect the edges and workability of the product plate after drawing, and the plate thickness should be less than 2r+a. If the size exceeds 8 mm, the crystal grains will become finer and the height of the ears will increase. Therefore, the final hot rolled plate thickness needs to be 2 to 8 mm. After hot rolling, cold rolling is performed, but if the cold rolling rate in this case is less than 50%, the effect of hot rolling tends to vary depending on the location, resulting in a lack of stability during actual production. Therefore, cold rolling after hot rolling needs to be performed at a cold rolling rate of 50% or more. After the above-mentioned cold rolling, intermediate annealing is performed twice, and the process is partial annealing (first time), light rolling (cold rolling), and complete annealing (second time). First, it is important that partial annealing after cold rolling is one step before complete annealing. This is for the purpose of forming a cubic texture for obtaining a low edge by a combination of subsequent light rolling and complete annealing. According to the research of the present inventor, for this purpose, it is necessary to perform partial annealing under one of two conditions depending on the heating and cooling rate. First, when the heating and cooling rate is less than 10°C/ll1n, it is appropriate to heat to a temperature of 250 to 300°C, and if it is less than 250°C, the above effect will be insufficient.
Further, when the temperature exceeds 300°C, complete annealing occurs, and partial annealing becomes meaningless. Note that the holding time in this case varies slightly depending on the heating temperature, but considering stability and productivity, the holding time is 1 to 1.
The range is 0 hours. On the other hand, the heating and cooling rate is 100℃/
If the temperature is higher than min, it is appropriate to heat to a temperature of 300 to 400°C; if it is less than 300°C, the above effects will be insufficient, and if it exceeds 400"C, complete annealing will occur, and partial annealing will be meaningless. In this case, the holding time should be within 2 minutes, as complete annealing will occur if it exceeds 2 minutes.The subsequent light rolling is cold rolling to give an appropriate working strain.Rolling rate ( If the light rolling ratio is less than 15%, it is insufficient, and if it exceeds 35%, it is excessive, and in either case, the formation of cubic texture will be insufficient in the subsequent complete annealing. The next complete annealing is the most important step for the method of the present invention, and it is necessary to appropriately control the heating and cooling rate, heating temperature, and holding time.In conventional complete annealing, heating Whereas only the speed was considered and the cooling rate was not considered, the cooling rate is also subject to regulation.Specifically, if the heating and cooling rate is 1
If the heating temperature is less than 00°C/akin, the growth of crystal grains will significantly reduce the workability, and if the heating temperature is less than 430°C, there will be insufficient re-dissolution of Cu to obtain the bake hard effect. Exceeding this will cause burning. Further, although the holding time depends on the heating temperature, if it exceeds 10 minutes, time is wasted and workability is significantly reduced due to crystal grain growth. Therefore, complete annealing requires a heating and cooling rate of 1
00℃/min or more, 10 at a temperature of 430 to 600℃
It is necessary to apply the heating condition within minutes. In the cold rolling after complete annealing, it is necessary to prevent the strength from decreasing without reducing the final cold rolling rate too much, and to suppress the formation of edges. If the finish cold rolling rate is less than 30%, the strength is insufficient, but if it exceeds 80%, the edges after drawing become high. Therefore, finish rolling is performed at a final finish cold rolling rate of 30 to 80%. The can material obtained through the above manufacturing process is subjected to baking during various molding processes, but the conditions for this baking are not particularly limited (for example, 200°C
X 10-20m1n). (Example) Next, an example of the present invention will be shown. An aluminum alloy ingot having the chemical composition shown in Table 1 above was subjected to homogenization heat treatment at 580°C for 10 hours, then hot rolled to a thickness of 4 mm, and then cold rolled to a thickness of 1.25 mm. did. Next, after performing partial annealing, light rolling, and complete annealing under various conditions shown in Table 2, a product plate having a thickness of 0.3 iam was obtained by final rolling. For these temporary products, as-rolled and baked (2
In addition to examining the mechanical properties after heating at 00°C x 20 wins, the selvedge ratio, overhanging property, and average grain width on the plate surface were also examined. The results are shown in Table 3. The selvage rate is the value obtained when drawing with a 33 mm diameter punch at a drawing rate of 45%, and the overhang property is the Erichsen value (B
method). As is clear from Table 3, the tensile strength after baking is higher than the tensile strength as rolled (σB) for the product plates IE and 1 manufactured by the chemical composition and manufacturing process within the scope of the present invention. In addition to showing that it is a highly baked hard type high strength material, the selvage rate is less than 4% and the overhang property is 4.5 ■■
As described above, it has a low edge and excellent workability, and the average width of the crystal grains is within the range of 25 to 50 μm, and there is no problem of rough skin that occurs when the grain size is 100 μm or more. On the other hand, Comparative Examples IA to ID and IK are not bake-hard type because the complete annealing conditions are outside the scope of the present invention, and Comparative Examples IF to IH and IJ are bake-hard type. However, because the partial annealing conditions or the light rolling rate were outside the scope of the present invention, the average grain width was outside the scope of the present invention, and the selvedge ratio was not less than 4% (Comparative Examples IF to LH).
The overhang properties are poor (Comparative Examples IF and IJ).

【以下余白】[Left below]

実施例2 第4表に示す化学成分を有するアルミニウム合金の鋳塊
に580℃X10hrの均質化熱処理を施した後、熱間
圧延により4filI11の板厚にし、更に冷間圧延に
より1.25mmとした。その後、実施例1の製造工程
E(第2表参照)により部分焼鈍、軽圧延、完全焼鈍を
施し、最終圧延により板厚0゜3mmの製品板を得た。 各製品板について、圧延のままとベーキング(200℃
X 20 m1n)後の機械的性質を調べると共に、実
施例1の場合と同様、耳率、張出し性及び板面の平均結
晶粒幅を調べた。それらの結果を第5表に示す。 第5表より、本発明例IE、IOEは、いずれもベーク
ハード型を示し、板面の平均結晶粒幅も25〜5Q7A
mの範囲内で、且つ耳率4%以下、張出し性4,5nv
以上であり、高強度、低耳、高成形性を示している。 一方、Cu Rの多い比較例3E及びMg量の多い比較
例7Eは熱間圧延時に割れが発生して製品に至らなかっ
た。比較例2EはCu量が少なくベークハード型を示さ
ず、またベークハード型を示したがMg量の少ない比較
例6Eは強度が低く、高強度化が難しい。Mn量の多い
比較例5EとFe量の多い比較例9Eは巨大初晶の金属
間化合物(最大120μm)を生成し、キャン材として
は不適当であると推察できた。一方、Mn量の少ない比
較例4EとFe量の少ない比較例8Eは金属間化合物が
少なく、平均結晶粒幅も55μm以上であり、絞り及び
しごき加工時に焼付きを呈した。
Example 2 An aluminum alloy ingot having the chemical composition shown in Table 4 was subjected to homogenization heat treatment at 580°C for 10 hours, then hot rolled to a thickness of 4filI11, and further cold rolled to a thickness of 1.25mm. . Thereafter, partial annealing, light rolling, and complete annealing were performed according to manufacturing process E (see Table 2) of Example 1, and a product plate with a thickness of 0.3 mm was obtained by final rolling. For each product plate, as-rolled and baked (200℃)
In addition to examining the mechanical properties after 20 m1n), as in Example 1, the selvedge ratio, overhang property, and average grain width on the plate surface were also examined. The results are shown in Table 5. From Table 5, both Inventive Examples IE and IOE are of the bake-hard type, and the average crystal grain width on the plate surface is also 25 to 5Q7A.
Within the range of m, ear rate 4% or less, overhang property 4.5nv
The above results indicate high strength, low selvage, and high moldability. On the other hand, in Comparative Example 3E with a large amount of CuR and Comparative Example 7E with a large amount of Mg, cracks occurred during hot rolling and the product could not be completed. Comparative Example 2E had a small amount of Cu and did not show a bake-hard type, and although it showed a bake-hard type, Comparative Example 6E, which had a small amount of Mg, had low strength and it was difficult to increase the strength. Comparative Example 5E with a large amount of Mn and Comparative Example 9E with a large amount of Fe produced a giant primary crystal intermetallic compound (maximum 120 μm), and it could be inferred that they were unsuitable as can materials. On the other hand, Comparative Example 4E with a small amount of Mn and Comparative Example 8E with a small amount of Fe had a small amount of intermetallic compounds, an average crystal grain width of 55 μm or more, and exhibited seizure during drawing and ironing.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、特定の化学成分
を有するアルミニウム合金に2回中間焼鈍を含む特定条
件の製造工程を適用してキャン材を製造するので、ベー
クハード型で高強度を有すると共に、板面の平均結晶粒
幅が25〜50μ徴の範囲にコントロールされ、低耳で
成形性に優れたキャン材を得ることができ、各種缶の軽
量薄肉化の要請に充分応えることが可能である。
(Effects of the Invention) As detailed above, according to the present invention, a can material is manufactured by applying a manufacturing process under specific conditions including two intermediate annealing to an aluminum alloy having a specific chemical composition. In addition to being hard type and having high strength, the average grain width on the plate surface is controlled within the range of 25 to 50 microns, making it possible to obtain a can material with low selvage and excellent formability, which is useful for making various cans lighter and thinner. It is possible to fully meet the request.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Cu:0.10〜0.
80%、Mn:0.5〜2.0%、Mg:0.5〜2.
0%及びFe:0.2〜0.7%を含有し、残部が実質
的にAlからなるアルミニウム合金板材であって、板面
の平均結晶粒幅が25〜50μmであることを特徴とす
るベークハード型高強度キャン材。
(1) In weight% (the same applies hereinafter), Cu: 0.10 to 0.
80%, Mn: 0.5-2.0%, Mg: 0.5-2.
0% and Fe: 0.2 to 0.7%, the remainder being substantially Al, and characterized by having an average grain width of 25 to 50 μm on the plate surface. Baked hard type high strength can material.
(2)Cu:0.10〜0.80%、Mn:0.5〜2
.0%、Mg:0.5〜2.0%及びFe:0.2〜0
.7%を含有し、残部が実質的にAlからなるアルミニ
ウム合金の鋳塊につき、550〜600℃の温度で24
時間以内の加熱による均質化熱処理を施した後、熱間圧
延により2〜8mm厚にし、引き続き圧延率50%以上
の冷間圧延を施し、その後、第1回目の中間焼鈍として
加熱冷却速度10℃/min未満で250〜300℃に
1〜10時間保持する部分焼鈍を施し、次いで圧延率1
5〜35%の冷間圧延を行った後、ベークハード効果を
付与するためのCu及びMgを強制固溶させる第2回目
の中間焼鈍として加熱冷却速度100℃/minで43
0〜600℃に10分以内保持する完全焼鈍を施し、し
かる後に最終仕上圧延率30〜80%の冷間圧延を行な
うことを特徴とするベークハード型高強度キャン材の製
造方法。
(2) Cu: 0.10-0.80%, Mn: 0.5-2
.. 0%, Mg: 0.5-2.0% and Fe: 0.2-0
.. 7%, the remainder being substantially Al, at a temperature of 550 to 600°C.
After homogenization heat treatment by heating within hours, hot rolling to a thickness of 2 to 8 mm, followed by cold rolling at a rolling rate of 50% or more, followed by first intermediate annealing at a heating and cooling rate of 10°C. Partial annealing is carried out by holding at 250-300°C for 1-10 hours at less than /min, and then the rolling rate is 1
After performing cold rolling of 5 to 35%, a second intermediate annealing in which Cu and Mg are forcibly dissolved in order to impart a bake-hard effect is performed at a heating and cooling rate of 100°C/min at 43°C.
A method for producing a bake-hard type high-strength can material, which comprises performing complete annealing at 0 to 600°C for 10 minutes or less, followed by cold rolling at a final finish rolling rate of 30 to 80%.
(3)Cu:0.10〜0.80%、Mn:0.5〜2
.0%、Mg:0.5〜2.0%及びFe:0.2〜0
.7%を含有し、残部が実質的にAlからなるアルミニ
ウム合金の鋳塊につき、550〜600℃の温度で24
時間以内の加熱による均質化熱処理を施した後、熱間圧
延により2〜8mm厚にし、引き続き圧延率50%以上
の冷間圧延を施し、その後、第1回目の中間焼鈍として
加熱冷却速度100℃/min以上で300〜400℃
に2分以内保持する部分焼鈍を施し、次いで圧延率15
〜35%の冷間圧延を行った後、ベークハード効果を付
与するためのCu及びMgを強制固溶させる第2回目の
中間焼鈍として加熱冷却速度100℃/minで430
〜600℃に10分以内保持する完全焼鈍を施し、しか
る後に最終仕上圧延率30〜80%の冷間圧延を行なう
ことを特徴とするベークハード型高強度キャン材の製造
方法。
(3) Cu: 0.10-0.80%, Mn: 0.5-2
.. 0%, Mg: 0.5-2.0% and Fe: 0.2-0
.. 7%, the remainder being substantially Al, at a temperature of 550 to 600°C.
After homogenization heat treatment by heating within hours, hot rolling to a thickness of 2 to 8 mm, followed by cold rolling at a rolling rate of 50% or more, followed by first intermediate annealing at a heating and cooling rate of 100°C. 300 to 400℃ at over /min
Partial annealing is carried out for up to 2 minutes, and then the rolling rate is 15.
After performing ~35% cold rolling, a second intermediate annealing is performed in which Cu and Mg are forced into solid solution to impart a bake-hard effect, at a heating and cooling rate of 100°C/min to 430°C.
A method for producing a bake-hard type high-strength can material, which comprises performing complete annealing at ~600°C for 10 minutes or less, followed by cold rolling at a final finish rolling rate of 30-80%.
JP11788887A 1987-05-14 1987-05-14 Bakehard type high strength can material and its production Pending JPS63282245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11788887A JPS63282245A (en) 1987-05-14 1987-05-14 Bakehard type high strength can material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11788887A JPS63282245A (en) 1987-05-14 1987-05-14 Bakehard type high strength can material and its production

Publications (1)

Publication Number Publication Date
JPS63282245A true JPS63282245A (en) 1988-11-18

Family

ID=14722707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11788887A Pending JPS63282245A (en) 1987-05-14 1987-05-14 Bakehard type high strength can material and its production

Country Status (1)

Country Link
JP (1) JPS63282245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192378A (en) * 1990-11-13 1993-03-09 Aluminum Company Of America Aluminum alloy sheet for food and beverage containers
US5362340A (en) * 1993-03-26 1994-11-08 Aluminum Company Of America Method of producing aluminum can sheet having low earing characteristics
US5362341A (en) * 1993-01-13 1994-11-08 Aluminum Company Of America Method of producing aluminum can sheet having high strength and low earing characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192378A (en) * 1990-11-13 1993-03-09 Aluminum Company Of America Aluminum alloy sheet for food and beverage containers
US5362341A (en) * 1993-01-13 1994-11-08 Aluminum Company Of America Method of producing aluminum can sheet having high strength and low earing characteristics
US5362340A (en) * 1993-03-26 1994-11-08 Aluminum Company Of America Method of producing aluminum can sheet having low earing characteristics

Similar Documents

Publication Publication Date Title
EP0059812B1 (en) Method for producing an aluminium alloy forming sheet
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JPS63282245A (en) Bakehard type high strength can material and its production
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
KR100716607B1 (en) Flat, rolled semi-finished product made of an aluminum alloy
EP3827109B1 (en) Method of manufacturing an al-mg-mn alloy plate product
JPH01123054A (en) Hard-baked-type high-strength can material and its production
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JPH08239729A (en) Production of aluminum alloy sheet excellent in di can bottom formability
JPH1161365A (en) Production of aluminum alloy sheet for deep drawing
JPH07233456A (en) Production of aluminum alloy sheet excellent in formability
JPS6254183B2 (en)
JPH0480979B2 (en)
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH0360910B2 (en)
JPH01198454A (en) Manufacture of aluminum alloy for wrapping characteristics of high strength and low directional properties
JPH04147936A (en) High strength aluminum alloy sheet for drawing and its manufacture
JPS6320437A (en) Aluminum alloy sheet having superior press workability and its manufacture
JPH03260040A (en) Manufacture of high strength al-mn series alloy sheet
JPH0361350A (en) Manufacture of aluminum alloy for drawing having high strength and low directional property
JPH0813109A (en) Production of aluminum alloy sheet for forming
JPH0225539A (en) Aluminum alloy hard plate for forming and its production
JPS63145758A (en) Production of al alloy sheet for packaging
JPS6280256A (en) Manufacture of material for redrawn vessel
JPH02117704A (en) Manufacture of aluminum alloy sheet for can end