JPS63281483A - Bimorph element - Google Patents

Bimorph element

Info

Publication number
JPS63281483A
JPS63281483A JP62116439A JP11643987A JPS63281483A JP S63281483 A JPS63281483 A JP S63281483A JP 62116439 A JP62116439 A JP 62116439A JP 11643987 A JP11643987 A JP 11643987A JP S63281483 A JPS63281483 A JP S63281483A
Authority
JP
Japan
Prior art keywords
longitudinal
piezoelectric
parts
type piezoelectric
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62116439A
Other languages
Japanese (ja)
Inventor
Toshiya Ishikawa
敏也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP62116439A priority Critical patent/JPS63281483A/en
Publication of JPS63281483A publication Critical patent/JPS63281483A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To improve energy conversion efficiency and response speed, by constituting a bimorph element wherein longitudinal effect type piezoelectric members and conducting members are alternately arranged in the longitudinal direction of a first and a second piezoelectric element parts fixed on both surfaces of an elastic shim. CONSTITUTION:First piezoelectric element parts 2 and second piezoelectric element parts 3 face each other on conducting parts 5, when a negative voltage is applied to one of the conducting parts, and a positive voltage is applied to the other one of the conducting parts, an electric field as shown by arrows (b) generates in a longitudinal type piezoelectric body 4 of piezoelectric element parts 2, 3. The longitudinal type piezoelectric body 4 of the first piezoelectric element part 2 extends, in which the polarization direction shown by arrows (a) is identical to the direction of electric field. The longitudinal type piezoelectric body 4 of the second piezoelectric element part 3 contracts, in which the polarization direction is inverse to the electric field. Then a bimorph element bends perpendicularly to the longitudinal direction, by the effect of difference between the extension and contraction in the longitudinal direction. Therefore the extension contraction of the longitudinal type piezoelectric body 4 is effectively utilized for the bending of the bimorph element, so that the energy conversion efficiency is higher, the generated force is larger, and the response speed is faster.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、縦効果型圧電体を用いたバイモルフ素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a bimorph element using a longitudinal effect type piezoelectric material.

B1発明の概要 本発明は、弾性シムの両面に第1及び第2の圧電素子部
をそれぞれ固定し、この第1及び第2の圧電素子部には
長手方向に縦効果型圧電体と導電部とを交互に配設する
ことにより、 エネルギー変換効率が高(、発生力も大きく、さらに、
応答速度も早いバイモルフ素子を提供できるという効果
を奏する。
B1 Summary of the Invention The present invention fixes first and second piezoelectric element parts on both sides of an elastic shim, and the first and second piezoelectric element parts are provided with a longitudinal effect piezoelectric material and a conductive part in the longitudinal direction. By arranging them alternately, the energy conversion efficiency is high (and the generated power is large,
This has the effect of providing a bimorph element with a fast response speed.

C従来の技術 従来のバイモルフ素子は、第5図に示すように、弾性シ
ム1の両面に横効果型圧電体10.10をそれぞれ固定
し、この横効果型圧電体10.10の厚み方向にはそれ
ぞれ導電部5,5が設けられている。そして、上方の横
効果型圧電体10と下方の横効果型圧電体10とに一方
が伸長し、他方が収縮すべく電圧を印加すると、それら
の長手方向の伸びと縮みの差からバイモルフ素子の先端
が、第5図にて一点鎖線で示すように、長手方向と垂直
方向に変位するよう構成されている。
C. PRIOR TECHNOLOGY As shown in FIG. 5, in a conventional bimorph element, transverse effect type piezoelectric bodies 10.10 are fixed on both sides of an elastic shim 1, and the thickness direction of the transverse effect type piezoelectric bodies 10.10 is are provided with conductive parts 5, 5, respectively. When a voltage is applied to the upper transverse effect type piezoelectric body 10 and the lower transverse effect type piezoelectric body 10 so that one of them expands and the other contracts, the bimorph element The tip is configured to be displaced in a direction perpendicular to the longitudinal direction, as shown by a dashed line in FIG.

D1発明が解決しようとする問題点 しかしながら、横効果型圧電体10.10は、その性質
上エネルギー変換効率が低く、また、発生力も弱く、さ
らに、応答速度も遅いという不具合があり、これを使用
するバイモルフ素子にも同様の欠点が生ずるという問題
点がある。
D1 Problems to be Solved by the Invention However, transverse effect type piezoelectric materials 10.10 have the disadvantages of low energy conversion efficiency due to their nature, weak generation force, and slow response speed. Similar drawbacks occur in bimorph devices.

そこで、本発明は上述の欠点を解消したバイモルフ素子
を提供することを目的とする。
Therefore, an object of the present invention is to provide a bimorph element that eliminates the above-mentioned drawbacks.

E8問題点を解決するための手段 上記目的を達成するための本発明の構成は、可撓性を有
する弾性シムと、この弾性ツムの両面にそれぞれ固定さ
れた第1及び第2の圧電素子部とを備え、この第1及び
第2の圧電素子部は長手方向に縦効果型圧電体と導電部
とを交互に配設し前記縦効果型圧電体は長手方向に分極
方向を有し、前記導電部には前記第1及び第2の圧電素
子部の縦効果型圧電体の一方を伸長させ他方を収縮させ
るべく電圧を印加したことを特徴とするバイモルフ素子
Means for Solving Problem E8 The structure of the present invention for achieving the above object includes a flexible elastic shim, and first and second piezoelectric element parts each fixed to both sides of the elastic shim. The first and second piezoelectric element portions have longitudinal effect piezoelectric bodies and conductive parts arranged alternately in the longitudinal direction, and the longitudinal effect piezoelectric body has a polarization direction in the longitudinal direction, and the longitudinal effect piezoelectric body has a polarization direction in the longitudinal direction. A bimorph element, characterized in that a voltage is applied to the conductive part so as to expand one of the longitudinal effect type piezoelectric bodies of the first and second piezoelectric element parts and contract the other.

F1作用 従って、導電部に所定の電圧を印加すると、例えば第1
の圧電素子部の縦効果型圧電体が長平方向に伸長し、第
2の圧電素子部の縦効果型圧電体が長手方向に収縮し、
これらの長手方向の伸長と=3= 収縮の差からバイモルフ素子はたわむ。
F1 action Therefore, when a predetermined voltage is applied to the conductive part, for example, the first
The longitudinal effect type piezoelectric body of the piezoelectric element part expands in the longitudinal direction, the longitudinal effect type piezoelectric body of the second piezoelectric element part contracts in the longitudinal direction,
The bimorph element deflects due to the difference between these longitudinal extensions and =3=contractions.

G 実施例 以下、本発明の実施例を図面を用いて説明する。G Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は平面図を示す。第2図は第1図のA−A線拡大
断面図を示し、説明のため長手方向の分割数を少なくし
、厚み方向に強調した図としである。
FIG. 1 shows a plan view. FIG. 2 shows an enlarged sectional view taken along the line A--A in FIG. 1, and for the sake of explanation, the number of divisions in the longitudinal direction is reduced and the thickness direction is emphasized.

第1図及び第2図において、平板状の弾性シムlは、例
えば絶縁性樹脂材より形成され、長手の板曲げ方向に対
して可撓性を有している。この弾性シムlの両面には第
1の圧電素子部2と第2の圧電素子部3とがそれぞれ固
定されている。
In FIGS. 1 and 2, a flat elastic shim 1 is made of, for example, an insulating resin material, and is flexible in the direction of longitudinal plate bending. A first piezoelectric element section 2 and a second piezoelectric element section 3 are fixed to both surfaces of the elastic shim l, respectively.

第1の圧電素子部2と第2の圧電素子部3とは、バイモ
ルフ素子の長手方向(第1図のB−B方向)に縦効果型
圧電体4と導電部5とが交互に配設されている。
In the first piezoelectric element part 2 and the second piezoelectric element part 3, longitudinal effect piezoelectric bodies 4 and conductive parts 5 are arranged alternately in the longitudinal direction of the bimorph element (B-B direction in FIG. 1). has been done.

前記縦効果型圧電体4は、バイモルフ素子の長手方向(
第1図のB−B方向)に分極方向を有すると共に、第2
図に示す如く中立面(N−N)に対して外側に向かうに
従ってその厚み寸法tが厚く構成されている。この厚み
寸法tの傾斜はバイモルフ素子が屈曲した場合に中立面
(N−N)の垂直断面に生ずる垂直応力又はそれに伴う
変形に対応するよう構成することが好適である。
The longitudinal effect type piezoelectric body 4 is arranged in the longitudinal direction (
It has a polarization direction (B-B direction in Fig. 1), and has a polarization direction in
As shown in the figure, the thickness t increases toward the outside with respect to the neutral plane (N-N). It is preferable that the slope of the thickness dimension t is configured to correspond to the vertical stress generated in the vertical cross section of the neutral plane (N--N) or the accompanying deformation when the bimorph element is bent.

前記導電部5は、一つ隔てた導電部5同士が接続部5a
を介してそれぞれ接続されていると共に隣り合う導電部
5同士は例えば空隙部分よりなる絶縁部6をもって短絡
が防止されている。この一対の導電部5の接続部5aに
はそれぞれリード線7を介して制御装置(図示せず)に
接続されている。又、第2図に示すように、導電部5の
厚さbとバイモルフ素子の長手方向の全長りとの関係が
L≦nb(n:縦効果型圧電体4の個数)になるように
設計すれば、例えば第5図に示した従来の横効果型圧電
体による同一寸法のバイモルフ素子と比較した場合に圧
電体と導電部との接触表面積が同等かそれ以上となり、
且つ、圧電体の厚みも薄くなるためより電界の効果が向
上し効率良くなる。さらに、導電部5の厚さbは弾性シ
ムIの厚さよりも厚い方がバイモルフ素子が屈曲しやす
く好ましい。
In the conductive parts 5, the conductive parts 5 separated by one are connected to each other by a connecting part 5a.
The conductive parts 5 which are adjacent to each other and are connected to each other through the conductive parts 5 are prevented from being short-circuited by an insulating part 6 formed of, for example, a gap. The connecting portions 5a of the pair of conductive portions 5 are each connected to a control device (not shown) via lead wires 7. Further, as shown in FIG. 2, the design is such that the relationship between the thickness b of the conductive part 5 and the total length in the longitudinal direction of the bimorph element is L≦nb (n: the number of longitudinal effect type piezoelectric bodies 4). If this is done, the contact surface area between the piezoelectric body and the conductive part will be equal to or greater than, for example, a bimorph element of the same size made of a conventional transverse effect type piezoelectric body shown in FIG.
In addition, since the thickness of the piezoelectric body is reduced, the effect of the electric field is further improved and efficiency is improved. Further, it is preferable that the thickness b of the conductive portion 5 is thicker than the thickness of the elastic shim I so that the bimorph element can be easily bent.

前記制御装置は、第1の圧電素子部2の縦効果型圧電体
4と第2の圧電素子部3の縦効果型圧電体4とにそれぞ
れ異なる方向に電界が生ずるべく導電部5に電圧を印加
する。即ち、第1及び第2の圧電素子部2.3の縦効果
型圧電体4の一方を伸長させ他方を収縮させるべく電圧
を印加する。
The control device applies a voltage to the conductive part 5 so that electric fields are generated in different directions in the longitudinal effect piezoelectric body 4 of the first piezoelectric element part 2 and the longitudinal effect type piezoelectric body 4 of the second piezoelectric element part 3, respectively. Apply. That is, a voltage is applied to expand one of the longitudinal effect type piezoelectric bodies 4 of the first and second piezoelectric element sections 2.3 and contract the other.

保護膜8は、バイモルフ素子の全周囲を覆い導電部5及
び縦効果型圧電体4を摩擦や短絡から保護している。こ
の保護膜8は、PET、テフロン。
The protective film 8 covers the entire periphery of the bimorph element to protect the conductive portion 5 and the longitudinal effect piezoelectric body 4 from friction and short circuits. This protective film 8 is made of PET or Teflon.

エポキシなどの潤滑性、絶縁性、耐候性に優れた高分子
材から構成するのが好ましい。
It is preferable to use a polymeric material such as epoxy that has excellent lubricity, insulation, and weather resistance.

次に、上記バイモルフ素子の製造方法の具体例を説明す
る。
Next, a specific example of the method for manufacturing the above-mentioned bimorph element will be explained.

先ず、平板状の弾性シムlの両面に導電体の膜を蒸着若
しくは接着して導電性フィルム層を形成しその両表面に
所定のエツチングを施して導電部5を形成する。ここで
導電部5のテーパー面はエツチングまたは斜め方向から
のイオンビーム照射等により形成される。また、導電部
5は弾性シム1の両面に略櫛形の導電体パターンをパタ
ーン印−7〜 刷することによって形成してもよい。
First, a conductive film layer is formed by vapor depositing or adhering a conductive film on both sides of a flat elastic shim 1, and a predetermined etching is performed on both surfaces to form a conductive part 5. Here, the tapered surface of the conductive portion 5 is formed by etching or ion beam irradiation from an oblique direction. Further, the conductive portion 5 may be formed by printing a substantially comb-shaped conductor pattern on both sides of the elastic shim 1.

次に、隣り合う導電部5間に縦効果型圧電体4を下記の
いずれかの方法により配置させる。
Next, the longitudinal effect type piezoelectric body 4 is arranged between the adjacent conductive parts 5 by one of the following methods.

■スパッタなどの薄膜作成法を用い、導電部5間にセラ
ミックスなどの圧電体を積層する。この場合、導電部5
のパターンのレジストを剥がさずに圧電体を積層し最後
にレジストに剥がせば円滑な導電部5表面が得られ好ま
しい。
(2) A piezoelectric material such as ceramics is laminated between the conductive parts 5 using a thin film forming method such as sputtering. In this case, the conductive part 5
It is preferable to stack the piezoelectric bodies without peeling off the resist pattern, and then peel off the resist at the end, since a smooth surface of the conductive portion 5 can be obtained.

■溶液法や混練法などにより微細圧電セラミックス粉末
を高分子中に分散させたものを導電部5間に挿入し、こ
れをそのままの状態で加熱処理などによって固化させる
(2) A fine piezoelectric ceramic powder dispersed in a polymer by a solution method or a kneading method is inserted between the conductive parts 5, and then solidified as it is by heat treatment or the like.

■超微粒子にした圧電セラミックスを超高速に加速して
素子の表面に吹き付けこれをそのまま積層しセラミック
ス化する。尚、前記■と同様に、超微粒子にした圧電セ
ラミックスの吹き付けは導電部5のパターンのレジスト
を剥がさずに行う方が好ましい。
■Piezoelectric ceramics made into ultra-fine particles are accelerated at ultra-high speed and sprayed onto the surface of the element to form ceramics by laminating them as they are. Incidentally, as in the case (2) above, it is preferable to spray the ultrafine piezoelectric ceramic particles without peeling off the resist pattern of the conductive portion 5.

また、グリーンシート法によって導電部5と縦効果型圧
電体4は一体的に製造する場合にはグリーンシート法を
用いて形成した縦効果型圧電体4に蒸着等によって導電
部5を形成することを繰り返してバイモルフ素子の長さ
に積層化したものを所定幅に縦に切って弾性シムlの両
面に貼り付けこれを焼成して形成する。グリーンシート
法による縦効果型圧電体4の形成及び蒸着等による導電
部5の形成の際にテーパーをつけることによりテーパー
面を形成することができる。
In addition, when the conductive part 5 and the longitudinal effect type piezoelectric body 4 are manufactured integrally by the green sheet method, the conductive part 5 is formed by vapor deposition or the like on the longitudinal effect type piezoelectric body 4 formed using the green sheet method. This is repeated to form a bimorph element with the same length as the bimorph element, which is then cut vertically into a predetermined width and pasted on both sides of the elastic shim 1, which is then fired to form the laminate. A tapered surface can be formed by providing a taper when forming the longitudinal effect type piezoelectric body 4 by the green sheet method and forming the conductive part 5 by vapor deposition or the like.

以上のいずれかの方法により導電部5間に圧電体を配置
すると、導電部5の接続部5aにリード線7を接続し導
電部5に高電圧を印加して分極処理を施す。
When the piezoelectric body is placed between the conductive parts 5 by any of the above methods, the lead wire 7 is connected to the connection part 5a of the conductive part 5, and a high voltage is applied to the conductive part 5 to perform polarization treatment.

最後に、バイモルフ素子の全表面に保護膜8を覆えば製
造が完了する。製造されたバイモルフ素子は所定の箇所
に組み付けられリード線7の先端が制御装置に接続され
る。
Finally, the entire surface of the bimorph element is covered with the protective film 8 to complete the manufacturing process. The manufactured bimorph element is assembled at a predetermined location, and the tip of the lead wire 7 is connected to a control device.

次に、前記バイモルフ素子の駆動原理を第3図を参考に
して説明する。
Next, the driving principle of the bimorph element will be explained with reference to FIG.

第1の圧電素子部2と第2の圧電素子部3との縦効果型
圧電体4は第3図のa矢印に示す如く同一方向で、且つ
、隣接する縦効果型圧電体4同士は互いに異なる方向に
分極処理がなされている場合として説明する。
The longitudinal effect type piezoelectric bodies 4 of the first piezoelectric element part 2 and the second piezoelectric element part 3 are in the same direction as shown by the arrow a in FIG. A case will be explained in which polarization processing is performed in different directions.

第1図の圧電素子部2と第2の圧電素子部3との対向す
る導電部5に一方が負で他方が正の電極となるべく電圧
を印加すると、第1及び第2の圧電素子部2.3の縦効
果型圧電体4には第3図のb矢印に示す如く反対方向の
電界が生じ、電界方向と分極方向とが同一方向である第
1の圧電素子部2の縦効果型圧電体4は伸長し、電界方
向と分極方向とが反対方向である第2の圧電素子部3の
縦効果型圧電体4は収縮する。すると、このバイモルフ
素子の長手方向の伸びと縮みとの差からバイモルフ素子
は第3図に示すように長手方向と垂直方向にたわむ。こ
の実施例では、縦効果型圧電体4の厚み寸法tを中立面
(N−N)から外側に向かうに従って厚くしたので、縦
効果型圧電体4の伸長又は収縮の変形が中立面(N−N
)から外側に向かうに従って大きくなり縦効果型圧電体
4の伸長・収縮がバイモルフ素子のたわみに有効に一1
1= 利用される。
When a voltage is applied to the opposing conductive parts 5 of the piezoelectric element part 2 and the second piezoelectric element part 3 in FIG. In the longitudinal effect type piezoelectric body 4 of .3, an electric field in the opposite direction is generated as shown by the arrow b in Fig. 3, and the longitudinal effect type piezoelectric body 4 of the first piezoelectric element part 2 whose electric field direction and polarization direction are the same direction is generated. The body 4 expands, and the longitudinal effect type piezoelectric body 4 of the second piezoelectric element portion 3 in which the electric field direction and the polarization direction are opposite to each other contracts. Then, due to the difference between elongation and contraction in the longitudinal direction of the bimorph element, the bimorph element bends in a direction perpendicular to the longitudinal direction as shown in FIG. In this embodiment, the thickness t of the longitudinal effect type piezoelectric body 4 is increased from the neutral plane (N-N) toward the outside, so that the deformation of the longitudinal effect type piezoelectric body 4 due to expansion or contraction is caused by the neutral plane (N-N). N-N
) becomes larger toward the outside, and the expansion and contraction of the longitudinal effect type piezoelectric body 4 effectively affects the deflection of the bimorph element.
1 = used.

なお、バイモルフ素子としての動作を得るためには必ず
しも縦効果型圧電体4の厚み寸法tを変化させる必要は
ないので、縦効果型圧電体4の厚み寸法tを中立面(N
−N)から外側に向かって同一寸法としてもよい。
Note that in order to obtain the operation as a bimorph element, it is not necessarily necessary to change the thickness dimension t of the longitudinal effect type piezoelectric body 4, so the thickness dimension t of the longitudinal effect type piezoelectric body 4 is set to the neutral plane (N
-N) may have the same dimensions outward.

また、導電部5に印加する電圧の正、負の方向を逆にす
るとバイモルフ素子は逆方向にたわむ。
Furthermore, when the positive and negative directions of the voltage applied to the conductive portion 5 are reversed, the bimorph element deflects in the opposite direction.

なお第3図では、弾性シム1を挾んで対向する圧電体4
に対して同一方向に分極処理を施した場合を示したが、
互いに逆方向に分極処理を施してもよい。この場合には
弾性シム1を挾んで対向する導電部5の両方に正または
負の電圧を印加する。
In addition, in FIG. 3, the piezoelectric body 4 facing the elastic shim 1 is shown
The case where polarization treatment is applied in the same direction is shown,
Polarization treatments may be performed in mutually opposite directions. In this case, a positive or negative voltage is applied to both conductive parts 5 facing each other with the elastic shim 1 in between.

第4図において、他の実施例が示され前記実施例と異な
る箇所は弾性シム1の構成のみであり他−12= の構成は前記実施例と同一であるため図面に同一符号を
付してその説明を省略する。
In FIG. 4, another embodiment is shown, and the only difference from the previous embodiment is the configuration of the elastic shim 1, and the other configurations -12= are the same as in the previous embodiment, so the same reference numerals are given in the drawings. The explanation will be omitted.

即ち、この実施例では弾性シム1は金属フィルムや板1
aの両面に絶縁膜やフィルムlbを形成して構成されて
いる。このように構成しても前記実施例と同様の作用・
効果が得られる。
That is, in this embodiment, the elastic shim 1 is a metal film or plate 1.
It is constructed by forming an insulating film or film lb on both sides of a. Even with this configuration, the same effect and function as in the above embodiment can be achieved.
Effects can be obtained.

H1発明の効果 以上述べたように本発明によれば、弾性シムの両面に第
1及び第2の圧電素子部をそれぞれ固定しこの第1及び
第2の圧電素子部には長手方向に縦効果型圧電体と導電
部とを交互に配設してバイモルフ素子を構成したので、
エネルギー変換効率がよく(約70〜80%)、発生力
も大きく(横効果型圧電体の場合の約10倍)、さらに
応答速度も早いという効果を奏する。
H1 Effects of the Invention As described above, according to the present invention, the first and second piezoelectric element portions are respectively fixed on both sides of the elastic shim, and the first and second piezoelectric element portions have a longitudinal effect in the longitudinal direction. Since the bimorph element was constructed by alternately arranging the type piezoelectric material and the conductive part,
It has a good energy conversion efficiency (about 70 to 80%), a large generated force (about 10 times that of a transverse effect type piezoelectric material), and a fast response speed.

また、縦効果型圧電体と導電部とを交互に配設する構成
なので、導電部間を微小間隔とするバイモルフ素子を作
成することができ低電圧駆動(lV以下)が可能となり
、その結果、昇圧トランスやリレーなどが不要でマイコ
ンなどによる直接制御ができるという効果を奏する。
In addition, since the longitudinal effect piezoelectric material and the conductive parts are arranged alternately, it is possible to create a bimorph element with minute intervals between the conductive parts, and low voltage drive (1V or less) is possible. This has the advantage of not requiring step-up transformers or relays, and can be directly controlled by a microcomputer.

さらに、構造も割りと簡単であるため、大量生産化、自
動生産化や小型軽量化に供するという効果もある。
Furthermore, since the structure is relatively simple, it can be used for mass production, automatic production, and reduction in size and weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の実施例を示し、第1図はバ
イモルフ素子の断面図、第2図は第1図のA−A線拡大
断面図、第3図は駆動原理を説明する図、第4図は他の
実施例を示すバイモルフ素子の断面図であり、第5図は
従来例を示すバイモルフ素子の断面図である。 l・・・弾性シム、2・・第1の圧電素子部、3・・第
2の圧電素子部、4・・縦効果型圧電体、5・・・導電
部。
1 to 4 show embodiments of the present invention, FIG. 1 is a sectional view of a bimorph element, FIG. 2 is an enlarged sectional view taken along line A-A in FIG. 1, and FIG. 3 explains the driving principle. FIG. 4 is a sectional view of a bimorph element showing another embodiment, and FIG. 5 is a sectional view of a bimorph element showing a conventional example. l... Elastic shim, 2... First piezoelectric element part, 3... Second piezoelectric element part, 4... Longitudinal effect type piezoelectric body, 5... Conductive part.

Claims (1)

【特許請求の範囲】[Claims]  可撓性を有する弾性シムと、この弾性シムの両面にそ
れぞれ固定された第1及び第2の圧電素子部とを備え、
この第1及び第2の圧電素子部は長手方向に縦効果型圧
電体と導電部とを交互に配設し前記縦効果型圧電体は長
手方向に分極方向を有し、前記導電部には前記第1及び
第2の圧電素子部の縦効果型圧電体の一方を伸長させ他
方を収縮させるべく電圧を印加したことを特徴とするバ
イモルフ素子。
comprising a flexible elastic shim, and first and second piezoelectric element parts respectively fixed to both sides of the elastic shim,
The first and second piezoelectric elements have longitudinal effect piezoelectric bodies and conductive parts arranged alternately in the longitudinal direction, the longitudinal effect piezoelectric body having a polarization direction in the longitudinal direction, and the conductive part having a polarization direction in the longitudinal direction. A bimorph element, characterized in that a voltage is applied to extend one of the longitudinal effect type piezoelectric bodies of the first and second piezoelectric element parts and contract the other.
JP62116439A 1987-05-13 1987-05-13 Bimorph element Pending JPS63281483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62116439A JPS63281483A (en) 1987-05-13 1987-05-13 Bimorph element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62116439A JPS63281483A (en) 1987-05-13 1987-05-13 Bimorph element

Publications (1)

Publication Number Publication Date
JPS63281483A true JPS63281483A (en) 1988-11-17

Family

ID=14687134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62116439A Pending JPS63281483A (en) 1987-05-13 1987-05-13 Bimorph element

Country Status (1)

Country Link
JP (1) JPS63281483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038710A (en) * 2004-07-28 2006-02-09 Hiroshima Univ Bending deformation sensor and deformation measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038710A (en) * 2004-07-28 2006-02-09 Hiroshima Univ Bending deformation sensor and deformation measuring device

Similar Documents

Publication Publication Date Title
US4752712A (en) Piezoelectric laminate stack
JP2001503920A (en) Driving or adjusting element by piezoelectric actuator
DE19745468C1 (en) Piezoelectric actuator
US5266862A (en) Piezoelectric actuator
JPH04112683A (en) Electrostatic actuator
JPS63281483A (en) Bimorph element
JPH10144974A (en) Piezoelectric actuator and its manufacturing method
EP4177976A1 (en) Piezoelectric element
JP2645832B2 (en) Vertical effect type monomorph element and driving method thereof
JPH0394487A (en) Piezoelectric actuator
JPH03183371A (en) Multilayer piezoelectric actuator
JP2529875Y2 (en) Ultrasonic motor
JPH0443684A (en) Laminated bimorph type piezoelectric element
JPH01161882A (en) Manufacture of laminated piezoelectric actuator element
JPH0334383A (en) Laminated ceramic piezoelectric actuator
US20230058604A1 (en) Piezoelectric element
JPH0372684A (en) Lamination type piezoelectric element
JPH0314055Y2 (en)
JPS61170082A (en) Laminated bimorph
JPH01226187A (en) Method of driving laminated piezoelectric element
JP3017784B2 (en) Stacked displacement element
JPS58145502A (en) Piezoelectric driver
JP3184991B2 (en) Multilayer piezoelectric actuator
JP3280924B2 (en) Piezoelectric / electrostrictive actuator
JPS63232382A (en) Piezoelectric displacement element