JPS63280786A - Composition for gasket - Google Patents

Composition for gasket

Info

Publication number
JPS63280786A
JPS63280786A JP11480187A JP11480187A JPS63280786A JP S63280786 A JPS63280786 A JP S63280786A JP 11480187 A JP11480187 A JP 11480187A JP 11480187 A JP11480187 A JP 11480187A JP S63280786 A JPS63280786 A JP S63280786A
Authority
JP
Japan
Prior art keywords
gasket
composition
weight
fiber
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11480187A
Other languages
Japanese (ja)
Inventor
Katsuyuki Nakamura
克之 中村
Yukinari Komatsu
小松 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11480187A priority Critical patent/JPS63280786A/en
Publication of JPS63280786A publication Critical patent/JPS63280786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled composition, containing carbon fibers prepared by a vapor growth method and having improved airtightness, heat, oil, antifreeze, chemical, solvent resistance, etc., and excellent mechanical strength, dispersibility and joining properties. CONSTITUTION:The aimed composition containing normally >=0.1wt.% (optimally 2-98wt.%) carbon fibers, having preferably 7.1-6.88 (optimally 7.06-6.89) lattice constant in structural analysis by X-ray diffractometry, consisting of a readily graphitizable substance, etc., and prepared by a vapor growth method. Furthermore, the above-mentioned fibers preferably have a fine fiber diameter and >=10 (optimally >=100) ratio of the fiber length/fiber diameter.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気密性および耐熱性に優れ次ガスケット用組
成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a composition for a gasket having excellent airtightness and heat resistance.

従来、ガスケットとしては各種のものがあるが、本発明
は、特に耐熱性を要求されるガスケット、例えば、エン
ジンのシリンダブロック上面とシリンダヘッド下面との
間に挾持し両面間の気密保持を図る次めのシリンダへラ
ドガスケット、あるいは、エンジンのエキシストマニホ
ルド部分の気密を保持するガスケットなど、高温となる
部分に使用するガスケットの構成材料として用いるに適
し次組酸物であって、例えば、金属板製の芯材の両面V
C積層するなどして適用される。
Conventionally, there are various types of gaskets, but the present invention is a gasket that requires particularly heat resistance, such as a gasket that is sandwiched between the top surface of an engine's cylinder block and the bottom surface of the cylinder head to maintain airtightness between both surfaces. It is suitable for use as a constituent material of gaskets used in high-temperature parts, such as cylinder head gaskets or gaskets that maintain airtightness in the exhaust manifold part of engines. Both sides of the core material made of V
It is applied by laminating C.

(従来の技術) 従来、例えば、シリンダへラドガスケットは、少量のゴ
ムを結合剤として用い、これにアスベストを混練した組
成物を金属板製の芯材の両面に積層した4のが使用され
ていた。しかし、ここで用いるアスベストは、その粉塵
が人体へ傷害を与える恐れが有ることから、他の材料へ
代替が必要に成ってき次。
(Prior art) Conventionally, for example, cylinder head gaskets have been made using a small amount of rubber as a binder and a composition made by kneading asbestos into this and laminating it on both sides of a metal plate core material. Ta. However, since the asbestos dust used here can cause injury to humans, it has become necessary to use other materials instead.

(発明が解決しようとする問題点) このため、アスベストに代わる材料が種々検討されてい
る。
(Problems to be Solved by the Invention) For this reason, various materials to replace asbestos are being studied.

例えば、有機繊維を炭化して作る炭素繊維や、ピッチを
紡糸後戻化して作る炭素繊維を用いる試みである。しか
し、この方法ではシール性に乏しく実用化が困難であっ
た。このため、粒状の膨張黒鉛を用いる方法が提案され
ている。しかし、この方法ではコストが高いばかりでな
く、耐油性、耐不凍液性が乏しく、これに起因する使用
時のシール性の低下が認められ改善が必要であった。
For example, attempts have been made to use carbon fibers made by carbonizing organic fibers, or carbon fibers made by spinning pitch and then spinning it back. However, this method has poor sealing properties and is difficult to put into practical use. For this reason, a method using granular expanded graphite has been proposed. However, this method is not only expensive, but also has poor oil resistance and antifreeze resistance, which results in a decrease in sealing performance during use, which requires improvement.

このように、アスベストを用いたガスケット組放物に置
き替わる組成物の開発が急がれている。
As described above, there is an urgent need to develop a composition that can replace the gasket assembly using asbestos.

(問題点を解決するための手段) 本発明者等は、これまで、新しい炭素材料として、気相
成長法炭素繊維の開発並びにこの素材の特性、反応性に
ついて基礎的研究を進めていたが、更に、本繊維の特異
な形態と化学的、熱的安定性に注目し各種の実用性試験
を行っていたところ、本繊維の形状や凝集状態、他の物
質との分散状態に因って、優れ次シール性があることを
見t′1だし、さらに検討の結果、本発明に到達した。
(Means for Solving the Problems) The present inventors have been conducting basic research on the development of vapor-grown carbon fiber as a new carbon material and the characteristics and reactivity of this material. Furthermore, as we conducted various practical tests focusing on the unique morphology and chemical and thermal stability of this fiber, we found that depending on the shape, agglomeration state, and dispersion state of this fiber with other substances, It was found that it had excellent sealing properties, and as a result of further study, the present invention was arrived at.

すなわち、本発明は、気相成長法炭素繊維を含有するガ
スケット組成物である。
That is, the present invention is a gasket composition containing vapor grown carbon fiber.

本発明において、気相成長法炭素繊維とは、炭化水素な
どの炭素源を、触媒の存在下に加熱して気相成長させて
作られる繊維状の炭素質の物質、これを粉砕したり切断
したりした種々の形態の炭素質物質あるいは、これらを
加熱処理した炭素質物質であり、本発明の気相成長法炭
素繊維は、電子顕微鏡で観察すると、芯の部分と、これ
を取巻く、−見して、年輪状の炭素層からなる特異な形
状の繊維及びこれが粉砕、破砕、切断などの加工を受は
次ものである。
In the present invention, vapor-grown carbon fiber refers to a fibrous carbonaceous material that is produced by heating a carbon source such as a hydrocarbon in the presence of a catalyst and growing it in a vapor phase, and which is pulverized or cut. When observed under an electron microscope, the vapor-grown carbon fiber of the present invention shows a core part and surrounding parts, - The fibers have a unique shape consisting of annual ring-shaped carbon layers, and are subjected to processing such as crushing, crushing, and cutting.

本発明でいう気相成長法炭素繊維は、好ましくは、直径
が5μm以下、一般には、0−01〜4μm1特に0.
01〜2μm、更に好ましくは、0.01〜1μm1最
も好ましくは、0.01〜0.5μmであり、繊維の長
さは特に制限はない。一般には、5000μm以下であ
るが、更に短くても良く、1000μmやI Q OJ
im sあるいは1 G /jmでも良く、又、これを
更に短く破砕や切断あるいは粉砕し次繊維状物、あるい
は、粒状や不定形状の物も使用できる。
The vapor grown carbon fiber in the present invention preferably has a diameter of 5 μm or less, generally 0-01 to 4 μm, especially 0.01 μm or less.
The fiber length is preferably 0.01 to 2 μm, more preferably 0.01 to 1 μm, and most preferably 0.01 to 0.5 μm, and the length of the fiber is not particularly limited. In general, it is 5000 μm or less, but it may be even shorter, such as 1000 μm or IQ OJ
im s or 1 G/jm, or fibrous materials obtained by crushing, cutting, or crushing these into shorter lengths, or granular or irregularly shaped materials can also be used.

本発明の気相成長法炭素繊維は、炭素の純度が高く、一
般に、97.5%以上、特に、98%以上、最も好まし
くは98.5%以上である。
The vapor grown carbon fiber of the present invention has a high carbon purity, generally 97.5% or more, particularly 98% or more, and most preferably 98.5% or more.

ま危、本発明でいう気相成長法炭素繊維は、易黒鉛化性
の炭素質物、あるいは、黒鉛性の高い炭素質物でちゃ、
特に、易黒鉛化性の炭素質物が好ましく、更に、その中
でもX線解析による構造解析において、その格子定数の
7.1 #6.88の範囲のものが特に好ましく、最も
好ましくは、7.06〜6.89の範囲のものである。
Unfortunately, the vapor grown carbon fiber referred to in the present invention is not a carbonaceous material that is easily graphitizable or a carbonaceous material that is highly graphitic.
In particular, easily graphitizable carbonaceous materials are preferred, and among these, those with a lattice constant in the range of 7.1 #6.88 are particularly preferred, and most preferably 7.06 #6.88 in structural analysis by X-ray analysis. ~6.89.

本発明において、気相成長法炭素繊維を含有したガスケ
ット組成物は、上記の気相成長法炭素繊維がガスケット
の構成成分として存在している組成物であシ、組成物中
の気相成長法炭素繊維の量は特に制限はない。一般には
、組成物の固体成分の中の0.1重量%以上存在してお
り、好ましくは、0.2重量−以上、特に、0.4重量
S〜99.9重量−存在している組成物であり、最も好
ましくは、2重量−以上98重量−以下である。
In the present invention, the gasket composition containing vapor-grown carbon fibers is a composition in which the above-mentioned vapor-grown carbon fibers are present as a constituent component of the gasket. The amount of carbon fiber is not particularly limited. Generally present at least 0.1% by weight of the solid components of the composition, preferably at least 0.2% by weight, especially from 0.4% to 99.9% by weight of the composition present. The weight is most preferably 2 to 98 weight.

本発明において、気相成長法炭素繊維の効果は、ガスケ
ット組成物の気密性向上、耐熱性の向上、耐油性、耐不
凍液性、耐薬品性、耐溶剤性等の向上にある他、組成物
に使用するバインダーとの分散や接合にも優れ、更に、
組成物の機械的強度の改善効果もあり、これらが複合的
に相乗効果として現れるところKある。
In the present invention, the effect of the vapor grown carbon fiber is to improve the gasket composition's airtightness, heat resistance, oil resistance, antifreeze resistance, chemical resistance, solvent resistance, etc. It has excellent dispersion and bonding with binders used in
It also has the effect of improving the mechanical strength of the composition, and these effects appear in combination as a synergistic effect.

この様な効果を最大に発揮させるには、気相成長法炭素
繊維が極めて微細な状態、かつ、繊維の形状で用いられ
る場合に、その効果が著しく、好ましい。この際、繊維
の径が細いばかりでなく、繊維長さ/繊維の径の比が、
5以上好ましくは10以上、特に20以上、最も好まし
くは1’GO以上あることである。
In order to maximize such effects, it is preferable that the vapor-grown carbon fibers be used in an extremely fine state and in the form of fibers, since the effects are remarkable. At this time, not only the diameter of the fiber is small, but also the ratio of fiber length/fiber diameter is
It is 5 or more, preferably 10 or more, particularly 20 or more, and most preferably 1'GO or more.

本発明のガスケット組成物は、以上のように、気相成長
法炭素繊維を含有している事を特徴としているが、ガス
ケット組成物を構成′する物としては他に、バインダー
、気相成長法炭素繊維以外の繊維、充填剤、その他薬剤
や添加剤等が必要に応じて選択され使用できる。
As described above, the gasket composition of the present invention is characterized by containing vapor grown carbon fibers, but the gasket composition also includes a binder, a vapor grown carbon fiber, etc. Fibers other than carbon fibers, fillers, other chemicals, additives, etc. can be selected and used as necessary.

特に1バインダーは本組成物にとって必要な成分であり
、その様なバインダーとしては、有機系の樹脂やゴムが
使用され、特にゴム類が好適に使用され、例えば、アク
リルゴム、スチレンブタジェンゴム、アクリロニトリル
ブタジェンゴム、クロロプレンゴム、フッ素ゴム、エビ
クロロヒドリンゴム、クロロスルホン化ポリエチレンゴ
ム、塩素化ポリエチレンゴム、エチレンプロピレンゴム
、エチレンプロピレンジエンゴム、シリコンゴムなどの
合成ゴムおよび天然ゴムなどがあげられる。
In particular, one binder is a necessary component for the present composition, and organic resins and rubbers are used as such binders, and rubbers are particularly preferably used, such as acrylic rubber, styrene-butadiene rubber, Synthetic rubbers and natural rubbers such as acrylonitrile butadiene rubber, chloroprene rubber, fluororubber, shrimp chlorohydrin rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, ethylene propylene rubber, ethylene propylene diene rubber, silicone rubber, and the like can be mentioned.

バインダーは、気相成長法炭素繊維を結合させる之めに
、また、必要に応じて使用される気相成長法炭素繊維以
外の繊維や充填剤等をも結合させるために必要な物であ
るが、過剰に使用するとガスケットの耐熱性や応力緩和
性を低下させるので、結合効果とのバランスの中でその
使用tを設定する。一般には、気相成長法炭素繊維10
0J1!量部に対し0.5〜10000重量部が好まし
く、特に1〜1000重量部が好ましく、最も好ましく
は2〜500重量部の範囲である。
The binder is necessary to bind the vapor-grown carbon fibers and, if necessary, to bind fibers other than the vapor-grown carbon fibers, fillers, etc. If used in excess, the heat resistance and stress relaxation properties of the gasket will be reduced, so the amount of use t is determined in balance with the bonding effect. Generally, vapor grown carbon fiber 10
0J1! The amount is preferably 0.5 to 10,000 parts by weight, particularly preferably 1 to 1,000 parts by weight, and most preferably 2 to 500 parts by weight.

気相成長法炭素繊維以外の繊維としては、有機系及び無
機系の各種繊維が使用できるが、好ましくは耐熱性に優
れた繊維であり、例えば、各種のセラミ−z7Fアイバ
ー、石英ガラスファイバー、ロックウール、ステンレス
ファイバー、炭素繊維、アルミナファイバー、アルミナ
シリケートファイバー、その他アヌペストなどの無機質
の繊維性物質、カイノール繊維、アクミド繊維、ポリイ
ミド繊維など有機質の繊維も使用できるが、耐熱性や気
密性、耐薬品性などの低下をひきおこす場合があり、こ
れら繊維を使用する目的の範囲内で出来るだけ使用量を
誠すこと、あるいは使用しないことを考慮する必要があ
る。
As fibers other than vapor grown carbon fibers, various organic and inorganic fibers can be used, but fibers with excellent heat resistance are preferable, such as various ceramic Z7F eye bars, quartz glass fibers, rock fibers, etc. Organic fibers such as wool, stainless fiber, carbon fiber, alumina fiber, alumina silicate fiber, and other inorganic fibrous materials such as Anupest, kynor fiber, acumid fiber, and polyimide fiber can also be used, but they are heat resistant, airtight, and chemical resistant. Therefore, it is necessary to consider using as much of these fibers as possible within the purpose of using them, or to avoid using them at all.

その他、充填剤や薬剤、添加剤としては、従来からガス
ケット用組成物に使用されてきた物を種々使用可能であ
る。例えば、クレー、タルク、水酸化カルシウム、硫酸
バリウムなどの充填剤、加硫剤、加硫助剤、加破促進剤
、酸化防止剤、金属害防止剤、着色剤、界面活性剤など
の薬剤や添加剤などである。これ等は、その筺用量が過
多であると、ガスケットの緒特性を低下する恐れ゛があ
シ、使用目的に応じその量を適正に制御する必要がある
0 (実施例) 以下、実施例により本発明を説明する。
In addition, various fillers, chemicals, and additives that have been conventionally used in gasket compositions can be used. For example, fillers such as clay, talc, calcium hydroxide, and barium sulfate; agents such as vulcanizing agents, vulcanization aids, breaking accelerators, antioxidants, metal damage inhibitors, coloring agents, and surfactants; additives, etc. If the amount of these substances is excessive, there is a risk of deteriorating the mechanical properties of the gasket, so the amount needs to be appropriately controlled depending on the purpose of use. The present invention will be explained.

実施例1 直径が0.05〜0.1μmの気相成長法炭素繊維(ト
リスアセチルアセトナト鉄とベンゼン11400℃の加
熱空間に導入し浮遊状態で合成し友、炭素含量99%以
上、格子定数7.02)を若干破砕し、分散操作がしや
すく、かつ、電子顕微鏡観察で、繊維長が実質的に50
μm以上の気相成長法炭素繊維を得九。該繊維100重
量部および、アクリルブタジェンゴム13.3重量部、
ゴム用配合剤3.3重量部、タルク10.8重量部、ク
レー5.9重量部をトルエンとともに混練して組成物を
調製した0 この組成物を評価する九めガスクツ)1作製し次。すな
わち、上記組成物をフック付きの鉄板の両面に擦り込み
、次いでトルエンを除去し、これ’1150℃の加熱炉
の中で30分間加熱して加硫を行ない、厚さ1.25m
のガスケツ)を得た。
Example 1 Vapor-grown carbon fiber with a diameter of 0.05 to 0.1 μm (trisacetylacetonate iron and benzene were introduced into a heating space at 11,400°C and synthesized in a floating state), carbon content of 99% or more, lattice constant 7.02) can be slightly crushed to facilitate dispersion, and when observed with an electron microscope, the fiber length is substantially 50%.
9. Vapor growth method carbon fiber of μm or more is obtained. 100 parts by weight of the fiber and 13.3 parts by weight of acrylic butadiene rubber,
A composition was prepared by kneading 3.3 parts by weight of a rubber compounding agent, 10.8 parts by weight of talc, and 5.9 parts by weight of clay with toluene. That is, the above composition was rubbed on both sides of an iron plate with hooks, the toluene was removed, and the composition was heated in a heating furnace at 1,150°C for 30 minutes to perform vulcanization, resulting in a thickness of 1.25 m.
gasket) was obtained.

このガスケットについてASTM F104タイプ1の
試験法に従い常温における圧縮率、復元率、応力緩和率
、耐熱性、水シール性、耐油性、耐不凍液性を測定し、
ガスケットとしての実用性を評価した。その結果、本実
施例の組成物から作られたガスケットは優れた性能を有
し実用性が有ることが分った。
For this gasket, the compressibility, recovery rate, stress relaxation rate, heat resistance, water sealability, oil resistance, and antifreeze resistance at room temperature were measured according to the ASTM F104 Type 1 test method.
The practicality as a gasket was evaluated. As a result, it was found that the gasket made from the composition of this example had excellent performance and was practical.

なお、実用性の評価基準としては、応力緩和率zo%以
下、加熱後の圧縮率が加熱前の圧縮率の50%以上、水
シール性が5気圧以上、耐油性は、油浸漬後の圧縮率が
浸漬前の2倍以下および復元率が25チ以上、耐不凍液
性は、圧縮率が1.8倍以下、復元率が30%以上とし
た。
The evaluation criteria for practicality are as follows: stress relaxation rate is zo% or less, compression ratio after heating is 50% or more of the compression ratio before heating, water sealability is 5 atm or more, and oil resistance is determined by compression after immersion in oil. The compression ratio was set to be 2 times or less than before immersion, and the recovery rate was 25% or more, and the antifreeze resistance was determined to be 1.8 times or less in compression ratio and 30% or more in recovery rate.

実施例2 繊維の直径が0.05〜0.2μmの気相成長法炭素繊
維(炭素含量99−以上、格子定数6.98 )を若干
破砕し、電子顕微鏡で観察して実質的に長さ20μm以
上、かつ分散性の良い気相成長法炭素繊維を得次。この
気相成長法炭素繊維を用い実施例1と同様にガスケット
組成物を作シ、更に、ガスケットとして実用性能評価を
行い良好な結果を得九〇 実施例3 実施例Iにおいて、気相成長法炭素繊維100重量部の
代わりに気相成長法炭素繊維80重量部、アスベス)2
0重量部を用い、実施例1と同様の操作で組成物を調製
し友。この組成物について、実施例1と同様の方法を用
い、ガスケツトラ作成し、その実用性能評価を行ったと
ころ、実用性の評価基準を満足する良好な結果を得た。
Example 2 A vapor-grown carbon fiber (carbon content: 99-99 or more, lattice constant: 6.98) having a fiber diameter of 0.05 to 0.2 μm was slightly crushed, and observed with an electron microscope to determine the actual length. Vapor grown carbon fiber with a diameter of 20 μm or more and good dispersibility was obtained. Using this vapor grown carbon fiber, a gasket composition was prepared in the same manner as in Example 1, and the practical performance as a gasket was evaluated and good results were obtained. 80 parts by weight of vapor grown carbon fiber instead of 100 parts by weight of carbon fiber, asbeth) 2
A composition was prepared in the same manner as in Example 1 using 0 parts by weight. Regarding this composition, a gasket was prepared using the same method as in Example 1, and its practical performance was evaluated, and good results were obtained that satisfied the practical evaluation criteria.

実施例4 実施例3においてアスベストの代わりにロックウール2
0重量部を用い、実施例3と同様の操作で組成物を調製
した。この組成物についてもガスケットとしての実用性
能評価試験を行ったところ、実用性の評価基準を満足す
る良好な結果を得た。
Example 4 Rock wool 2 was used instead of asbestos in Example 3.
A composition was prepared in the same manner as in Example 3 using 0 parts by weight. When this composition was also subjected to a practical performance evaluation test as a gasket, good results were obtained that satisfied the practicality evaluation criteria.

実施例5 実施例3において アスペス)20重量部の代わシにア
スペス)10重量部、膨張黒鉛粉末10重量部を用いた
組成物を調製した。この場合についても、実施例3と同
様ガスケットとしての実用性能評価試験で良好な結果が
得られた。
Example 5 A composition was prepared using 10 parts by weight of Aspes and 10 parts by weight of expanded graphite powder instead of 20 parts by weight of Aspes in Example 3. In this case, as in Example 3, good results were obtained in the practical performance evaluation test as a gasket.

実施例6 実施例Sにおいて、アクリルブタジェンゴムの代わりに
、アクリルゴムを用い、本発明の組成物を得た。この組
成物について実施例6と同様のガスケットとしての実用
評価試験を行った。その結果、実用性の評価基準を満足
する良好な結果を得た0 比較例1 実施例1の試験において、気相成長法炭素繊維の代わり
に、ピッチ系炭素繊維(径14μm5長さ6 wm )
を用い、組成物の一調製、ガスケットとしての評価につ
いて同様の試験を試み友。
Example 6 In Example S, acrylic rubber was used instead of acrylic butadiene rubber to obtain a composition of the present invention. This composition was subjected to the same practical evaluation test as a gasket as in Example 6. As a result, good results were obtained that satisfied the evaluation criteria for practicality.0 Comparative Example 1 In the test of Example 1, pitch-based carbon fiber (diameter 14 μm 5 length 6 wm) was used instead of vapor grown carbon fiber.
A similar test was conducted on the preparation of a composition and its evaluation as a gasket.

しかし、この場合には、ガスケットとしての形状を取シ
にくくかつ、水シール性、耐油性、耐不凍液性が悪く実
用性が認められなかった。
However, in this case, it was difficult to shape the gasket, and its water sealing properties, oil resistance, and antifreeze resistance were poor, and it was not practical.

比較例2 実施例2において、気相成長法炭素繊維80重量部およ
びア・スベスト20重量部の代わりに、比較例1のピッ
チ系炭素繊維25重量部、アスベスト75重量部を用い
、ピッチ系炭素繊維の量を減らして同様の試験を行い、
ガスケツトラ得た。しかし、このガスケットは水シール
性、耐油性、耐不凍液性が不十分で実用性に劣っていた
Comparative Example 2 In Example 2, 25 parts by weight of pitch-based carbon fiber and 75 parts by weight of asbestos of Comparative Example 1 were used instead of 80 parts by weight of vapor-grown carbon fiber and 20 parts by weight of asbestos. A similar test was performed with a reduced amount of fiber,
I got a gasket. However, this gasket had insufficient water sealing properties, oil resistance, and antifreeze resistance, making it less practical.

比較例3 実施例1の試験において、気相成長法炭素繊維100重
量部の代わシに、アスベスト100重量、部を用い同様
の試験を試みたoしかし、ガスケットとしての性能のり
もで水シール性が若干不十分であった。
Comparative Example 3 In the test of Example 1, a similar test was attempted using 100 parts by weight of asbestos instead of 100 parts by weight of vapor grown carbon fiber. was slightly insufficient.

(発明の効果) 本発明のガスケット用組成物は、気密性、耐熱性、耐油
性、耐不凍液性、耐薬品性、耐溶剤性等に優れズいる他
更に、組成物の機械的強度でも良好であり、工業的に極
めて有用である。
(Effects of the Invention) The gasket composition of the present invention has excellent airtightness, heat resistance, oil resistance, antifreeze resistance, chemical resistance, solvent resistance, etc., and also has good mechanical strength. Therefore, it is extremely useful industrially.

Claims (1)

【特許請求の範囲】[Claims] 気相成長法炭素繊維を含有するガスケット用組成物Gasket composition containing vapor grown carbon fiber
JP11480187A 1987-05-13 1987-05-13 Composition for gasket Pending JPS63280786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11480187A JPS63280786A (en) 1987-05-13 1987-05-13 Composition for gasket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11480187A JPS63280786A (en) 1987-05-13 1987-05-13 Composition for gasket

Publications (1)

Publication Number Publication Date
JPS63280786A true JPS63280786A (en) 1988-11-17

Family

ID=14647029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11480187A Pending JPS63280786A (en) 1987-05-13 1987-05-13 Composition for gasket

Country Status (1)

Country Link
JP (1) JPS63280786A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295839A (en) * 1988-02-03 1989-11-29 Garlock Inc High-temperature compression non-asbestos-sheet
JPH0273881A (en) * 1988-09-09 1990-03-13 Agency Of Ind Science & Technol Production of sealing material
JPH02124990A (en) * 1988-11-02 1990-05-14 Kitagawa Kogyo Kk Sealant composition having carbon fiber incorporated therein
US5304326A (en) * 1989-04-19 1994-04-19 Hyperion Catalysis International, Inc. Thermoplastic elastomer compounds
US5611964A (en) * 1984-12-06 1997-03-18 Hyperion Catalysis International Fibril filled molding compositions
US6403696B1 (en) 1986-06-06 2002-06-11 Hyperion Catalysis International, Inc. Fibril-filled elastomer compositions
US6464908B1 (en) 1988-01-28 2002-10-15 Hyperion Catalysis International, Inc. Method of molding composites containing carbon fibrils

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611964A (en) * 1984-12-06 1997-03-18 Hyperion Catalysis International Fibril filled molding compositions
US6403696B1 (en) 1986-06-06 2002-06-11 Hyperion Catalysis International, Inc. Fibril-filled elastomer compositions
US6464908B1 (en) 1988-01-28 2002-10-15 Hyperion Catalysis International, Inc. Method of molding composites containing carbon fibrils
JPH01295839A (en) * 1988-02-03 1989-11-29 Garlock Inc High-temperature compression non-asbestos-sheet
JPH0273881A (en) * 1988-09-09 1990-03-13 Agency Of Ind Science & Technol Production of sealing material
JPH0553190B2 (en) * 1988-09-09 1993-08-09 Kogyo Gijutsuin
JPH02124990A (en) * 1988-11-02 1990-05-14 Kitagawa Kogyo Kk Sealant composition having carbon fiber incorporated therein
US5304326A (en) * 1989-04-19 1994-04-19 Hyperion Catalysis International, Inc. Thermoplastic elastomer compounds

Similar Documents

Publication Publication Date Title
JP4746879B2 (en) Non-asbestos-based sheet gasket
Liao et al. Atomistic deformation modes and intrinsic brittleness of Al 4 Si C 4: A first-principles investigation
JPS63280788A (en) Composition for gasket
JPS63280786A (en) Composition for gasket
JPS63280789A (en) Composition for gasket
WO1992009538A1 (en) Insulating material containing pitch based graphite fiber
Clarke et al. Influence of coal/binder interactions on mechanical strength of briquettes
JPH06507196A (en) Industrial gaskets for water vapor applications
JPS63280787A (en) Composition for gasket
CN112707697A (en) Cement-based composite mortar doped with carbon-based material and preparation method thereof
US5232973A (en) High-temperature gasket
JPH02160891A (en) Expanded graphite sheet material reinforced with aramid fiber and manufacture of same material
JPS61171786A (en) Composition for gasket
JPS6372780A (en) Graphite sheet
US10377672B2 (en) Methods for producing polygranular graphite bodies
JPH02298531A (en) Pressure-sensitive conductive rubber material
RU2679256C1 (en) Composition for the sealing material manufacturing
CN113698667B (en) Composite clay mineral high polymer material carbonizing agent and application thereof in halogen-free flame-retardant high polymer material
JPH0356772A (en) Joint sheet
JPH0388706A (en) Production of carbon material
JPH02107690A (en) Composition for electrically conductive gasket
Tanabe et al. Studies on “Mesophase”-pitch-based carbon fibers: part II mechanical properties and thermal expansion
JPH0354286A (en) Sealing material composition
JPH0559059B2 (en)
JPH037793A (en) Gasket for high-temperature use