JPS63279119A - Powder weighing method - Google Patents

Powder weighing method

Info

Publication number
JPS63279119A
JPS63279119A JP11342987A JP11342987A JPS63279119A JP S63279119 A JPS63279119 A JP S63279119A JP 11342987 A JP11342987 A JP 11342987A JP 11342987 A JP11342987 A JP 11342987A JP S63279119 A JPS63279119 A JP S63279119A
Authority
JP
Japan
Prior art keywords
flow rate
powder
weighing
measurement
metering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11342987A
Other languages
Japanese (ja)
Other versions
JP2587236B2 (en
Inventor
Noboru Higuchi
登 樋口
Keizo Matsui
敬三 松井
Chuzo Kobayashi
小林 忠造
Hiroshi Onishi
弘志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP62113429A priority Critical patent/JP2587236B2/en
Priority to US07/188,343 priority patent/US4880142A/en
Priority to EP88107446A priority patent/EP0290999B1/en
Priority to DE8888107446T priority patent/DE3873405T2/en
Priority to CN88103618A priority patent/CN1042268C/en
Publication of JPS63279119A publication Critical patent/JPS63279119A/en
Application granted granted Critical
Publication of JP2587236B2 publication Critical patent/JP2587236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)

Abstract

PURPOSE:To realize highly accurate weighing not affected by a variation in a flow speed, by performing fuzzy deduction on the basis of the flow rate characteristic of a flow rate controller controlling a flow speed and a weighing set value to determine the powder transfer speed of the flow controller before starting weighing. CONSTITUTION:When an arbitrary weighing set value is given to a weighing control apparatus 7, the fuzzy control part of the weighing control apparatus 7 calculates the initial rotational speed of a screw feeder 2 from the flow rate characteristic of the screw feeder 2 according to fuzzy deduction and opens a shutter gate 3. In the weighing control apparatus, 7 a filter operation part calculates the deviation between a fed back actually calculated value and the weighing set value and the timewise change quantity of the deviation. The fuzzy control part performs fuzzy deduction on the basis of this observation quantity and calculates the rotational speed of the screw feeder 2 in the next control cycle to alter a flow speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粉体計量方法に関し、更に詳述すれば、計量設
定値及び実計量値に基づいて行うファジィ推論により次
サイクルの粉体の供給流速を可変にし、高精度、広範囲
及び短時間な計量を可能にする粉体計量方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for measuring powder, and more specifically, it is possible to supply powder for the next cycle by fuzzy reasoning based on measurement set values and actual measurement values. This invention relates to a powder measuring method that allows variable flow rate and enables highly accurate, wide-range, and short-time measurement.

(従来技術) 従来、粉体の計量方法として、主にロードセルを用いた
重量式があり、計量容器に供給される粉体の流速は、例
えば特開昭56−148019号。
(Prior Art) Conventionally, as a method for measuring powder, there is a gravimetric method mainly using a load cell, and the flow rate of powder supplied to a measuring container is disclosed in, for example, Japanese Patent Application Laid-open No. 56-148019.

同56−155412号、同57−29114号公報等
に開示されているとおり、計量設定値に対応した一定流
速を前提としている。
As disclosed in Japanese Patent No. 56-155412, Japanese Patent No. 57-29114, etc., a constant flow rate corresponding to the metering setting value is assumed.

すなわち、計量容器で計量される実計量値に応じて流速
を遂次可変にするクローズドループの計量制御方法はこ
れまでになかった。
That is, there has never been a closed-loop metering control method in which the flow rate is successively varied in accordance with the actual measured value measured in a metering container.

また、高精度な計量を実現するため、流速の異なる流量
調整器を並列に設置、または、例えば特開昭57−72
015号公報に開示されている、流速を異なる固定条件
に切り換えられる機能を有した装置を設置して、計量設
定値の近傍にて、遅い流速側に切り換えて計量する方法
がある。
In addition, in order to achieve high-accuracy metering, flow regulators with different flow velocities are installed in parallel, or, for example,
There is a method disclosed in Japanese Patent No. 015, in which a device having a function of switching the flow rate to different fixed conditions is installed, and the flow rate is switched to a lower flow rate in the vicinity of the measurement setting value to perform measurement.

なお、上述の方法に関連して、計量停止条件として、計
量容器への流れ込み量を予測して事前に計量を停止させ
る方法もある。
In addition, in relation to the above-mentioned method, there is also a method of predicting the amount of flow into the measuring container and stopping the metering in advance as a metering stop condition.

(発明が解決しようとする問題点) しかしながら、従来の計量制御方法では、前述のとおり
、流速一定或いは流速を二段に分割して切り換えている
ものの所定範囲内では固定しての計量のため、下記の欠
点を有していた。
(Problems to be Solved by the Invention) However, as mentioned above, in the conventional metering control method, although the flow rate is constant or the flow rate is divided into two stages and switched, the metering is fixed within a predetermined range. It had the following drawbacks.

■計量精度:外乱や粉体物性の変化による流速変動によ
り、精度が保証されない事態を生じる。
■Measuring accuracy: Accuracy may not be guaranteed due to fluctuations in flow velocity due to disturbances or changes in powder physical properties.

すなわち、粉体は物性にて移送する装置が異る、例えば
顆粒状の粉体では流動性がよいため、ダンパー等を使用
し、流動性の悪い粉体ではスクリューフィーダ等を使用
する。しかし、粉体の流れは一律に決定出来ず粉体の現
性とか粉体形状や振動等の外乱にて流れは変化する。
That is, powders are transferred by different devices depending on their physical properties.For example, granular powders have good fluidity, so a damper or the like is used, and powders with poor fluidity are transported using a screw feeder or the like. However, the flow of powder cannot be uniformly determined, and the flow changes depending on the nature of the powder, the shape of the powder, and disturbances such as vibration.

特に、吸湿性のある粉体とかブリッジを起こし易い粉体
では、その保存環境条件によってその粉体の流動性は異
なる。従って、供給容器に保存しながら使用するシステ
ムでは、環境条件の変化(例えば、温度、湿度とか粉体
の流動性促進のための付帯設備−一パイブレークやエア
ーノツカー等−一による振動)により、その粉体の流動
性は変化する。このため、流速の条件が異なり計量精度
を悪化させてしまう。その対策として、保存量の制限や
その装置の設置環境条件の制限が、計量精度維持に必要
であり、その結果設備的にイニシャルコストやランニン
グコストを増加させる。
In particular, in the case of hygroscopic powder or powder that is prone to bridging, the fluidity of the powder differs depending on the storage environment conditions. Therefore, in a system that is used while being stored in a supply container, changes in environmental conditions (e.g., temperature, humidity, and vibrations caused by ancillary equipment for promoting powder flowability, such as pie breaks and air knockers) may cause The fluidity of the powder changes. For this reason, the flow velocity conditions differ and the measurement accuracy deteriorates. As a countermeasure, it is necessary to limit the storage amount and the installation environment conditions of the device in order to maintain measurement accuracy, which results in increased initial cost and running cost of equipment.

■計量範囲:計量範囲が狭い。■Measuring range: The measuring range is narrow.

この理由は、計量停止しても、系の応答遅れによる流れ
込み量があり、この量が供給流速により決定されるため
、流速一定のもとでは、計量範囲を狭めることにより、
許容できる流れ込み量を保証している。従って、同一粉
体の計量であっても、計量設定値が大きく相違する場合
、おのおの適性な計量範囲の計量装置が必要となり、装
置数が増加する。
The reason for this is that even if the metering is stopped, there is an inflow amount due to the response delay of the system, and this amount is determined by the supply flow rate. Therefore, when the flow rate is constant, by narrowing the metering range,
Guarantees an acceptable flow rate. Therefore, even if the same powder is to be weighed, if the measurement setting values are significantly different, each weighing device will be required to have an appropriate measurement range, and the number of devices will increase.

■計量時間二計量設定値により計量時間が左右される。■Measuring time 2.Measuring time is affected by the measurement setting value.

計量設定値が小さい場合は、計量時間は短く、大きい場
合は長くなる。従って、製造サイクル上適性な計量時間
の計量装置が計量設定値に応じて必要であり、装置数が
増加する。
If the metering setting value is small, the metering time will be short; if it is large, the metering time will be long. Therefore, a measuring device with a measuring time suitable for the manufacturing cycle is required depending on the measurement setting value, and the number of devices increases.

また、複数の原料粉を混合して新たな混合粉を生産する
場合、例えば原料粉毎に計量設定値が異なると、生産シ
ステムの製造能力は長時間計量を必要とする原材料によ
って決定される。
Further, when a new mixed powder is produced by mixing a plurality of raw material powders, for example, if the measurement setting value is different for each raw material powder, the manufacturing capacity of the production system is determined by the raw materials that require long-term measurement.

本発明の目的は、上記事情に基づいてなされたもので、
外乱や粉体物性の変化による流速変動に影響されない高
精度な計量を実現すると共に、広範囲な計量範囲を確保
し、かつ計量設定値の大小に左右されないで短時間計量
を実現する粉体計量方法を提供することにある。
The object of the present invention was achieved based on the above circumstances, and
A powder measurement method that achieves high-precision measurement that is not affected by flow velocity fluctuations due to disturbances or changes in powder physical properties, secures a wide measurement range, and achieves short-time measurement without being affected by the size of measurement settings. Our goal is to provide the following.

(問題点を解決するための手段) すなわち、本発明の上記目的は、供給容器から受入容器
に粉体を供給して計量するに際し、任意に設定される計
量設定値と実計量値とにより粉体の供給流速を変化させ
るクローズドループの粉体計量方法において、流速を制
御する流量調整器の流量特性と計量設定値とによりファ
ジィ推論を行って計量開始前の前記流量調整器の粉体移
送速度を決定すると共に、遂次観測される実計量値と計
量設定値とに基づいてファジィ制御を行い、前記移送速
度を変化することを特徴とする粉体計量方法により達成
される。
(Means for Solving the Problems) That is, the above object of the present invention is to measure powder based on an arbitrarily set measurement setting value and an actual measurement value when supplying and measuring powder from a supply container to a receiving container. In a closed-loop powder metering method that changes the supply flow rate of a body, fuzzy inference is performed based on the flow rate characteristics of a flow rate regulator that controls the flow rate and the metering setting value to determine the powder transfer rate of the flow rate regulator before metering starts. This is accomplished by a powder weighing method characterized in that the transfer speed is changed by performing fuzzy control based on the actual weighing value and the weighing setting value that are sequentially observed.

(実施態様) 以下、図面により本発明の実施態様を説明する。(Embodiment) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の1実施態様に適用される粉体計量装
置であり、本実施態様では、粉体を下流側に配置した受
入容器に移送し、該受入容器で計量を行う加算式計量を
示している。
FIG. 1 shows a powder measuring device applied to one embodiment of the present invention. In this embodiment, powder is transferred to a receiving container located downstream and weighed in the receiving container. It shows weighing.

図において、1は被計量粉体が充填された供給容器とし
ての貯蔵ホッパ、2は貯蔵ホッパ1の出口に配置され、
粉体の送流速度を制御する流量調整器としてのスクリュ
ーフィーダ、3はシャッタゲート、4はロードセル5上
に配置されて計量機能を有した受入容器としての計量ホ
ッパ、6はロードセルアンプ、7は前記スクリューフィ
ーダ2及びシャッタゲート3を制御する計量制御装置、
8は前記計量制御装置7により制御されるサーボドライ
バ、9は前記サーボドライバにより前記スクリューフィ
ーダ2を回転駆動するサーボモータである。
In the figure, 1 is a storage hopper as a supply container filled with powder to be measured, 2 is arranged at the outlet of the storage hopper 1,
3 is a shutter gate, 4 is a weighing hopper as a receiving container that is placed on a load cell 5 and has a weighing function, 6 is a load cell amplifier, and 7 is a screw feeder as a flow rate regulator that controls the feeding speed of powder. a metering control device that controls the screw feeder 2 and the shutter gate 3;
8 is a servo driver controlled by the metering control device 7, and 9 is a servo motor that rotationally drives the screw feeder 2 by the servo driver.

前記スクリューフィーダ2は回転速度を変化する事で供
給粉体流量を広範囲に亘って変化させることができるも
のである。
The screw feeder 2 can vary the supply powder flow rate over a wide range by changing the rotational speed.

次に、本発明の粉体計量方法について、第2図の制御ブ
ロック図を第1図と併用して説明する。
Next, the powder measuring method of the present invention will be explained using the control block diagram of FIG. 2 together with FIG. 1.

任意量の計量設定値が計量制御装置7に与えられると、
計量制御装置7のファジィ制御部72は、前記スクリュ
ーフィーダ2の流量特性からファジィ推論によるスクリ
ューフィーダの初期回転速度を算出する。
When an arbitrary amount of measurement setting value is given to the measurement control device 7,
The fuzzy control unit 72 of the metering control device 7 calculates the initial rotational speed of the screw feeder by fuzzy inference from the flow rate characteristics of the screw feeder 2.

計量制御装置7は、計量開始と同時にこの初期回転速度
で前記スクリューフィーダ2のサーボモータ9が回転す
るように、前記サーボドライバ8を制御し、かつシャッ
タゲート3を開く。
The metering control device 7 controls the servo driver 8 and opens the shutter gate 3 so that the servo motor 9 of the screw feeder 2 rotates at this initial rotational speed at the same time as metering starts.

これにより、粉体は貯蔵ホッパ1から計量ホッパ4に移
送されて、計量ホッパ4により実重量値が計量される。
Thereby, the powder is transferred from the storage hopper 1 to the weighing hopper 4, and the actual weight value is measured by the weighing hopper 4.

この際、前記計量ホッパ4は所定の制御周期にて、時々
刻々と変わる実計量値を観測しており、ロードセル5に
より計量された実計量値はロードセルアンプ6を介して
計量制御装置7にフィードバックされる。
At this time, the weighing hopper 4 observes the actual weighing value that changes moment by moment in a predetermined control cycle, and the actual weighing value weighed by the load cell 5 is fed back to the weighing control device 7 via the load cell amplifier 6. be done.

計量制御装置7はフィルタ演算部71がこのフィードバ
ックされる実計算値と計算設定値との偏差及び偏差の時
間的変化量を算出すると共に、これら量にローパスフィ
ルタ処理を施した観測量を算出する。
In the metrology control device 7, the filter calculation unit 71 calculates the deviation between the fed-back actual calculated value and the calculated set value and the amount of change over time in the deviation, and also calculates the observed amount by performing low-pass filter processing on these amounts. .

前記ファジィ制御部72は、この観測量をもとにファジ
ィ推論を行い、次の制御周期における前記スクリューフ
ィーダ2の回転速度を算出し、流速を変更する。
The fuzzy control unit 72 performs fuzzy inference based on this observation amount, calculates the rotational speed of the screw feeder 2 in the next control cycle, and changes the flow rate.

この際、ファジィ推論によるメンバーシップ関数は、第
3図に図示するように、偏差量及び偏差時間変化量の各
物理量に対応する軸の分割が、物理量の小さい区間を細
かくした例えば片対数として表現される。これは、計量
精度向上並びに短時間計量を目的とするためであり、偏
差量が大であれば、制御性の良い事は必要なく、偏差量
が小である場合に制御精度を向上させる必要があるから
である。このことは、ローパスフィルタ処理機能にも当
てはまり、偏差量等が小さい場合にローパスフィルタの
偏差量等を使用し、計量検出器(ロードセル)の動特性
を緩和して計量精度を向上させる。
At this time, the membership function based on fuzzy inference is expressed as, for example, a semi-logarithm in which the division of the axis corresponding to each physical quantity of deviation amount and deviation over time is finely divided into small intervals of the physical quantity, as shown in Figure 3. be done. This is for the purpose of improving measurement accuracy and short-time measurement.If the amount of deviation is large, it is not necessary to have good controllability, but if the amount of deviation is small, it is necessary to improve control accuracy. Because there is. This also applies to the low-pass filter processing function; when the amount of deviation, etc. is small, the amount of deviation, etc. of the low-pass filter is used to alleviate the dynamic characteristics of the weighing detector (load cell) and improve the weighing accuracy.

計量開始後、前記スクリューフィーダ2は適切な回転速
度となるように制御され、次第に計量偏差が小さくなる
につれ、回転速度も次第に遅くなる方向になり、流速は
少なくなる。計量偏差、計量偏差時間の時間変化量が小
さくなり、計量偏差がある値以下となると、計量停止し
、シャッタゲート3は閉となり、スクリューフィーダ2
の回転数は0となり、回転を停止する。このとき、流速
は微小であり、流れ込み量は微小である。よって、計量
範囲において、計量設定値とかプロセスの系によりスク
リューフィーダ2の動作が変わり、計量設定値の大小を
問わず同一計量装置にて計量ができ、計量範囲が拡大す
る。但し、検出端の静的精度内である。
After the start of metering, the screw feeder 2 is controlled to have an appropriate rotational speed, and as the metering deviation gradually decreases, the rotational speed also gradually decreases, and the flow rate decreases. When the amount of change over time in the weighing deviation and weighing deviation time becomes smaller and the weighing deviation becomes less than a certain value, the weighing stops, the shutter gate 3 closes, and the screw feeder 2
The rotation speed becomes 0 and the rotation stops. At this time, the flow velocity is minute and the amount of inflow is minute. Therefore, in the measurement range, the operation of the screw feeder 2 changes depending on the measurement setting value and the process system, and regardless of the magnitude of the measurement setting value, the same weighing device can perform measurement, and the measurement range is expanded. However, it is within the static accuracy of the detection end.

又、計量時間においても、シャッタゲート3の動作パタ
ーンが変化し、計量設定値の大小を問わず、はぼ同一の
短時間の計量ができる。
Also, during the metering time, the operation pattern of the shutter gate 3 changes, and regardless of the magnitude of the metering setting value, almost the same short-time metering can be performed.

以上の様に、本発明の計量方法は、ロードセル5の観測
量を基に、定められた制御周期にてスクリューフィーダ
の回転数をクローズドループ(第2図)にてファジィ制
御し、結果として流速を制御する。
As described above, the measuring method of the present invention performs fuzzy control of the rotation speed of the screw feeder in a closed loop (Fig. 2) at a predetermined control period based on the observed amount of the load cell 5, and as a result, the flow rate control.

なお、前記実施態様では、流速を可変する流量調整器と
してスクリューフィーダを挙げたが、スクリューフィー
ダと同様に回転数の指令にて流れを可変させるロークリ
式であってもよい。また、流動性のよい粉体であれば、
位置指令により開度を可変にして流れを変化させる開度
ダンパも適用できる。さらに駆動装置としてはサーボモ
ータに限らずインバータモータでも可能であり、回転数
や位置が変化できる装置であればいずれの装置でもよい
In the embodiment described above, a screw feeder is used as a flow regulator that varies the flow rate, but it may be a rotary type that varies the flow based on a command of the rotational speed like the screw feeder. In addition, if the powder has good fluidity,
An opening damper that changes the flow by varying the opening depending on the position command can also be applied. Further, the drive device is not limited to a servo motor, but may also be an inverter motor, and any device that can change the number of rotations or the position may be used.

(実施例) 次に、本発明に基づいて行った実験結果について述べる
(Example) Next, the results of experiments conducted based on the present invention will be described.

この実験は、先の第1図に示した計量装置において行っ
た。
This experiment was conducted using the weighing device shown in FIG. 1 above.

本結果の計量装置は、最大5kgの計量ができ、ロード
セルの精度は2500分の1である。スクリューフィー
ダはインバータモータにて回転数制御され、計量制御装
置から回転数指令(電圧出力)が出力される。
The resulting weighing device can weigh up to 5 kg, and the accuracy of the load cell is 1/2500. The rotation speed of the screw feeder is controlled by an inverter motor, and a rotation speed command (voltage output) is output from the metering control device.

第4図は、2種類の粉体の各々のインバータ入力電圧(
回転数)に対する流量(平均値)特性を示す。この2種
類の粉体の特徴について記すと、粉体Aは顆粒状であり
、見掛は比重0.5程度であり、粉体Bは付着性の強い
小麦粉状のものであり、見掛は比重は0.5程度である
。この2種類の粉体について第1図の構成系にて、各々
制御方式等全く変更せずに計量を行った。
Figure 4 shows the inverter input voltage (
This shows the flow rate (average value) characteristics relative to rotation speed). To describe the characteristics of these two types of powder, Powder A is granular and has an apparent specific gravity of about 0.5, while Powder B is flour-like with strong adhesiveness and has an apparent appearance. Specific gravity is about 0.5. These two types of powder were measured using the configuration shown in FIG. 1 without changing the control system or the like.

第5図は、その時の粉体Aの1kg計量結果を示す。又
、第6図に粉体Bの1kg計量結果を示す。
FIG. 5 shows the result of weighing 1 kg of powder A at that time. Furthermore, Fig. 6 shows the results of weighing 1 kg of powder B.

第5図と第6図から明らかな通り、スクリューフィーダ
の回転数の動作パターンは変わるが、はぼ同じ計量時間
で高精度の計量結果が得られた。
As is clear from FIG. 5 and FIG. 6, although the operation pattern of the rotation speed of the screw feeder was changed, highly accurate weighing results were obtained with approximately the same weighing time.

又、貯蔵ホッパに振動を加え粉体を圧縮し、流動性を変
化させるなど、流量特性に変化を加えたが、当然スクリ
ューフィーダの動作パターンは異なるものの、計量時間
、計量精度共に同一の結果を得た。
We also applied vibrations to the storage hopper to compress the powder and change its fluidity to change the flow characteristics, but although the operating pattern of the screw feeder was naturally different, we achieved the same results in terms of metering time and metering accuracy. Obtained.

第1表は、計量設定値に対する計量時間及び計量精度の
関係を示す。尚、計量精度は別の検定された重量計にて
流出粉体を計測したものである。
Table 1 shows the relationship between measurement time and measurement accuracy with respect to measurement settings. Note that the measurement accuracy was determined by measuring the flowed powder using a different certified weighing scale.

5kgの計量では、本実験系で使用したインバータモー
タの最大回転数の制限にて計量時間は長くなったものの
計量精度は±2gであった。このインバータモータの能
力を上げれば、計量時間については短縮可能である。図
7に粉体Bの5kg計量結果を示すが、これから明らか
なように最大回転数で流出しており、この流出速度が向
上すれば更に時間短縮となる。
When weighing 5 kg, the weighing time was longer due to the limit on the maximum rotation speed of the inverter motor used in this experimental system, but the weighing accuracy was ±2 g. By increasing the capacity of this inverter motor, the measuring time can be shortened. FIG. 7 shows the results of weighing 5 kg of powder B. As is clear from this, it flows out at the maximum rotation speed, and if this flow rate is increased, the time will be further shortened.

又、本実験系では、2500分の1の精度のロードセル
を使用したため、50g計量の場合、精度は±2gであ
り、これはロードセルの静荷重精度と等しい。したがっ
て、ロードセルとして5000分の1のタイプを使用す
れば、計量レンジ1:100において±1.Q%の精度
が得られることが分かる。更に、本実験系では、インバ
ータモータを使用し、回転数レンジ(最低回転数と最大
回転数の比)は1;10であった。このモータをサーボ
モータに変更すれば、より回転数レンジが広がり計量レ
ンジ1:100において同一の計量時間並びにより高精
度の計量が可能である。
In addition, in this experimental system, a load cell with an accuracy of 1/2500 was used, so in the case of 50 g weighing, the accuracy was ±2 g, which is equal to the static load accuracy of the load cell. Therefore, if a 1/5000 type is used as a load cell, ±1. It can be seen that an accuracy of Q% can be obtained. Furthermore, in this experimental system, an inverter motor was used, and the rotation speed range (ratio of minimum rotation speed to maximum rotation speed) was 1:10. If this motor is replaced with a servo motor, the rotational speed range will be wider, and in the weighing range 1:100, the same weighing time and higher precision weighing will be possible.

第1表 (発明の効果) 以上記載したとおり、本発明の粉体計量方法により、流
量調整器の流量特性、計量システムの構成等に依存せず
、同一のメンバーシップ関数並びにファジィルールにて
、下記の効果が得られる。
Table 1 (Effects of the Invention) As described above, by the powder measuring method of the present invention, the powder measuring method of the present invention can be used to calculate The following effects can be obtained.

■ 外乱や粉体物性の変化による流速変動に影響されな
い高精度な計量の実現 ■ 計量設定値の範囲の広いワイドレンジの計量の実現 ■ 計量設定値の大小に依存しない短時間の計量の実現 更に、計量制御装置と17で、低容量のメモリにて容易
に製作でき、装置価格のコストダウンができる。
■ Achieving high-accuracy measurement that is not affected by flow rate fluctuations caused by disturbances or changes in powder physical properties. ■ Achieving wide-range measurement with a wide range of measurement settings. ■ Achieving short-time measurement that is independent of the size of measurement settings. , the metering control device 17 can be easily manufactured using a low capacity memory, and the cost of the device can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施態様に適用される粉体計量装置
を説明する図、第2図は第1図の装置における制御プロ
セスを説明するブロック図、第3図はファジィ制御のメ
ンバーシップ関数を説明する図、第4図は2種類の粉体
のスクリューフィーダによる流量特性図、第5図ないし
第7図は本発明に基づいて行った実施例の計量特性図で
ある。 ■・・・貯蔵ホッパ、   2・・・スクリューフィー
ダ。 3・・・シャッタゲート 4・・・計量ホッパ。 5・・・ロードセル、   6・・・ロードセルアンプ
。 7・・・計量制御装置、  8・・・サーボドライバ。 9・・・サーボモータ 代理人弁理士(8107)佐々木 清隆第  1  図 第  4  図
Fig. 1 is a diagram explaining a powder measuring device applied to one embodiment of the present invention, Fig. 2 is a block diagram explaining the control process in the device of Fig. 1, and Fig. 3 is a membership diagram of fuzzy control. FIG. 4 is a flow rate characteristic diagram of two types of powder using a screw feeder, and FIGS. 5 to 7 are measurement characteristic diagrams of examples carried out based on the present invention. ■... Storage hopper, 2... Screw feeder. 3...Shutter gate 4...Weighing hopper. 5...Load cell, 6...Load cell amplifier. 7... Metering control device, 8... Servo driver. 9... Servo motor agent patent attorney (8107) Kiyotaka Sasaki Figure 1 Figure 4

Claims (1)

【特許請求の範囲】 1)供給容器から受入容器に粉体を供給して計量するに
際し、任意に設定される計量設定値と実計量値とにより
粉体の供給流速を変化させるクローズドループの粉体計
量方法において、流速を制御する流量調整器の流量特性
と計量設定値とによりファジィ推論を行って計量開始前
の前記流量調整器の粉体移送速度を決定すると共に、遂
次観測される実計量値と計量設定値とにもとずいてファ
ジィ制御を行い、前記移送速度を変化することを特徴と
する粉体計量方法。 2)流量調整器がスクリューフィーダ又はロータリ式又
は開度ダンパにより設けられることを特徴とする特許請
求の範囲第1項に記載の粉体計量方法。 3)流量調整器の流量特性が所定範囲で流量を生じない
デッドゾーンを有することを特徴とする特許請求の範囲
第1項又は第2項に記載の粉体計量方法。 4)計量設定値と実値量値との偏差及び偏差の時間的変
化量にローパスフィルタ処理を施して観測量とすること
を特徴とする特許請求の範囲第1項第2項又は第3項に
記載の粉体計量方法。 5)ファジィ推論のメンバーシップ関数として物理量に
対応する軸の分割を、物理量の小さい区間は細かくする
ことを特徴とする特許請求の範囲第1項ないし第4項の
何れか1項に記載の粉体計量方法。
[Scope of Claims] 1) Closed-loop powder that changes the powder supply flow rate based on an arbitrarily set measurement setting value and an actual measurement value when powder is supplied from a supply container to a receiving container and measured. In the bulk metering method, fuzzy inference is performed based on the flow rate characteristics of a flow rate regulator that controls the flow rate and the metering set value to determine the powder transfer rate of the flow rate regulator before the start of metering. A method for weighing powder, characterized in that the transfer speed is changed by performing fuzzy control based on a measurement value and a measurement setting value. 2) The powder measuring method according to claim 1, wherein the flow rate regulator is provided by a screw feeder, a rotary type, or an opening damper. 3) The powder measuring method according to claim 1 or 2, wherein the flow rate characteristic of the flow rate regulator has a dead zone in which no flow rate occurs within a predetermined range. 4) The deviation between the measurement setting value and the actual quantity value and the amount of change over time of the deviation are subjected to low-pass filter processing to be used as the observed quantity. Powder weighing method described in. 5) The powder according to any one of claims 1 to 4, characterized in that the division of an axis corresponding to a physical quantity as a membership function of fuzzy inference is made finer in an interval where the physical quantity is small. Body measurement method.
JP62113429A 1987-05-12 1987-05-12 Powder weighing method Expired - Fee Related JP2587236B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62113429A JP2587236B2 (en) 1987-05-12 1987-05-12 Powder weighing method
US07/188,343 US4880142A (en) 1987-05-12 1988-05-04 Powder weighing mixer and method thereof
EP88107446A EP0290999B1 (en) 1987-05-12 1988-05-09 "fuzzy inference" powder weighing methods and measuring mixer
DE8888107446T DE3873405T2 (en) 1987-05-12 1988-05-09 "FUZZY INFERENCE" POWDER WEIGHING METER AND MEASURING MIXER.
CN88103618A CN1042268C (en) 1987-05-12 1988-05-12 Powder weighing mixer and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113429A JP2587236B2 (en) 1987-05-12 1987-05-12 Powder weighing method

Publications (2)

Publication Number Publication Date
JPS63279119A true JPS63279119A (en) 1988-11-16
JP2587236B2 JP2587236B2 (en) 1997-03-05

Family

ID=14612004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113429A Expired - Fee Related JP2587236B2 (en) 1987-05-12 1987-05-12 Powder weighing method

Country Status (1)

Country Link
JP (1) JP2587236B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118527A (en) * 1990-05-15 1992-04-20 Kamachiyou Seiko Kk Weighing device
JPH04220534A (en) * 1990-12-21 1992-08-11 Kamachiyou Seiko Kk Continuously constant amount supplying device
JPH05118899A (en) * 1991-10-24 1993-05-14 Fukushima Pref Gov Continuous determination system
CN112747333A (en) * 2021-03-08 2021-05-04 哈尔滨理工大学 Pulverized coal rotary feeder device based on fuzzy controller
CN114516552A (en) * 2022-03-10 2022-05-20 江苏祥瑞港机设备有限公司 Automatic environment-friendly control system for telescopic luffing ship loader

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2856089B1 (en) * 2012-06-04 2019-06-26 GEA Process Engineering nv Feeder unit, a feeder module comprising a plurality of feeder units, and method for discharging a constant mass flow of one or more powders into a receiving container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157630U (en) * 1980-04-24 1981-11-25
JPS57171540U (en) * 1981-04-23 1982-10-28
JPS59202504A (en) * 1983-05-02 1984-11-16 Hitachi Ltd Control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157630U (en) * 1980-04-24 1981-11-25
JPS57171540U (en) * 1981-04-23 1982-10-28
JPS59202504A (en) * 1983-05-02 1984-11-16 Hitachi Ltd Control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118527A (en) * 1990-05-15 1992-04-20 Kamachiyou Seiko Kk Weighing device
JPH04220534A (en) * 1990-12-21 1992-08-11 Kamachiyou Seiko Kk Continuously constant amount supplying device
JPH05118899A (en) * 1991-10-24 1993-05-14 Fukushima Pref Gov Continuous determination system
CN112747333A (en) * 2021-03-08 2021-05-04 哈尔滨理工大学 Pulverized coal rotary feeder device based on fuzzy controller
CN114516552A (en) * 2022-03-10 2022-05-20 江苏祥瑞港机设备有限公司 Automatic environment-friendly control system for telescopic luffing ship loader

Also Published As

Publication number Publication date
JP2587236B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US4880142A (en) Powder weighing mixer and method thereof
JP2602819B2 (en) Automatic control of flowable material flow by continuous metering device
CN102389742B (en) High-precision dispensing equipment and control method thereof
JPS63279119A (en) Powder weighing method
UA82870C2 (en) Device for continuous gravimetric dosing
JPS63283731A (en) Liquid and powder metering and mixing apparatus
Li et al. Sensing, modelling and closed loop control of powder feeder for laser surface modification
US4023021A (en) Method and apparatus for weighing batches of liquid and other pourable substances
JP2661838B2 (en) Screw feeder-type fixed quantity cutting device
JPS6148845B2 (en)
JPS63273014A (en) Measurement control of liquid and powder and measurement control instrument
JPS6082818A (en) Automatic measuring method of pulverulent material
JP3565568B2 (en) Raw material cutting weighing control method
JPS63273013A (en) Measurement of liquid
JPS63283733A (en) Powder material metering and mixing apparatus
JPH01159040A (en) Method and apparatus for measuring, mixing and distributing liquid
SU1265486A1 (en) Continuous weigher
JPS63274441A (en) Powder weighing and mixing apparatus
JPS63283734A (en) Powder material metering and mixing apparatus
JP3999539B2 (en) Weight-type feeder and raw material supply method using weight-type feeder
SU1640183A1 (en) Device for mixture charge to agglobelt control
SU678321A1 (en) Continuous-action batchmeter
SU548766A1 (en) Method of volume and weight dosing of mixture components
SU1016685A1 (en) Device for controlling continuous batcher-weigher
CN117548026A (en) Continuous metering feeding control method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees