JPS63278726A - Manufacture of high speed steel cutting tool - Google Patents

Manufacture of high speed steel cutting tool

Info

Publication number
JPS63278726A
JPS63278726A JP11330987A JP11330987A JPS63278726A JP S63278726 A JPS63278726 A JP S63278726A JP 11330987 A JP11330987 A JP 11330987A JP 11330987 A JP11330987 A JP 11330987A JP S63278726 A JPS63278726 A JP S63278726A
Authority
JP
Japan
Prior art keywords
high speed
cutting edge
cutting
speed steel
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11330987A
Other languages
Japanese (ja)
Other versions
JPH0351535B2 (en
Inventor
Yoshio Ashida
芦田 喜郎
Yuichi Seki
勇一 関
Shigenori Kusumoto
栄典 楠本
Ryuichi Ozawa
隆一 小沢
Osamu Sakata
修 坂田
Yoshio Nakahara
中原 良雄
Hideyuki Fujiwara
秀之 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11330987A priority Critical patent/JPS63278726A/en
Publication of JPS63278726A publication Critical patent/JPS63278726A/en
Publication of JPH0351535B2 publication Critical patent/JPH0351535B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To form a wide quenched layer and prevent cracks from being produced by irradiating a tool tip with high energy density beam while vibrating the beam at a high speed and relatively moving a cutting tool material in the direction intersecting the direction of the beam vibration while melting the top surface layer of the irradiated portion. CONSTITUTION:Laser beam 12 while being moved at a high speed repeatedly in the direction P is irradiated on the surface of a high speed steel 1. At the same time, either one or both of the high speed steel 1 and the beam 12 is moved at a low speed in the direction Q. This produces an effect as if a rectangular beam of a length corresponding to the high speed movement width of the beam 12 is irradiated by any required length. As a result, a quench-solidified layer 3 of a wide width is formed by melting the high speed steel surface of an area corresponding to the high speed movement width of the beam 12. Since the repeated movement of the beam 12 is at the high speed in this way, the portion irradiated with the overlapped beam receives essentially the same effect with that of a simultaneous irradiation or the same effect of quenching of a single quench-solidification and, as a result, cracks are prevented from being produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高度の切削性能を有する高速度切削工具の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a high-speed cutting tool with high cutting performance.

本発明に係る高速度鋼とは、JISで規定されている高
速度鋼や、一般に粉末高速度鋼と呼ばれる鋼種は勿論の
こと、1次炭化物を含みしかも合金炭化物の析出による
焼戻し2次硬化が生じる鋼種を含むものである。
The high-speed steel according to the present invention includes not only the high-speed steel specified by JIS and the steel type generally called powder high-speed steel, but also contains primary carbides and is not subject to secondary hardening by tempering due to the precipitation of alloy carbides. This includes the type of steel produced.

[従来の技術] 高速度鋼は高い硬度と優れた靭性を有している為、切削
工具や金型なと主として耐摩耗性を必要とする製品の素
材として利用されている。これら切削加工や金型成形加
工の分野では、作業能率及び精度の高度化が一段と要求
される傾向にあり、この様な要求に応えるべく高速度鋼
にも種々の改良がなされている。
[Prior Art] Since high-speed steel has high hardness and excellent toughness, it is mainly used as a material for products that require wear resistance, such as cutting tools and molds. In the fields of cutting and mold forming, there is a tendency for higher work efficiency and precision to be required, and in order to meet these demands, various improvements have been made to high-speed steel.

例えば特開昭59−83718号公報によれば、高速度
鋼表面にレーザビームを照射して表面を溶融急冷凝固さ
せて1次炭化物を固溶させ、次いで焼戻すことにより2
次硬化を著しく促進させて硬度及び靭性を改善し、その
結果として耐摩耗性の向上を図るという方法が開示され
ている。
For example, according to Japanese Patent Application Laid-Open No. 59-83718, the surface of high-speed steel is irradiated with a laser beam to melt and rapidly solidify the surface to dissolve primary carbides, and then tempered to form a secondary carbide.
A method is disclosed in which the subsequent hardening is significantly accelerated to improve hardness and toughness, and as a result, the wear resistance is improved.

この様な場合のレーザビームは高いパワー密度を得る必
要上レンズ等によって集光し、その集光点近傍で被処理
物に照射させるのが一般的であり、従ってこの様にして
得られる急冷凝固層はその幅が約2fflff1程度と
比較的狭いのが現状である。
In order to obtain high power density, the laser beam in such cases is generally focused by a lens, etc., and irradiated onto the workpiece near the focused point. Currently, the width of the layer is relatively narrow, about 2fflff1.

一方切削工具刃先は、通常何度も再研削して使用される
ものであって、急冷凝固層の幅が上記の様に狭いと再研
削可能回数が低減する。つまり再研削までの刃先寿命は
向上するものの工具全体の寿命の改善には必らずしもつ
ながりておらないのが実状である。
On the other hand, the cutting tool cutting edge is normally used after being re-ground many times, and if the width of the rapidly solidified layer is as narrow as described above, the number of times that it can be re-ground is reduced. In other words, although the life of the cutting edge until re-grinding is improved, the reality is that this does not necessarily lead to an improvement in the life of the tool as a whole.

またレーザビーム照射後に行なわれる仕上げ加工の際に
、加工能率との関係で加工代を大きくとる場合があるが
、このとき急冷凝固層の幅が狭ければ急冷凝固層が削り
取られてなくなってしまうおそれがある。この為急冷凝
固層の形成に当たっては、刃先部又は刃先形成予定部(
以下、単に刃先部等ということがある)を極めて高い位
置精度で形成する様に細心の注意を払う必要があり作業
能率が著しく低下する。従ってこれらの不都合を解消す
る為には広幅の急冷凝固層を形成するということで対処
する必要がある。その方法としては1つには第11図に
示す様に高速度鋼1の表面にレーザビーム2の照射を何
本も繰り返し行ない境界部を重複させることにより急冷
凝固層3を広幅のものとする方法がある。また他の方法
としては第12図に示す様にレーザビーム2のスポット
径を大きくしてレーザビーム2の照射面積(溶融部4)
を広くする方法がある。
In addition, during finishing processing performed after laser beam irradiation, a large processing allowance may be required due to processing efficiency, but at this time, if the width of the rapidly solidified layer is narrow, the rapidly solidified layer will be scraped off and disappear. There is a risk. Therefore, when forming the rapidly solidified layer, the cutting edge or the area where the cutting edge is to be formed (
It is necessary to pay close attention to forming the blade edge (hereinafter simply referred to as the cutting edge) with extremely high positional accuracy, which significantly reduces work efficiency. Therefore, in order to eliminate these disadvantages, it is necessary to form a wide rapidly solidified layer. One method is to repeatedly irradiate the surface of high-speed steel 1 with several laser beams 2 to overlap the boundaries, thereby making the rapidly solidified layer 3 wider, as shown in FIG. There is a way. Another method is to increase the spot diameter of the laser beam 2 as shown in FIG.
There is a way to make it wider.

[発明が解決しようとする問題点] しかしながらこれらの方法では以下の問題を生ずる。[Problem to be solved by the invention] However, these methods cause the following problems.

まず前者の方法ではオーバラップさせた境界部(急冷凝
固層形成済み)が熱影響を受ける為境界部の硬度が焼戻
し硬化を受けて低下するおそれがある。また高速度鋼の
場合は急冷凝固層及びその周囲の熱影響によって形成さ
れる焼入れ層の硬度がHV800以上であって非常に高
い為割れが容易に発生するおそれがある。この様な割れ
はレーザビーム照射前の高速度鋼の硬度には関係がなく
、仮令焼鈍材を用いたとしても発生する為、高速度鋼に
この方法を採用することはできない。
First, in the former method, since the overlapped boundary area (on which a rapidly solidified layer has been formed) is affected by heat, there is a risk that the hardness of the boundary area may be reduced by temper hardening. Furthermore, in the case of high-speed steel, the hardness of the rapidly solidified layer and the hardened layer formed by the thermal influence around it is HV800 or higher, which is very high, so cracks may easily occur. Such cracking has nothing to do with the hardness of the high-speed steel before laser beam irradiation, and will occur even if pre-annealed material is used, so this method cannot be applied to high-speed steel.

次に後者の方法ではレーザビームのパワー密度が低下す
る為走査速度を遅くすることが必要であり、その結果溶
融層の冷却速度が遅くなるという問題があるほか、溶融
層の断面形状がビームのパワー分布を反映する結果、表
面の凹凸が大きくなる他、急冷凝固層内に硬さ分布が生
じるという問題がある。
Next, in the latter method, the power density of the laser beam decreases, so it is necessary to slow down the scanning speed, which results in the problem of slowing down the cooling rate of the molten layer, and the cross-sectional shape of the molten layer As a result of reflecting the power distribution, there is a problem in that not only the surface irregularities become large but also the hardness distribution occurs in the rapidly solidified layer.

本発明はこの様な事情に鑑みてなされたものであって、
上記した従来技術の欠点を招くことな〈従来より広幅の
急冷凝固層を形成し、しかもビーム照射前の熱処理条件
を調節することによって急冷凝固層の広幅化に伴なう割
れの発生を完全に抑制する高速度鋼切削工具の製造方法
を提供するものである。
The present invention was made in view of these circumstances, and
By forming a rapidly solidified layer with a wider width than before and adjusting the heat treatment conditions before beam irradiation, it is possible to completely prevent the occurrence of cracks caused by the widening of the rapidly solidified layer without causing the drawbacks of the conventional technology described above. A method of manufacturing a high speed steel cutting tool is provided.

[問題点を解決する為の手段] 本発明は第1及び第2の発明からなるものであり、いず
れの発明も高速度鋼切削工具素材の刃先部又は刃先形成
予定部の表面に含まれるある線上を、高エネルギー密度
ビームを高速振動させながら照射して該照射部の表面層
を溶融させつつ前記切削工具素材をビームの振動方向と
交差する方向に相対的に移動させることによって前記刃
先部又は刃先形成予定部の表面に急冷凝固層を形成させ
た後、更に焼戻し加工及び仕上加工を行なうことを要旨
とするものであるが、ビーム照射前に行なう高速度鋼切
削工具素材の焼入温度を第1の発明においては切削工具
素材の融点下130℃より低い温度で行ない、また第2
の発明においては焼入温度は限定しないが、焼入れ後5
40℃〜700℃で焼戻しを行なうこともそれぞれの発
明の重要な構成要素である。
[Means for Solving the Problem] The present invention consists of the first and second inventions, both of which include a certain amount of material contained in the cutting edge portion or the surface of the cutting edge forming portion of the high-speed steel cutting tool material. By irradiating the line with a high energy density beam while vibrating at high speed and melting the surface layer of the irradiated part, the cutting tool material is relatively moved in a direction intersecting the vibration direction of the beam, thereby cutting the cutting edge part or The gist of this method is to form a rapidly solidified layer on the surface of the area where the cutting edge is to be formed, and then further temper and finish the material. In the first invention, the cutting is carried out at a temperature lower than 130°C below the melting point of the cutting tool material, and in the second invention,
In the invention, the quenching temperature is not limited, but after quenching 5
Tempering at 40°C to 700°C is also an important component of each invention.

尚ここで刃先形成予定部とはビーム照射後の仕上げ加工
又は再研削加工によって刃先となる領域を意味する。ま
た高速度鋼切削工具とは、工具全体が高速度鋼からなる
ものは勿論、切削に関与する刃先部のみが高速度鋼であ
るものも含まれる。
Note that the portion where the cutting edge is to be formed means the area that will become the cutting edge by finishing or re-grinding after beam irradiation. Furthermore, the term "high-speed steel cutting tool" includes not only a tool in which the entire tool is made of high-speed steel, but also a tool in which only the cutting edge part involved in cutting is made of high-speed steel.

[作用コ 第1図は本発明による高速度鋼切削工具の製造方法を示
す図であって、高速度鋼1の表面にレーザビームや電子
ビーム等の高エネルギー密度ビーム(以下単にビームと
略称することがある)12を高速振動つまり矢印P方向
へ繰り返し高速移動させつつ高速度W41の表面に照射
すると同時に高速度鋼1又はビーム12のいずれか一方
を矢印Q方向に低速で8勤させることにより、あたかも
ビームの高速O動幅に相当する細長いビームを任意長さ
に亘って照射するのと同様の効果が得られることとなる
。その結果ビーム12の高速穆勤幅に相当する範囲の高
速度鋼表面を溶融させることによって従来より広幅の急
冷凝固層3が形成されるが、この際ビームのスポット径
を大きく形成して照射している訳ではないので照射ビー
ムのパワー密度が低下することなく、従って従来法の第
2法で述べた様な欠点は生じない。またビーム12の繰
り返し移動は高速度で行なうものである為、繰り返し8
勤によるビームオーバラップ部は実質上同時に照射され
たこととなり、加熱・急冷・熱影響という熱履歴を頻回
にわたって受けるという訳ではなく、唯1回の急速溶融
凝固による焼入れを受けたのと同じ効果が得られ、従来
法の第1法で述べた様な欠点は生じない。
[Function] Fig. 1 is a diagram showing a method for manufacturing a high-speed steel cutting tool according to the present invention, in which a high-energy density beam (hereinafter simply referred to as a beam) such as a laser beam or an electron beam is applied to the surface of a high-speed steel 1. 12) is irradiated onto the surface of the high-speed W41 while repeating high-speed vibration, that is, moving it at high speed in the direction of the arrow P, and at the same time, by moving either the high-speed steel 1 or the beam 12 eight times at a low speed in the direction of the arrow Q. , the same effect can be obtained as if a long and narrow beam corresponding to the high-speed O movement width of the beam was irradiated over an arbitrary length. As a result, by melting the high-speed steel surface in a range corresponding to the high-speed working width of the beam 12, a rapidly solidified layer 3 having a wider width than before is formed. Since the power density of the irradiation beam is not reduced, the drawbacks mentioned in the second conventional method do not occur. In addition, since the repeated movement of the beam 12 is performed at high speed, the repeated movement of the beam 12 is 8 times.
The beam overlap area was irradiated virtually at the same time, so it did not undergo the thermal history of heating, rapid cooling, and thermal effects repeatedly, but was equivalent to being quenched by rapid melting and solidification only once. This method is effective, and the drawbacks mentioned in the first conventional method do not occur.

また本発明において使用されるビームは、高速加熱の可
能なものであればレーザビーム、電子ビーム或はその他
のものでもよく、その種類が限定されるものではないが
、ここでは炭酸ガスレーザを例にとりビーム照射条件に
ついて説明する。
Furthermore, the beam used in the present invention may be a laser beam, an electron beam, or any other beam as long as it is capable of high-speed heating, and the type thereof is not limited, but here, a carbon dioxide laser will be used as an example. The beam irradiation conditions will be explained.

レーザ照射によって切削性能を向上させるには冷却速度
:104℃/秒で、深さ0.1mm以上の急冷凝固層を
形成することが必要であり、その為のレーザ照射条件は
照射面内の1点が照射されている時間(相互作用時間二
T)とそのときのビーム強度(照射エネルギー密度:W
)でほぼ決定される。
In order to improve cutting performance by laser irradiation, it is necessary to form a rapidly solidified layer with a depth of 0.1 mm or more at a cooling rate of 104°C/sec, and the laser irradiation conditions for this are as follows: The time during which a point is irradiated (interaction time 2T) and the beam intensity at that time (irradiation energy density: W
) is almost determined.

5KH55(1000℃焼人材)にレーザビーム或は電
子ビームを照射してビーム強度[照射エネルギー密度W
 (J/cm” ) ]と相互作用時間T(秒)との関
係を実験により求めたところ、T及びWの好ましい範囲
は 5 X 10−’秒< T < 10−’秒     
   ・・・(1)2xlG3J/cm” <W<2x
lO’ J/cm2・・・(2)であった。そして上記
(1) 、 (2)の範囲外においては第2図に示す様
に■蒸発する。■急冷凝固層深さが不足する。■急冷凝
固層内に欠陥を生じる。■冷却速度が不足する等の問題
を生じ必要な特性が得られなかった。
5KH55 (heated at 1000℃) is irradiated with a laser beam or electron beam to determine the beam intensity [irradiation energy density W
(J/cm")] and the interaction time T (seconds) was experimentally determined, and the preferable range of T and W is 5 x 10-' seconds < T <10-' seconds.
...(1)2xlG3J/cm"<W<2x
lO' J/cm2 (2). Outside the ranges of (1) and (2) above, it evaporates as shown in FIG. ■The depth of the rapidly solidified layer is insufficient. ■Defects occur in the rapidly solidified layer. ■ Problems such as insufficient cooling rate occurred, and necessary characteristics could not be obtained.

また本発明の様に高速で繰り返し移動するビームを照射
する場合には、更に下記(3)及び(4)式を満足する
必要がある。
Further, when irradiating a beam that repeatedly moves at high speed as in the present invention, it is further necessary to satisfy the following equations (3) and (4).

V / F X 16.7< S          
・” (3)F>10  (Hz)         
    ・・・(4)ここで各記号は次の意味を表わす
V/FX 16.7<S
・” (3) F>10 (Hz)
...(4) Here, each symbol represents the following meaning.

Sニスポット径(mm) F:繰り返し移動するビームの振動数(Hz)V:ビー
ム又は工具の高速度繰り返し方向と交差する方向の移動
速度(m/分) 上記(3) 、 (4)式の範囲外では高速繰り返し穆
勤中にいったん溶融層が凝固し、再度溶融される可能性
が生じるため、前述のオーバーラツプ法と同じく後記の
熱処理条件の如何に拘わらず割れが発生する恐れがある
ほか、急冷凝固層内に熱影響層が発生し、所望の効果が
得られない。
S spot diameter (mm) F: Frequency of the repeatedly moving beam (Hz) V: Moving speed of the beam or tool in the direction intersecting the high-speed repeating direction (m/min) Equations (3) and (4) above Outside this range, there is a possibility that the molten layer will solidify once during high-speed repeated polishing and then melt again, so there is a risk that cracks will occur regardless of the heat treatment conditions described below, as with the overlap method described above. , a heat-affected layer is generated in the rapidly solidified layer, and the desired effect cannot be obtained.

なお、TおよびWは次式によって求められる。In addition, T and W are calculated|required by the following formula.

W= −x 6 x 10’  (J/cm2)  −
(6)XV (注:*パルス発信の場合にはそれぞれデユーティ−を
かける) ここでD:繰り返し移動するビームの振幅(mm)P:
ビーム出力(KW) を意味する。
W= -x 6 x 10' (J/cm2) -
(6) XV (Note: *In the case of pulse transmission, multiply the duty by each time.) Here, D: Amplitude of repeatedly moving beam (mm) P:
Beam power (KW).

急冷凝固層の幅は、ビームの高速繰り返し幅の約フO〜
90%となるのでビームの高速繰り返し幅は所望の急冷
凝固層幅の1.1−1.4倍となるよう設定するのが望
ましい。
The width of the rapidly solidified layer is approximately the same as the high-speed repetition width of the beam.
90%, so it is desirable to set the high-speed repetition width of the beam to be 1.1 to 1.4 times the desired rapidly solidified layer width.

一方、ビームが電子ビームである場合には、ビームエネ
ルギーの吸収率が異なるためにWに関する条件範囲が変
化する。すなわち、その望ましい範囲は 3 XIO”  J/cm’<W<3 Xl03J/c
m”  ・”(2)’となり、他の条件範囲は同じであ
る。
On the other hand, when the beam is an electron beam, the condition range regarding W changes because the beam energy absorption rate differs. That is, the desirable range is 3 XIO"J/cm'<W<3 Xl03J/c
m"."(2)', and the other condition ranges are the same.

尚、レーザがYAGレーザである場合、吸収率の関係上
電子ビーム照射条件と同じになる。
Note that when the laser is a YAG laser, the conditions are the same as those for electron beam irradiation due to absorption.

以上の条件範囲であれば、あたかも高速移動幅(振幅)
に相当する細長いビームを照射するのとほぼおなし効果
があり、溶融層内に熱影響層の存在しない連続した広幅
急冷凝固層を形成することが可能であった。ところで高
速度鋼の場合、焼入れ硬度が非常に高いため、通常の焼
入れを行った後、このレーザ処理を行うと依然として割
れが発生するという問題がある。
In the above condition range, the width of high-speed movement (amplitude)
It had almost the same effect as irradiating with a long and narrow beam corresponding to 1, and it was possible to form a continuous wide rapidly solidified layer without a heat-affected layer within the molten layer. However, in the case of high-speed steel, the quenched hardness is very high, so if this laser treatment is performed after normal quenching, cracks still occur.

次に割れを防止するための熱IA理条件について説明す
る。
Next, thermal IA processing conditions for preventing cracking will be explained.

まず、代表的な溶製高速度鋼5KH51゜S KH55
,および焼結高速度鋼KHA30[Fe−1、25零G
−4、O零Cr−5、0零Mo−6、0!I:W−3、
0kV−8、0kC。
First, the representative high-speed steel 5KH51°S KH55
, and sintered high-speed steel KHA30 [Fe-1, 25 zero G
-4, O zero Cr-5, 0 zero Mo-6, 0! I:W-3,
0kV-8, 0kC.

(重量%)]を種々の温度で焼入れた後、これを供試材
として焼入れ温度と硬度の関係を調査した。結果は、第
1表及び第3図に示すとおりであった。
(% by weight)] was quenched at various temperatures, and then used as test materials to investigate the relationship between quenching temperature and hardness. The results were as shown in Table 1 and Figure 3.

第   1   表 次に焼入れ処理を行った高速度鋼工具素材の刃先形成予
定部に下記照射条件で炭酸ガスレーザを照射した。
Table 1 Next, the part where the cutting edge was to be formed of the hardened high-speed steel tool material was irradiated with a carbon dioxide laser under the following irradiation conditions.

供試材:5KH51,5KH55,KHA30素材形状
  :30高さ×50幅×150長さレーザ出力(P)
        :3Kwスポット径(S):約1.5
mm 高速繰り返し幅(振幅HD):10mm繰り返し振動数
(S)      : 3600 Hz素材移動速度(
V)       : 0.3m/分得られた工具素材
の焼入温度と割れ発生状況との関係を調査した。結果を
第4図に示す。
Test material: 5KH51, 5KH55, KHA30 Material shape: 30 height x 50 width x 150 length Laser output (P)
:3Kw Spot diameter (S): Approx. 1.5
mm High-speed repetition width (amplitude HD): 10mm Repetition frequency (S): 3600 Hz Material movement speed (
V): The relationship between the quenching temperature of the tool material obtained at 0.3 m/min and the occurrence of cracks was investigated. The results are shown in Figure 4.

なお、割れ発生状況の判定尺度としては下記の5段階評
価を採用した。
Note that the following 5-level evaluation was adopted as a criterion for determining the occurrence of cracks.

1:割れ発生せず 2:目視では識別できないが、20倍拡大によって視認
可能な微細な割れが発生。
1: No cracks occurred. 2: Fine cracks occurred that could not be visually identified but were visible under 20x magnification.

3:目視可能な割れの総延長が50mm未満あるいは割
れ起点数が4点以下。
3: The total length of visible cracks is less than 50 mm or the number of crack starting points is 4 or less.

4:目視可能な割れの総延長が50mm以上100mm
以下あるいは割れ起点数が5点以上10点未満 5:目視可能な割れの総延長が100mm以上あるいは
割れ起点数が10点以上 第4図から明らかなように、レーザ照射前の素材焼入温
度が低下するにつれ、割れ発生傾向は減少し、融点下1
30℃以下の温度で焼入処理をおこなえば、割れの発生
は防止できることがわかった。なお、割れ発生状況と焼
入硬度の関係を調査したところ第5図に示す結果を得た
。すなわち、焼入硬度の点からいえば、従来の焼入硬度
より1(RC5程度以上低下させれば割れが発生しない
ことが判明した。つまり、従来融点下30〜50℃で行
われていた焼入れをそれより低い融点下130℃以下の
温度で行うことにより、切削工具母材の硬度は従来のも
のよりHR62〜3以上低下し、その結果塑性変形能が
大きくなる。従って、刃先部等にビームを照射した場合
に生ずる照射部と母材部の間の引っ張り応力が塑性変形
によって緩和され、このために割れが減少するものと思
われる。
4: Total length of visible cracks is 50mm or more and 100mm
or the number of crack starting points is 5 or more and less than 10 5: The total length of visible cracks is 100 mm or more or the number of crack starting points is 10 or more. As the melting point decreases, the tendency for cracking to occur decreases, and
It has been found that cracking can be prevented by performing the quenching treatment at a temperature of 30°C or lower. When the relationship between crack occurrence and quenching hardness was investigated, the results shown in FIG. 5 were obtained. In other words, in terms of quenching hardness, it was found that cracking does not occur if the hardness is reduced by 1 (RC5) or more from the conventional quenching hardness. By performing this at a temperature below the melting point of 130°C, the hardness of the cutting tool base material is reduced by more than 62 to 3 HR compared to conventional ones, and as a result, the plastic deformability increases. It is thought that the tensile stress between the irradiated part and the base metal part that occurs when irradiation is alleviated by plastic deformation, which reduces cracking.

なお、切削工具の母材は切削を直接行う部分ではないか
ら、切削に直接関与する刃先部に要求される程の高い硬
度が必要とされるものではなく、刃先部を保持するに足
る強度を備えていればよい。この観点からは通常1(R
C40程度の硬さがあればよいとされる。
Furthermore, since the base material of a cutting tool is not the part that directly performs cutting, it does not need to have the same level of hardness as the cutting edge, which is directly involved in cutting, but must have enough strength to hold the cutting edge. Just be prepared. From this point of view, it is usually 1(R
It is said that a hardness of about C40 is sufficient.

従って、第3図から明らかなように、焼入温度が仮に8
00℃まで低下しても)IRC40程度の焼入硬度は充
分にでるため、仮令焼入温度を融点下130℃以上低下
させたとしても母材に要求される硬度(>HRC40)
は十分得られる。
Therefore, as is clear from Figure 3, if the quenching temperature is 8.
Even if the quenching temperature is lowered to 130°C or more below the melting point, the hardness required for the base material (>HRC40) can be sufficiently achieved.
can be obtained sufficiently.

次に割れを防止するためのもう1つの方法である焼入温
度を限定せず焼戻温度を限定する場合について説明する
Next, another method for preventing cracking, in which the tempering temperature is limited without limiting the quenching temperature, will be explained.

前述の高速度鋼素材を1200℃で焼入れ後、種々の温
度で焼戻し、焼戻温度と硬度の関係をもとめた。結果を
第6図に示す。
The above-mentioned high-speed steel material was quenched at 1200°C and then tempered at various temperatures to determine the relationship between tempering temperature and hardness. The results are shown in Figure 6.

第6図より明らかな様に焼戻温度が500℃を超すと硬
度が低下し始めることがわかった。更に、前述と同様の
レーザ処理を行い、割れ発生と焼戻温度の関係を調査し
たところ第7図の結果を得た。
As is clear from FIG. 6, it was found that when the tempering temperature exceeds 500°C, the hardness begins to decrease. Further, the same laser treatment as described above was performed and the relationship between crack occurrence and tempering temperature was investigated, and the results shown in FIG. 7 were obtained.

第7図より明らかな通り、焼戻温度が上昇するにつれ割
れ発生傾向は低下し、540℃以上で焼戻しを行うこと
により、焼入温度が融点下130℃以上であっても割れ
が完全に抑制されることが判明した。そのさい、焼戻温
度が、540〜560℃の範囲内においては硬度が焼入
れままとほぼおなしかむしろ高めであるにもかかわらず
、割れが抑制されるのは焼戻しに伴う延性、靭性の向上
によるものと思われる。また焼戻しを行うことにより割
れを防止する場合には、焼戻温度を700℃以下にする
必要がある。この温度以上で焼戻しを行うと母材に切削
工具として必要な強度を付与できない。
As is clear from Figure 7, as the tempering temperature rises, the tendency for cracking to occur decreases, and by tempering at 540°C or higher, cracking is completely suppressed even if the quenching temperature is 130°C or higher below the melting point. It turned out that it was. At that time, when the tempering temperature is within the range of 540 to 560°C, the hardness is almost the same as as-quenched, or even higher, but cracking is suppressed due to the improvement in ductility and toughness that accompanies tempering. This seems to be due to In addition, if cracking is to be prevented by tempering, the tempering temperature must be 700° C. or lower. If tempering is performed above this temperature, the strength required for a cutting tool cannot be imparted to the base material.

以上の条件で急冷凝固層を形成したあと、さらに焼戻し
および仕上げ加工することにより切削工具が製造される
が、その際も焼戻温度は従来と同じく500〜600℃
で1回または複数回行われる。またいかに急冷凝固層の
幅が広いといっても仕上げ加工の際には、刃先に急冷凝
固層が存在するように留意する必要があるのはいうまで
もない。
After forming a rapidly solidified layer under the above conditions, cutting tools are manufactured by further tempering and finishing, but the tempering temperature is the same as before, 500 to 600℃.
performed one or more times. It goes without saying that no matter how wide the rapidly solidified layer is, care must be taken to ensure that the rapidly solidified layer is present at the cutting edge during finishing.

また本発明による切削工具の製造工程としては予め刃切
り加工したあとビームを照射し、その後焼戻し、仕上げ
加工してもよく、或また刃切りしていない素材にビーム
を照射した後焼戻しし刃切り加工を行なってもよい。
In addition, the manufacturing process of the cutting tool according to the present invention may include cutting the blade in advance, irradiating it with a beam, then tempering and finishing it, or irradiating the beam onto a material that has not yet been cut, tempering it, and then cutting the blade. Processing may also be performed.

尚以上の試験では全て刃切りしていない角状の供試材に
レーザを照射し急冷凝固層を形成させているが、これと
は別に工具形状に刃切り加工した素材に急冷凝固層を形
成する試験も行ったところ、いずれも割れ発生傾向は角
削り材より良好であり、角削り材で割れの発生しない条
件では刃切り加工したものでも割れが発生しないことが
確認された。
In all of the above tests, a laser was irradiated on a square specimen material that had not been cut with a blade to form a rapidly solidified layer, but in addition to this, a rapidly solidified layer was formed on a material that had been cut into the shape of a tool. Tests were also conducted, and it was confirmed that the tendency of cracking in both cases was better than that of square-cut materials, and that under conditions where square-cut materials do not cause cracks, even those that had been cut with a blade did not generate cracks.

[実施例] 本発明に係る製造方法により切削工具(ブローチ)を製
造して、切削試験を行なった。
[Example] A cutting tool (broach) was manufactured by the manufacturing method according to the present invention, and a cutting test was conducted.

実施例1 第8図(A)〜(F)に製造方法を示す。なお第8図(
E)は、同(B)のE−E’拡大断面図、同(F)は同
(C)のF−F’拡大断面図である。
Example 1 The manufacturing method is shown in FIGS. 8(A) to 8(F). In addition, Figure 8 (
E) is an enlarged cross-sectional view taken along the line EE' of (B), and (F) is an enlarged cross-sectional view taken along the line FF' of (C).

(イ)SKH55製高速度鋼焼鈍材を粗削り後この高速
度鋼切削工具素材1を1100℃で焼入れし、表面研削
、寸法調整しその刃先形成予定部に下記条件でビーム2
を照射し[第8図(A) ] 、幅約7 mm、深さ約
0.8mmの急冷凝固層3を1.1mm間隔で形成した
(a) After rough cutting the high speed steel annealed material made of SKH55, this high speed steel cutting tool material 1 is hardened at 1100°C, surface ground, dimensions adjusted, and a beam 2 is placed on the area where the cutting edge is to be formed under the following conditions.
[FIG. 8(A)] to form rapidly solidified layers 3 having a width of about 7 mm and a depth of about 0.8 mm at intervals of 1.1 mm.

(ロ)その後560℃×1時間×3回の焼戻しを行い、
高速度鋼ブローチ素材11とした。
(b) After that, tempering was performed at 560°C x 1 hour x 3 times,
High speed steel broach material 11 was used.

[第8図(B)] (ハ)次に砥石5で溝切り加工を行った。[第8図(C
)] (ニ)次に刃先および逃げ面を仕上げ加工し、高速度鋼
ブローチ111を得た。[第8図(D)] なお、6は母材、7はすくい面、8は逃げ面であり、仕
上げ加工後の逃げ面の幅(ランド幅)は5.5mm 、
刃の間隔は11 、0mm、刃数は16刃であった。
[FIG. 8(B)] (c) Next, grooving was performed using the grindstone 5. [Figure 8 (C
)] (d) Next, the cutting edge and flank were finished to obtain a high-speed steel broach 111. [Figure 8 (D)] Note that 6 is the base material, 7 is the rake face, and 8 is the flank face, and the width of the flank face (land width) after finishing processing is 5.5 mm.
The spacing between the blades was 11.0 mm, and the number of blades was 16.

またビーム照射条件は次の通りとした。The beam irradiation conditions were as follows.

ビーム種類:炭酸ガスレーザビーム 出カニ 2.9kw スポット径: 1.5mm 高速繰り返し幅: 8.5mm 高速繰り返し方向:刃先線と交差する方向繰り返し振動
数: 3800H2 工具8勤速度70.3111111 /分工具移動方向
:刃先と平行 急冷凝固層の中心:予定刃先線から2.4±0.8mm
内部狙い 急冷凝固層の間隔: 11.Omm また比較の為に従来法としてビーム照射条件のみを下記
の様に変更したブローチも製造した。
Beam type: Carbon dioxide laser beam output 2.9kW Spot diameter: 1.5mm High-speed repetition width: 8.5mm High-speed repetition direction: Crossing the cutting edge line Repetition frequency: 3800H2 Tool 8-speed 70.3111111/min tool movement Direction: Parallel to the cutting edge Center of rapidly solidified layer: 2.4±0.8mm from the planned cutting edge line
Interval of internal target rapidly solidified layer: 11. Omm For comparison, a broach was also manufactured using the conventional method with only the beam irradiation conditions changed as shown below.

ビーム種類:炭酸ガスレーザ 出カニ5KW スポット径:21!1I11 工具穆動速度:2m/分 工具8勤方向:刃先と平行 急冷凝固層の中心二予定刃先線から0.65±0.15
mm内部狙い 急冷凝固層の間隔: 11.Omm この様にして得たいずれのブローチも割れの発生は認め
られなかった。
Beam type: Carbon dioxide laser output 5KW Spot diameter: 21!1I11 Tool movement speed: 2m/min Tool 8th shift direction: Parallel to the cutting edge Center of the rapidly solidified layer 0.65±0.15 from the planned cutting edge line
mm Internal target rapidly solidified layer spacing: 11. Omm No cracking was observed in any of the broaches obtained in this manner.

上記工程におけるビーム照射処理に要した時間を第2表
に示す。
Table 2 shows the time required for the beam irradiation treatment in the above steps.

第   2   表 前述の通り、従来法では急冷凝固層の幅が狭いためビー
ム照射位置の許容範囲が非常に狭かった。すなわち、急
冷凝固層を刃先から1.5mm以上残そうとするとその
中心線は予定刃先線から0.5mm以上離さなければな
らず、又急冷凝固層の端はむらがあるため端から0.2
mm以上研削しなければならないことを考えると中心線
は予定刃先線から0.8mm以下にしなければならなか
った。従って、照射するビームの狙い位置は、0.65
±0.15mmとなり±0.15mmの精度が必要であ
った。ビームの照射位置は、例えばレーザビームを用い
る場合には、反射鏡の僅かな動きや使用中の熱膨張によ
っても大きく変わってくるため、従来法では毎回照射位
置の測定をしなければならない。このための時間として
約90分/木を要した。また、工具素材を当然±0.1
5mm以下の位置精度で固定する必要があり、このセツ
ティングおよび固定位置の確認、調整に40分/木かか
った。
Table 2 As mentioned above, in the conventional method, the width of the rapidly solidified layer was narrow, so the tolerance range of the beam irradiation position was very narrow. In other words, if you want to leave the rapidly solidified layer 1.5 mm or more from the cutting edge, its center line must be separated by 0.5 mm or more from the intended cutting edge line, and since the edge of the rapidly solidified layer is uneven, it must be separated by 0.2 mm or more from the edge.
Considering that it was necessary to grind more than mm, the center line had to be 0.8 mm or less from the planned cutting edge line. Therefore, the target position of the irradiated beam is 0.65
The result was ±0.15 mm, which required an accuracy of ±0.15 mm. For example, when using a laser beam, the irradiation position of the beam changes greatly depending on the slight movement of the reflecting mirror or thermal expansion during use, so in the conventional method, the irradiation position must be measured every time. This took approximately 90 minutes/day. Also, the tool material should be adjusted to ±0.1
It was necessary to fix it with a positional accuracy of 5 mm or less, and it took 40 minutes/day to set it up, confirm the fixing position, and adjust it.

さらに、照射後の急冷凝固層の位置確認(0,65±0
.15mmに入っているかどうかおよび急冷凝固層の幅
)も拡大鏡を用いる必要があり、この時間に90分/木
を要した。その他高エネルギー密度ビームの照射時間な
どを含めると従来法では、合計224分を要した。
Furthermore, we confirmed the position of the rapidly solidified layer after irradiation (0,65±0
.. 15 mm and the width of the rapidly solidified layer), it was necessary to use a magnifying glass, and this required 90 minutes/piece of time. Including the irradiation time of the high energy density beam, the conventional method required a total of 224 minutes.

一方、本発明法では、ビーム照射位置が多少ずれても急
冷凝固層の幅が広いため急冷凝固層を十分に残して刃切
りおよび仕上げ加工できる結果、照射位置の許容範囲±
0.8mmと広かった。(この場合、最低でも幅5.1
mmの急冷凝固層が刃先から残る。)従って、毎回の照
射位置の確認は不要であり、工具素材のセツティングお
よび固定位置の確認も15分/木、ビーム照射後の急冷
凝固層の確認も目視でよいので15分/木で充分であり
、ビーム照射時間はやや増加するものの処理に要する総
時間は40分と従来法に比べて大幅に短縮された。
On the other hand, in the method of the present invention, even if the beam irradiation position is slightly shifted, the width of the rapidly solidified layer is wide enough to allow blade cutting and finishing while leaving a sufficient amount of the rapidly solidified layer.
It was wide at 0.8mm. (In this case, the width is at least 5.1
A rapidly solidified layer of mm remains from the cutting edge. ) Therefore, it is not necessary to check the irradiation position each time, and it takes 15 minutes/wood to set the tool material and check the fixing position, and 15 minutes/wood is sufficient to check the rapidly solidified layer after beam irradiation, as it is sufficient to visually check it. Although the beam irradiation time was slightly increased, the total time required for processing was 40 minutes, which was significantly shortened compared to the conventional method.

尚、刃立て加工および仕上げ加工に要する時間は特に測
定していないが、急冷凝固層の幅が広い分、作業性が改
善され、時間も短縮された。また従来の焼入温度(12
00〜1220℃)で焼入れを行フたものと比較すると
母材硬度が低い為、2倍以上の研削送り速度での加工が
可能であり、加工能率が大幅に向上した。
Although the time required for sharpening and finishing was not particularly measured, the workability was improved and the time was shortened due to the wide width of the rapidly solidified layer. Also, the conventional quenching temperature (12
Since the base material hardness is lower than that of the one that was hardened at 00 to 1220°C, it was possible to process at more than twice the grinding feed rate, and the processing efficiency was greatly improved.

次に切削性能試験結果について説明する。Next, the cutting performance test results will be explained.

(a)刃先寿命 上記方法にて製造した本発明に係るブローチとさらにビ
ーム処理していない通常の高速度鋼ブローチ(材質:5
KH55,焼入温度:1220℃、他は同じ)を用いて
、下記条件にて切削試験を行い切削性能を比較した。切
削性能は、被切削材の表面粗度および工具の逃げ面摩耗
量で判定した。結果を第9図に示す。
(a) Cutting edge life The broach according to the present invention manufactured by the above method and the ordinary high-speed steel broach (material: 5
A cutting test was conducted using KH55, quenching temperature: 1220° C., other conditions being the same) under the following conditions, and the cutting performance was compared. Cutting performance was determined by the surface roughness of the material to be cut and the amount of flank wear of the tool. The results are shown in Figure 9.

第9図より明らかな通り、本発明法により製造した工具
は、従来のビーム処理を行ったものとほぼ同じ性能を示
し、ビーム処理を行っていないものに比べ被切削材の表
面粗度が小さく、一定の表面粗度に達した時の切削長さ
を刃先寿命とすると約2〜3倍の寿命向上効果があった
。また第10図に工具の逃げ面最大摩耗量と切削長との
関係を示すが、この結果から判定しても一定摩耗量に達
するまでの切削長さはビーム処理していないものの約2
〜3倍となった。
As is clear from Fig. 9, the tool manufactured by the method of the present invention exhibits almost the same performance as the tool with conventional beam treatment, and the surface roughness of the cut material is smaller than that of the tool without beam treatment. If the cutting length when a certain surface roughness is reached is defined as the cutting edge life, the life expectancy was improved by about 2 to 3 times. Furthermore, Fig. 10 shows the relationship between the maximum amount of wear on the flank surface of the tool and the cutting length. Judging from this result, the cutting length until a certain amount of wear is reached is approximately 2
~3 times as much.

(b)工具寿命 本発明法にて製造した工具の刃先寿命が、従来法による
ビーム処理したものと同等の刃先寿命を示すことが確認
できたので、次に再研削も含めた全工具寿命の比較を行
った。
(b) Tool life Since it was confirmed that the life of the cutting edge of the tool manufactured by the method of the present invention is equivalent to that of the tool processed by the conventional method, we next determined the life of the tool manufactured by the method of the present invention. I made a comparison.

切削条件は前と同じで、被切削材の表面粗度が10μm
となった時を刃先寿命とし、すくい面を0.4〜0.5
mm再研削して再度切削試験を行い、これを繰り返すこ
とによって再研削回数および工具寿命(最終的に工具が
使えなくなるまで再研削したとき全切削長さ)を求めた
The cutting conditions are the same as before, and the surface roughness of the material to be cut is 10 μm.
The cutting edge life is defined as when the cutting edge becomes 0.4 to 0.5
mm re-grinding and another cutting test, and by repeating this, the number of re-grindings and tool life (total cutting length when the tool was re-grinded until it finally became unusable) were determined.

その結果を第3表に示す。The results are shown in Table 3.

第  3   表 従来法でビーム処理したものは4回再研削を行うと急激
に寿命が減少し異常摩耗が発生するのに対しく可能な再
研削回数は3回)、本発明法で製造したものは、ビーム
処理していないものと同等の8回の再研削が可能であり
工具寿命は大幅に向上した。
Table 3: Products processed by beam processing using the conventional method will have a sharply reduced lifespan and abnormal wear will occur if they are re-grinded four times; however, the possible number of re-grinding is 3 times) and products manufactured using the method of the present invention. The tool can be re-grinded eight times, which is the same as the tool without beam treatment, and the tool life has been significantly improved.

なお、再研削はランド幅(逃げ面の幅)が狭くなったた
め8回で中断した。
Note that the re-grinding was stopped after 8 times because the land width (width of the flank surface) became narrow.

実施例2 次に実施例1の場合と同様に本発明例と比較例のブロー
チを以下の工程で製造し実施例1の場合と同様の試験を
行った。最終的な工具形状は、実施例1と同じとした。
Example 2 Next, in the same manner as in Example 1, brooches of the present invention example and the comparative example were manufactured in the following steps, and the same tests as in Example 1 were conducted. The final tool shape was the same as in Example 1.

イ)、5KH55製高速度鋼焼鈍材を前記工具形状に若
干の加工代を残して、粗加工および刃立て加工し、これ
を高速度鋼切削工具素材とした。
b) A high-speed steel annealed material made of 5KH55 was rough-processed and sharpened, leaving a slight processing allowance in the tool shape, and this was used as a high-speed steel cutting tool material.

口)この素材を1100℃で焼入れし、表面研削、寸法
調整したあと刃先形成予定部に下記条件でビーム処理を
行った。ビーム処理前の(粗加工状態)のランド幅は本
発明法で製造する場合は7.5mm 、従来法で処理す
る場合は6.5mmとした。
After quenching this material at 1100°C, surface grinding, and dimension adjustment, the area where the cutting edge was to be formed was subjected to beam treatment under the following conditions. The land width before beam processing (roughly processed state) was 7.5 mm when manufactured using the method of the present invention, and 6.5 mm when processed using the conventional method.

ハ)その後、560℃×1.5時間×3回の焼戻しを行
い、仕上げ加工および刃先調整してブローチ製品とした
c) Thereafter, it was tempered 3 times at 560°C for 1.5 hours, and was finished and adjusted to produce a broach product.

尚上記工程における本発明例と比較例におけるビーム照
射条件はそれぞれ次の通りとした。
The beam irradiation conditions in the present invention example and comparative example in the above steps were as follows.

本発明例のビーム照射条件 ビーム種類:炭酸ガスレーザ 出カニ3kw スポット径: 1.smm 高速繰り返し幅: 8.5mm 高速繰り返し方向:刃先線と交差する方向繰り返し振動
数: 3800)1z 工具移動速度: O,:3mm /分 工具移動方向:刃先と平行 急冷凝固層の中心二ランド幅の中心±1.0mm狙い 急冷凝固層の間隔: 11.Omm 比較例のビーム照射条件 ビーム種類:炭酸ガスレーザ 出カニ5KW スポット径:2mm 工具移動速度:2m/分 工具移動方向:刃先と平行 急冷強固層の中心:粗加工時の刃先線から1.65±0
.15mm狙い 急冷凝固層の間隔: 11.Omm この様にして得たいずれのブローチも割れの発生は認め
られなかった。
Beam irradiation conditions for the example of the present invention Beam type: Carbon dioxide laser output 3kw Spot diameter: 1. smm High-speed repetition width: 8.5mm High-speed repetition direction: Direction that intersects the cutting edge line Repetition frequency: 3800) 1z Tool movement speed: O,: 3mm/min Tool movement direction: Parallel to the cutting edge Width of two lands at the center of the rapidly solidified layer Center of ±1.0mm Aim for spacing between rapidly solidified layers: 11. Omm Beam irradiation conditions for comparative example Beam type: Carbon dioxide laser output 5KW Spot diameter: 2mm Tool movement speed: 2m/min Tool movement direction: Parallel to the cutting edge Center of the quenched solid layer: 1.65± from the cutting edge line during rough machining 0
.. Aim for 15mm spacing between rapidly solidified layers: 11. Omm No cracking was observed in any of the broaches obtained in this manner.

ビーム照射処理に要する時間については次の通りであっ
た。
The time required for beam irradiation treatment was as follows.

実施例1と同じ〈従来の方法でビーム処理するときのビ
ーム照射位置の許容範囲は±0.15mmと非常に小さ
く、ビーム処理にほぼ同様の時間がかかったほか、本工
程を採用する場合には粗加工の際、すでに刃の間隔を正
確に11.0mmに仕上げておく必要があり、焼入れ後
の寸法調整およびその検査に余分の時間がかかった。な
おこの±0.15mmという値は、仕上げ加工の際、刃
先から一定量検索するとして(この場合は1.0mm 
) %急冷凝固層を1.5mm以上残しかつ急冷凝固層
を0.2mm以上研削することが可能な範囲として求め
ており、急冷凝固層を1.5mm以下にするのであれば
許容範囲は若干法がるがそのぶん再研削回数が減少した
Same as Example 1 (The tolerance range of the beam irradiation position when performing beam processing using the conventional method is very small at ±0.15 mm, and the beam processing took almost the same amount of time. During rough machining, it was necessary to finish the blade spacing accurately to 11.0 mm, which required extra time for dimensional adjustment and inspection after hardening. Note that this value of ±0.15 mm assumes that a certain amount is searched from the cutting edge during finishing machining (in this case, 1.0 mm).
) % It is required as a range in which it is possible to leave a rapidly solidified layer of 1.5 mm or more and grind the rapidly solidified layer to 0.2 mm or more, and if the rapidly solidified layer is to be 1.5 mm or less, the allowable range is slightly lower. However, the number of re-grinding has decreased accordingly.

これに対し本発明法ではビーム照射位置の許容範囲が広
く、ビーム照射前の刃の間隔はそれほど正確である必要
がなかった。またビーム照射そのものに要する時間も実
施例1と同じ理由で同程度短縮された。
On the other hand, in the method of the present invention, the permissible range of the beam irradiation position is wide, and the spacing between the blades before the beam irradiation does not need to be so accurate. Furthermore, the time required for beam irradiation itself was shortened to the same extent as in Example 1 for the same reason.

次に上記方法で製造したブローチの切削試験を実施例1
と同じ要領で行った結果、はぼ同様の結果、すなわちビ
ーム処理を行っていないものに比べて、約2〜3倍の刃
先寿命を示し、また従来のビーム処理方法で処理したも
のでは再研削回数が3回であったのに対し、本発明法に
よるものでは、8回の再研削が可能であった。
Next, a cutting test of the broach manufactured by the above method was carried out in Example 1.
As a result, the results were similar to those of Habo, that is, the life of the cutting edge was approximately 2 to 3 times longer than that of the blade without beam treatment, and the edge life of the blade treated with the conventional beam treatment method was less than regrinding. Whereas the number of times was three, the method of the present invention allowed re-grinding eight times.

実施例3 次に5K)155製高速度鋼焼鈍材を1200℃で焼入
れ後550℃×1.5時間×3回の焼戻しを行ったもの
、および1100℃焼入れ後同様の焼戻しを行ったあと
表面研削、寸法調整したものを高速度鋼切削工具素材と
し、以下実施例1と同様の方法で同形状のブローチを製
造した。
Example 3 Next, 5K) 155 high speed steel annealed material was quenched at 1200°C and then tempered 3 times at 550°C for 1.5 hours, and the surface was quenched at 1100°C and then similarly tempered. The ground and dimension-adjusted material was used as a high-speed steel cutting tool material, and a broach of the same shape was manufactured in the same manner as in Example 1.

その結果、本ブローチにおいても割れの発生は全く認め
られず、また実施例1と同様の切削試験を行った結果、
同じ切削性能(刃先寿命、再研削数)を示した。
As a result, no cracking was observed in this broach, and cutting tests similar to those in Example 1 were conducted.
They showed the same cutting performance (edge life, number of regrinds).

[発明の効果] 以上の通り、本発明によれば広幅の急冷凝固層を刃先に
有する切削工具の製造が可能となり、刃先再研削数が従
来のものより増加し、ひいては工具寿命を向上させるこ
とが可能となる。また、急冷凝固層の幅がひろいため、
仕上げ加工代をある程度大きくしても急冷凝固層がなく
なるおそれがなく、ビーム照射位置の精度および仕上げ
加工量にそれほど留意しなくとも刃先に急冷凝固層を有
する切削工具の製造が可能となるため、製造効率が著し
く向上する。
[Effects of the Invention] As described above, according to the present invention, it is possible to manufacture a cutting tool having a wide rapidly solidified layer on the cutting edge, and the number of re-grinding of the cutting edge is increased compared to conventional tools, thereby improving the tool life. becomes possible. In addition, because the width of the rapidly solidified layer is wide,
Even if the finish machining allowance is increased to a certain extent, there is no risk of the rapidly solidified layer disappearing, and it is possible to manufacture cutting tools that have a rapidly solidified layer on the cutting edge without paying much attention to the accuracy of the beam irradiation position and the amount of finishing machining. Manufacturing efficiency is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によって広幅の急冷凝固層を形成す
る方法を説明する図、第2図はビーム強度と相互作用時
間の関係を示す図、第3図は高速度鋼の焼入温度と硬度
の関係を示す図、第4図は焼入温度と割れ発生状況の関
係を示す図、第5図は焼入硬度と割れ発生状況の関係を
示す図、第6図は焼戻温度と硬度の関係を示す図、第7
図は焼戻温度と割れ発生の関係を示す図、第8図(A)
〜(F)は実施例のブローチ製造方法を説明する図、第
9図は実施例の被切削材表面粗さと切削長の関係を示す
図、第10図は実施例の逃げ面最大摩耗量と切削長の関
係を示す図、第11図及び第12図は従来法による急冷
凝固層の形成方法を示す図である。 1・・・高速度鋼    2・・・ビーム3・・・急冷
凝固層
Figure 1 is a diagram explaining the method of forming a wide rapidly solidified layer by the method of the present invention, Figure 2 is a diagram showing the relationship between beam intensity and interaction time, and Figure 3 is a diagram showing the relationship between the quenching temperature of high-speed steel and Figure 4 is a diagram showing the relationship between hardness, Figure 4 is a diagram showing the relationship between quenching temperature and crack occurrence, Figure 5 is a diagram showing the relationship between quenching hardness and crack occurrence, and Figure 6 is tempering temperature and hardness. Diagram showing the relationship between
The figure shows the relationship between tempering temperature and crack occurrence, Figure 8 (A)
- (F) are diagrams explaining the broach manufacturing method of the example, Figure 9 is a diagram showing the relationship between the surface roughness of the cut material and the cutting length of the example, and Figure 10 is the maximum wear amount of the flank face of the example. Figures 11 and 12 showing the relationship between cutting lengths are diagrams showing a method of forming a rapidly solidified layer by a conventional method. 1... High speed steel 2... Beam 3... Rapidly solidified layer

Claims (2)

【特許請求の範囲】[Claims] (1)高速度鋼切削工具素材をその融点下130℃より
低い温度で焼入れした後、その表面の刃先部又は刃先形
成予定部に含まれるある線上を、高エネルギー密度ビー
ムを高速振動させながら照射して該照射部の表面層を溶
融させつつ前記切削工具素材をビームの振動方向と交差
する方向に相対的に移動させることによって前記刃先部
又は刃先形成予定部の表面に急冷凝固層を形成させた後
、更に焼戻し加工及び仕上加工を行なうことを特徴とす
る高速度鋼切削工具の製造方法。
(1) After hardening a high-speed steel cutting tool material at a temperature lower than its melting point of 130°C, a high-energy density beam is irradiated on a certain line included in the cutting edge part or the planned cutting edge forming part on the surface while vibrating at high speed. to form a rapidly solidified layer on the surface of the cutting edge part or the part where the cutting edge is to be formed by moving the cutting tool material relatively in a direction intersecting the vibration direction of the beam while melting the surface layer of the irradiated part. 1. A method for manufacturing a high-speed steel cutting tool, which comprises further performing tempering processing and finishing processing.
(2)高速度鋼切削工具素材を焼入れした後540℃〜
700℃で焼戻しを行ない、次いでその表面の刃先部又
は刃先形成予定部に含まれるある線上を、高エネルギー
密度ビームを高速振動させながら照射して該照射部の表
面層を溶融させつつ前記切削工具素材をビームの振動方
向と交差する方向に相対的に移動させることによって前
記刃先部又は刃先形成予定部の表面に急冷凝固層を形成
させた後、更に焼戻し加工及び仕上加工を行なうことを
特徴とする高速度鋼切削工具の製造方法。
(2) 540℃~ after hardening high speed steel cutting tool material
The cutting tool is tempered at 700° C. and then irradiated with a high energy density beam while vibrating at high speed on a certain line included in the cutting edge portion or the portion where the cutting edge is to be formed on the surface of the cutting tool to melt the surface layer of the irradiated portion. After forming a rapidly solidified layer on the surface of the cutting edge portion or the portion where the cutting edge is to be formed by relatively moving the material in a direction intersecting the vibration direction of the beam, tempering processing and finishing processing are further performed. A method for manufacturing high-speed steel cutting tools.
JP11330987A 1987-05-08 1987-05-08 Manufacture of high speed steel cutting tool Granted JPS63278726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11330987A JPS63278726A (en) 1987-05-08 1987-05-08 Manufacture of high speed steel cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11330987A JPS63278726A (en) 1987-05-08 1987-05-08 Manufacture of high speed steel cutting tool

Publications (2)

Publication Number Publication Date
JPS63278726A true JPS63278726A (en) 1988-11-16
JPH0351535B2 JPH0351535B2 (en) 1991-08-07

Family

ID=14608969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11330987A Granted JPS63278726A (en) 1987-05-08 1987-05-08 Manufacture of high speed steel cutting tool

Country Status (1)

Country Link
JP (1) JPS63278726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132725A (en) * 2011-12-27 2013-07-08 Univ Of Shiga Prefecture Tool with cutting edge, method of manufacturing the same, and method for manufacturing of manufacturing intermediate product of tool with cutting edge
RU2734826C1 (en) * 2020-06-22 2020-10-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Method of laser processing of parts of rotation bodies from tool steels
CN112171216A (en) * 2020-09-29 2021-01-05 重庆派斯克刀具制造股份有限公司 Machining process of high-speed steel surface-replaceable blade

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132725A (en) * 2011-12-27 2013-07-08 Univ Of Shiga Prefecture Tool with cutting edge, method of manufacturing the same, and method for manufacturing of manufacturing intermediate product of tool with cutting edge
RU2734826C1 (en) * 2020-06-22 2020-10-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Method of laser processing of parts of rotation bodies from tool steels
CN112171216A (en) * 2020-09-29 2021-01-05 重庆派斯克刀具制造股份有限公司 Machining process of high-speed steel surface-replaceable blade

Also Published As

Publication number Publication date
JPH0351535B2 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
Leunda et al. Laser cladding of vanadium-carbide tool steels for die repair
Ukar et al. Laser polishing of tool steel with CO2 laser and high-power diode laser
US7827661B2 (en) Control of white-etched layer during machining
JP5328494B2 (en) Band saw blade and manufacturing method thereof
EP3525972B1 (en) Method of manufacturing a toothed blade and apparatus for manufacturing such a blade
RU2699469C1 (en) Steel billet machining method with chips crushing
KR20160116920A (en) method for alloying of metal surface using laser beam
RU2641444C2 (en) Method of mechanical processing of steel casting with fragmentation of chips
JPS63278726A (en) Manufacture of high speed steel cutting tool
CN111286596A (en) Quenching strengthening process for cutting edge of thin blade
Ulewicz et al. Impact of Laser Machining on the Structure and Properties of Tool Steels
WO2008129277A1 (en) Fracture site formation
JPH02221304A (en) Manufacture of high speed steel tool
JPH0251966B2 (en)
US11642741B2 (en) System for treating material of a cutting element
Kibria et al. RSM based experimental investigation and analysis into laser surface texturing on titanium using pulsed Nd: YAG laser
JPS61249210A (en) Broach made of high-speed steel possessing high performance
JP2005226539A (en) Steam turbine blade and its manufacturing method
JP2021066911A (en) Surface hardening treatment method of metal work by laser
Cunha et al. Influence of the fibre laser parameters on the surface texturing of 420 stainless steel
JP2010253597A (en) Face milling method and material to be face-milled
RU2792101C1 (en) Method for hardening woodworking tools made of chromium and chromium-silicon steels
JPH0192033A (en) Manufacture of high speed steel cutting tool
JPS5983718A (en) Surface treatment of high speed steel
Ramalingam et al. Surface hardening of oil-hardened nonshrinking steel using ruby laser