JPS63278220A - Formation of single crystal film - Google Patents

Formation of single crystal film

Info

Publication number
JPS63278220A
JPS63278220A JP2965287A JP2965287A JPS63278220A JP S63278220 A JPS63278220 A JP S63278220A JP 2965287 A JP2965287 A JP 2965287A JP 2965287 A JP2965287 A JP 2965287A JP S63278220 A JPS63278220 A JP S63278220A
Authority
JP
Japan
Prior art keywords
film
interface
silicon
oxygen
magnesia spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2965287A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitajima
洋 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2965287A priority Critical patent/JPS63278220A/en
Publication of JPS63278220A publication Critical patent/JPS63278220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To reduce interfacial levels by feeding oxygen only to an Si/SiO2 interface which is formed by a selective epitaxial growth and by replacing its interface with the interface which is formed by a thermal oxidation treatment. CONSTITUTION:Magnesia spinel 3 which is coated with an amorphous insulating film is partially formed on a silicon substrate 1 and a silicon film 6 is allowed to grow selectively at a region where the silicon substrate 1 is exposed and the surface of the silicon film is coated. A part of the surface of magnesia spinel 3 at least is esposed and is treated with heat in an atmosphere containing oxygen. As magnesia spinel easily permeates oxygen ions, oxygen is fed to only an Si/SiO2 interface which is formed by a selective epitaxial growth, once annealing is carried out in an atmosphere of oxygen after having a structure where silicon is not oxidized and the oxygen ions are supplied in magnesia spinel. In other words, as only the Se/SiO2 interface is selectively oxidized and its interface is replaced with that of thermal oxidation, interfacial levels can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は選択エピタキシャル成長による改善されたシ
リコン単結晶膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an improved method of forming silicon single crystal films by selective epitaxial growth.

[従来の技術] 従来、選択エピタキシャル成長は特願昭56−1058
83号に見られるように、シリコン基板上に形成された
酸化シリコン膜に開口部を設け、5iH20ρ2などの
原料ガスに選択性を増す目的でHCl2を加えて行って
いる。第3図と第4図は従来例を示したもので、シリコ
ン基板12の上に形成された酸化膜13よりもエピタキ
シャル・シリコン膜14が薄いか同程度であれば第3図
に示すように開口部15の中だけがシリコンで埋込まれ
る。
[Prior art] Conventionally, selective epitaxial growth
As seen in No. 83, an opening is provided in a silicon oxide film formed on a silicon substrate, and HCl2 is added to a source gas such as 5iH20ρ2 for the purpose of increasing selectivity. 3 and 4 show conventional examples. If the epitaxial silicon film 14 is thinner than or about the same thickness as the oxide film 13 formed on the silicon substrate 12, as shown in FIG. Only the inside of the opening 15 is filled with silicon.

一方、シリコン基板12の上に形成された酸化膜13よ
りもエピタキシャル・シリコレ膜16が厚いときは第4
図に示すようにエピタキシャル・シリコン膜16は酸化
膜13の上に横方向成長し、いわゆるSOI  (Si
licon−On−Insulator)構造が形成さ
れる。
On the other hand, when the epitaxial silicone film 16 is thicker than the oxide film 13 formed on the silicon substrate 12, the fourth
As shown in the figure, an epitaxial silicon film 16 grows laterally on the oxide film 13, so-called SOI (Si
A silicon-on-insulator structure is formed.

[発明が解決しようとする問題点] しかしながら、このようにして成長させたエピタキシャ
ル・シリコン膜14あるいは16と酸化膜13との界面
には以下に述べるような問題があった。
[Problems to be Solved by the Invention] However, the interface between the epitaxial silicon film 14 or 16 grown in this manner and the oxide film 13 has the following problems.

即ち、選択エピタキシャル膜にMOSFET(Meta
l 0xide Sem1conductor Fie
ld EffectTrans t 5tor)を形成
しその特性を調べてみると、p−MOSではザブスレッ
シュホールドのリーク電流か非常に少ないが、n−MO
Sではサブスレッシュホールドのリーク電流がL OC
OS (LocalOxidation of 5il
icon)を用いた場合に較べ多いという結果が得られ
ている。このn−MOSでのリーク電流の大きさはチャ
ンネル幅に依存しないこと、および電流のパスがエピタ
キシャル・シリコン膜と側壁酸化膜との界面に接しない
ような構造となるリング・トランジスタ(ゲートがリン
グ状)ではリーク電流が非常に小さくなることから、こ
のリーク電流がゲート酸化膜直下を流れるのではなくエ
ピタキシャル・シリコン膜と側壁酸化膜との界面を流れ
るものであることが分かる。また側壁部に格子欠陥が発
生していても発生していなくてもこのリーク電流はほと
んど変らないことから、格子欠陥とは関係無く、界面準
位が多いために界面にn−チャンネルが形成されてしま
うことか原因と考えられた。シリコンの熱酸化で形成さ
れるSi/S!02界面は、界面準位が非常に少ないこ
とが知られているが、その場合の界面はシリコン中に形
成される。一方、選択エピタキシャル成長では成長する
シリコンが既に形成されていた酸化シリコン膜に接する
ことにより形成されるために、界面にダングリング・ボ
ンドが多いとか、汚染の影響を受けやすく、熱酸化によ
るSi/SiO2界面よりはるかに界面準位が多い可能
性かあると考えられる。本発明の目的は、選択エピタキ
シャル成長で形成されるSi/S!02界面が改善され
たシリコン単結晶膜の形成方法を提供することにある。
That is, a MOSFET (Meta
l Oxide Sem1conductor Fie
When forming a LD Effect Trans t 5tor and examining its characteristics, it was found that in p-MOS, the leakage current is very small at the sub-threshold, but in n-MOS
In S, the subthreshold leakage current is LOW.
OS (Local Oxidation of 5ils)
The results show that the number of cases is higher than when using the icon). The magnitude of leakage current in this n-MOS does not depend on the channel width, and the ring transistor has a structure in which the current path does not touch the interface between the epitaxial silicon film and the sidewall oxide film (the gate is in the ring). Since the leakage current becomes very small in the case of the oxide film shown in FIG. In addition, this leakage current hardly changes whether or not lattice defects occur in the sidewalls, so an n-channel is formed at the interface due to the large number of interface states, regardless of lattice defects. This was thought to be due to the fact that the problem occurred. Si/S formed by thermal oxidation of silicon! Although it is known that the 02 interface has very few interface states, the interface in this case is formed in silicon. On the other hand, in selective epitaxial growth, the growing silicon is formed by coming into contact with the silicon oxide film that has already been formed, so there are many dangling bonds at the interface, it is easily affected by contamination, and Si/SiO2 due to thermal oxidation. It is thought that there is a possibility that there are far more interface states than interfaces. The object of the present invention is to form Si/S! by selective epitaxial growth! An object of the present invention is to provide a method for forming a silicon single crystal film with an improved 02 interface.

[問題点を解決するための手段] 本発明は非晶質絶縁膜で被覆されたマグネシア・スピネ
ルをシリコン基板上に部分的に形成する工程と、前記シ
リコン基板か露出している領域に選択的にシリコン膜を
成長させる工程と、前記シリコン膜表面を被覆する工程
と、前記マグネシア・スピネル表面を少なくとも一部露
出させ、酸素含有雰囲気中で熱処理する工程とを有して
なることを特徴とする単結晶膜の形成方法である。
[Means for Solving the Problems] The present invention includes a step of partially forming magnesia spinel coated with an amorphous insulating film on a silicon substrate, and selectively forming a magnesia spinel coated with an amorphous insulating film on an exposed area of the silicon substrate. The method is characterized by comprising the steps of: growing a silicon film on the silicon film; coating the surface of the silicon film; and exposing at least a portion of the magnesia spinel surface and heat-treating it in an oxygen-containing atmosphere. This is a method for forming a single crystal film.

本発明において、マグネシア・スピネル表面を露出させ
た後の熱処理は850〜1050’Cの温度で行うのが
好ましく、酸素含有雰囲気とは例えば酸素のみの雰囲気
あるいは酸素と他の不活性ガスとの混合ガス雰囲気があ
げられる。
In the present invention, the heat treatment after exposing the magnesia spinel surface is preferably carried out at a temperature of 850 to 1050'C, and the oxygen-containing atmosphere is, for example, an atmosphere containing only oxygen or a mixture of oxygen and other inert gas. A gas atmosphere is mentioned.

[作 用] マグネシア・スピネルは酸素イオンを通しやすいという
性質があるため、シリコンが酸化されずマグネシア・ス
ピネル中に酸素イオンが供給されるような構造にした後
、酸素雰囲気中でアニールすると選択エピタキシャル成
長で形成されたSt/S i 02界面だけに酸素を供
給することができる。即ち、選択エピタキシャル成長で
形成されたSi/SiO2界面だけを選択的に酸化する
ことができ、その界面が熱酸化による界面に置換ねるた
め界面準位を格段に減少させることができる。
[Function] Since magnesia spinel has the property of allowing oxygen ions to pass through easily, selective epitaxial growth can be achieved by creating a structure in which silicon is not oxidized and oxygen ions are supplied to magnesia spinel, and then annealing it in an oxygen atmosphere. Oxygen can be supplied only to the St/S i 02 interface formed by . That is, only the Si/SiO2 interface formed by selective epitaxial growth can be selectively oxidized, and since that interface can be replaced by an interface formed by thermal oxidation, the interface level can be significantly reduced.

[実施例] 次に本発明を実施例によって説明する。[Example] Next, the present invention will be explained by examples.

実施例1 第1図は本発明の方法の一実施例を説明するための基板
の部分断面図である。
Example 1 FIG. 1 is a partial sectional view of a substrate for explaining an example of the method of the present invention.

シリコン基板1の上には薄い酸化膜2を介してマグネシ
ア・スピネル膜3があり、マグネシア・スピネル膜3の
側面および表面は薄い酸化膜4で被覆されている。シリ
コン基板1の開口部5には選択エピタキシャル成長によ
りエピタキシャル・シリコン膜6が形成されている。
A magnesia spinel film 3 is provided on the silicon substrate 1 via a thin oxide film 2, and the side surfaces and surface of the magnesia spinel film 3 are covered with a thin oxide film 4. An epitaxial silicon film 6 is formed in the opening 5 of the silicon substrate 1 by selective epitaxial growth.

このような構造は 1)シリコン基板表面の酸化、 2)スパッタリングなどによるマグネシア・スピネル膜
の堆積、 3)マグネシア・スピネル膜表面への酸化膜の堆積、 4)反応性イオンエツチングなどによる開口部の形成、 5)薄い酸化膜の堆積、 6)反応性(異方性)イオンエツチングを用いた開口部
だけのシリコン基板の露出、 7)S!t−(4やS i H2C,I) 2  (十
HCρ)を用いたシリコンの選択エピタキシャル成長の
順に行うことによって形成することができる。
Such a structure is created by 1) oxidation of the silicon substrate surface, 2) deposition of a magnesia spinel film by sputtering, etc., 3) deposition of an oxide film on the surface of the magnesia spinel film, 4) etching of the opening by reactive ion etching, etc. formation, 5) deposition of a thin oxide film, 6) exposure of the silicon substrate using reactive (anisotropic) ion etching, and 7) S! It can be formed by selective epitaxial growth of silicon using t-(4 or S i H2C, I) 2 (10HCρ).

シリコン基板表面の薄い酸化膜2は必ずしも必要ではな
いが、後の熱処理プロセスで欠陥発生を抑制するために
は効果があった。
Although the thin oxide film 2 on the surface of the silicon substrate is not necessarily necessary, it was effective in suppressing the occurrence of defects in the subsequent heat treatment process.

第1図の構造を形成した後、エピタキシャル・シリコン
膜11上にSiO2膜をCVD法により形成した。次い
でマグネシア・スピネル膜3の表面にある薄い酸化膜4
の一部に開口部を設け、1気圧の酸素雰囲気中でアニー
ルを行った。
After forming the structure shown in FIG. 1, a SiO2 film was formed on the epitaxial silicon film 11 by CVD. Next, a thin oxide film 4 on the surface of the magnesia spinel film 3
An opening was provided in a part of the wafer, and annealing was performed in an oxygen atmosphere of 1 atm.

目的とするシリコン膜6と側壁酸化膜との界面に形成さ
れる熱酸化膜は非常に薄くても(たとえば数nm)有効
であるため、酸化温度はそれほど高い必要はない。選択
エピタキシャル成長の温度および酸素雰囲気でのアニー
ル温度を950’Cとした膜にn−MOSFETを形成
した。
Since the thermal oxide film formed at the interface between the target silicon film 6 and the sidewall oxide film is effective even if it is very thin (for example, several nanometers), the oxidation temperature does not need to be very high. An n-MOSFET was formed on a film whose selective epitaxial growth temperature and annealing temperature in an oxygen atmosphere were set at 950'C.

酸素雰囲気でのアニールを行わない膜の場合、チャンネ
ル長10庫のn−MOSでのサブスレッシュホールドの
リーク電流は5X10−13Aであるのに対し、酸素雰
囲気でのアニールを行った膜の場合のリーク電流は1x
lO−14Aと改善された。
In the case of a film that is not annealed in an oxygen atmosphere, the subthreshold leakage current in an n-MOS with a channel length of 10 is 5X10-13A, whereas in the case of a film that is annealed in an oxygen atmosphere, the subthreshold leakage current is 5 Leakage current is 1x
It was improved with IO-14A.

なお前)ホしたように選択エピタキシャル膜でのリーク
電流はチャンネル長に依存しなかったが、酸素雰囲気で
のアニールした試料ではチャンネル幅が広いほどリーク
電流が大きいという傾向を示すようになり、リーク電流
のうちエピタキシャル膜と側壁酸化膜との界面を流れる
成分が激減したことを示していた。
As mentioned above, the leakage current in the selective epitaxial film did not depend on the channel length, but in the sample annealed in an oxygen atmosphere, the wider the channel width, the larger the leakage current. This indicates that the component of current flowing through the interface between the epitaxial film and the sidewall oxide film was drastically reduced.

実施例2 第2図は本発明の方法の他の実施例を示している。図中
、第1図と同一の構造のものについては同一符号を付し
ている。
Example 2 FIG. 2 shows another example of the method of the invention. In the figure, parts having the same structure as those in FIG. 1 are designated by the same reference numerals.

選択エピタキシャル成長前の基板構造は第1図と同じで
あり、シリコン基板1の上には薄い酸化膜2を介してマ
グネシア・スピネル膜3があり、マグネシア・スピネル
膜3の側面および表面は薄い酸化膜4で被覆されている
。シリコンの膜厚が、薄い酸化膜2の厚さ+マグネシア
・スピネル膜3の厚さ+マグネシア・スピネル膜3の表
面におる薄い酸化膜4の厚さを越えると、選択エピタキ
シャル・シリコン膜11は横方向に成長するようになり
SOI構造が形成される。こうして形成された一/− 酸化膜4上のシリコン膜11と、゛マグネシア・スピネ
ル膜3の表面にある薄い酸化膜4との界面も第1図と同
じように多くの界面準位がおり、このままではシリコン
膜11に形成したrl−MOSFETのリーク電流は非
常に大きい。
The substrate structure before selective epitaxial growth is the same as that shown in FIG. 1, with a magnesia spinel film 3 on the silicon substrate 1 via a thin oxide film 2, and a thin oxide film on the sides and surface of the magnesia spinel film 3. Covered with 4. When the silicon film thickness exceeds the thickness of the thin oxide film 2 + the thickness of the magnesia spinel film 3 + the thickness of the thin oxide film 4 on the surface of the magnesia spinel film 3, the selective epitaxial silicon film 11 becomes The SOI structure is formed by growing laterally. The interface between the silicon film 11 on the 1/- oxide film 4 formed in this way and the thin oxide film 4 on the surface of the magnesia spinel film 3 also has many interface states as shown in FIG. If this continues, the leakage current of the rl-MOSFET formed in the silicon film 11 will be extremely large.

第2図の構造を形成した後、実施例1と同様にしてエピ
タキシャル・シリコン膜11上を5i02膜で被覆し、
次いでマグネシア・スピネル膜3の表面にある薄い酸化
膜4の一部に開口部を設け、酸素雰囲気でアニールを行
ったところ、実施例1と同じようにエピタキシャル・シ
リコン膜と酸化膜との界面が改善された。
After forming the structure shown in FIG. 2, the epitaxial silicon film 11 is coated with a 5i02 film in the same manner as in Example 1.
Next, an opening was formed in a part of the thin oxide film 4 on the surface of the magnesia spinel film 3, and annealing was performed in an oxygen atmosphere. As a result, the interface between the epitaxial silicon film and the oxide film was formed as in Example 1. Improved.

[発明の効果] 本発明を用いれば、選択エピタキシャル成長で形成され
るSi/SiO2界面だけに酸素を供給することによっ
てその界面を熱酸化による界面に置換えることができ、
界面準位を格段に減少させることができる。
[Effects of the Invention] Using the present invention, by supplying oxygen only to the Si/SiO2 interface formed by selective epitaxial growth, that interface can be replaced with an interface by thermal oxidation,
The interface level can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例を説明するための基板
の部分断面図、第2図は他の一実施例を説明するための
基板の部分断面図、第3図は従来の方法の一例による基
板の部分断面図、第4図は他の一例による基板の部分断
面図である。 1.12・・・シリコン基板 2、4.13・・・酸化膜 3・・・マグネシア・スピネル膜 5.15・・・開口部 6、11.14.16・・・エピタキシャル・シリコン
膜代理人弁理士  舘  野  千惠子 第1図 1〉リコ)都4及 第3図 第2図 11エピタキンヤ1しウリコン用建 1ンリコフ基版 第4図 12ンリコン厚4反
FIG. 1 is a partial sectional view of a substrate for explaining one embodiment of the method of the present invention, FIG. 2 is a partial sectional view of a substrate for explaining another embodiment, and FIG. 3 is a conventional method. FIG. 4 is a partial cross-sectional view of a substrate according to another example. 1.12...Silicon substrate 2, 4.13...Oxide film 3...Magnesia spinel film 5.15...Opening 6, 11.14.16...Epitaxial silicon film agent Patent Attorney Chieko Tateno Fig. 1 1〉 Riko) To 4 and 3

Claims (1)

【特許請求の範囲】[Claims] (1)非晶質絶縁膜で被覆されたマグネシア・スピネル
をシリコン基板上に部分的に形成する工程と、前記シリ
コン基板が露出している領域に選択的にシリコン膜を成
長させる工程と、前記シリコン膜表面を被覆する工程と
、前記マグネシア・スピネル表面を少なくとも一部露出
させ、酸素含有雰囲気中で熱処理する工程とを有してな
ることを特徴とする単結晶膜の形成方法。
(1) a step of partially forming magnesia spinel coated with an amorphous insulating film on a silicon substrate; a step of selectively growing a silicon film on the exposed region of the silicon substrate; A method for forming a single crystal film, comprising the steps of: coating a silicon film surface; and exposing at least a portion of the magnesia/spinel surface and heat-treating it in an oxygen-containing atmosphere.
JP2965287A 1987-02-13 1987-02-13 Formation of single crystal film Pending JPS63278220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2965287A JPS63278220A (en) 1987-02-13 1987-02-13 Formation of single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2965287A JPS63278220A (en) 1987-02-13 1987-02-13 Formation of single crystal film

Publications (1)

Publication Number Publication Date
JPS63278220A true JPS63278220A (en) 1988-11-15

Family

ID=12282038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2965287A Pending JPS63278220A (en) 1987-02-13 1987-02-13 Formation of single crystal film

Country Status (1)

Country Link
JP (1) JPS63278220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105079027A (en) * 2015-08-13 2015-11-25 上海工程技术大学 Porous Se-SiO2 nanoparticle as well as preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105079027A (en) * 2015-08-13 2015-11-25 上海工程技术大学 Porous Se-SiO2 nanoparticle as well as preparation method and application thereof

Similar Documents

Publication Publication Date Title
US5869405A (en) In situ rapid thermal etch and rapid thermal oxidation
US5373803A (en) Method of epitaxial growth of semiconductor
JPH11186256A (en) Method of forming thermal oxide film of silicon carbide semiconductor device
KR101521555B1 (en) Method of manufacturing a substrate using a germanium condensation process and method of manufacturing a semicondictor device usnig the same
JP2008508719A (en) Interfacial layer for use with high-k dielectric materials
JP2005317647A (en) Semiconductor device and its fabrication process
JP2004022991A (en) Manufacturing method of semiconductor device
KR20040107381A (en) Thin film transistor and method of fabricating the same
JPS63278220A (en) Formation of single crystal film
JP2010040931A (en) Manufacturing method of semiconductor substrate, and semiconductor substrate
US20010001074A1 (en) Controllable oxidation technique for high quality ultra-thin gate oxide
JPS63198319A (en) Forming method for single-crystal film
US6800538B2 (en) Semiconductor device fabrication method and semiconductor fabrication control method
US4331710A (en) Method of forming an insulation film on semiconductor device surface
JP3221129B2 (en) Semiconductor device manufacturing method
KR100359489B1 (en) Method of fabricating gate dielectric for use in semiconductor device
JPH06302813A (en) Manufacture of semiconductor device
JPH11283975A (en) Method of forming thin and uniform thickness oxide film at low temperature
JPH03200318A (en) Improvement of silicon single-crystal film
EP0023925B1 (en) Method of producing insulating film for semiconductor surfaces and semiconductor device with such film
JPS5935480A (en) Semiconductor device
JPH077156A (en) Thin film field effect transistor
JPH09102459A (en) Semiconductor hetero interface formation
JPS5845174B2 (en) 3↓-Method for forming an insulating film on a Group 5 compound semiconductor
JPH02208940A (en) Manufacture of semiconductor device