JPS63277529A - Formation of optical element - Google Patents

Formation of optical element

Info

Publication number
JPS63277529A
JPS63277529A JP11158787A JP11158787A JPS63277529A JP S63277529 A JPS63277529 A JP S63277529A JP 11158787 A JP11158787 A JP 11158787A JP 11158787 A JP11158787 A JP 11158787A JP S63277529 A JPS63277529 A JP S63277529A
Authority
JP
Japan
Prior art keywords
glass material
optical element
molding
preform
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11158787A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11158787A priority Critical patent/JPS63277529A/en
Publication of JPS63277529A publication Critical patent/JPS63277529A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0258Gravity bending involving applying local or additional heating, cooling or insulating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/64Spinning, centrifuging or using g-force to distribute the glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To obtain a high-quality optical element at low cost and in good productivity, by deforming a glass material held by a fixture into a shape close to an optical element by noncontact force while softening the glass material by heating and molding under pressure. CONSTITUTION:A glass material 1 having at least one optical face formed by side pressure cutting method is held on an outer peripheral part to become the outside of an optical effective diameter by a fixture 3 in a heating device 2, empty weight of the material 1 or noncontact force P such as centrifugal force is applied to the glass material, made to flow and deformed while being softened by heating to form a preform 4 roughly close to a desired final shape. Then the preform 4 is pressurized and molded between molds 5 and 6.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レンズ、ミラー等の光学素子をガラス素材を
用いた押圧成形により製造する光学素子の成形方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing optical elements such as lenses and mirrors by press molding using glass materials.

[従来の技術1 ガラスレンズ等の光学素子の製造は、光学素子に対応す
る形状で、かつ高い面精度をもつ成形面を備えた一対の
成形型によって押圧成形する方法が知られている。そし
て、上記成形型による成形は、当該一対の成形型間に所
要量のガラス素材(プレフォーム)を介在せしめ、この
ガラス素材を加熱軟化しつつ上記成形型によって押圧成
形するものである。
[Prior Art 1] A known method for manufacturing optical elements such as glass lenses is press molding using a pair of molds each having a molding surface having a shape corresponding to the optical element and having high surface accuracy. In the molding process, a required amount of glass material (preform) is interposed between the pair of molds, and the glass material is heated and softened while being press-molded using the molds.

従来、上記ガラス素材であるプレフォームは、一般的に
、特開昭59−116137号公報に示されるように所
定形状に研削・研磨によって予備成形されていた。ある
いは、特開昭62−12622号公報に示される如く、
側圧切断法により得られたディスク状の素材が用いられ
ていた。また、特開昭62−21720号公報には、所
望の最終形状に近似する形状に押圧成形する予備成形工
程によりガラス素材を成形し、このガラス素材を本成形
工程により所望の形状に押圧成形する方法が開示されて
いる。
Conventionally, the above-mentioned glass material preform has generally been preformed into a predetermined shape by grinding and polishing, as shown in Japanese Patent Application Laid-Open No. 59-116137. Alternatively, as shown in Japanese Patent Application Laid-Open No. 62-12622,
A disc-shaped material obtained by lateral pressure cutting was used. Furthermore, Japanese Patent Application Laid-Open No. 62-21720 discloses that a glass material is formed by a preforming process in which the glass material is press-formed into a shape that approximates the desired final shape, and this glass material is press-formed into the desired shape in a main forming process. A method is disclosed.

[発明が解決しようとする問題点] しかしながら、上記特開昭59−116137号公報所
載の方法によるとプレフォームは、研削・研磨工程を経
て所定形状に加工されているため加工コストが高く、コ
スト高な光学素子になる問題点があった。また、特開昭
62−12622号公報所載のプレフォームは、側圧切
断法により低コストで得ることができるが、得られた形
状がディスク状であるので、押圧成形時に最終の所望形
状にまで流動させるべきガラス素材の流動量が大きく成
形時間の長時間化、成形温度の高温化。
[Problems to be Solved by the Invention] However, according to the method described in JP-A-59-116137, the preform is processed into a predetermined shape through a grinding and polishing process, so the processing cost is high; There was a problem that it resulted in an expensive optical element. Furthermore, the preform described in JP-A No. 62-12622 can be obtained at low cost by the lateral pressure cutting method, but since the obtained shape is disc-shaped, it is difficult to obtain the final desired shape during press molding. The amount of glass material that needs to be fluidized is large, resulting in longer molding times and higher molding temperatures.

成形押圧力の増大化を伴い、押圧成形型の型寿命の悪化
等が生ずる等、生産能率の低下、光学素子のコスト高と
なる問題点があった。更に、特開昭62−21720号
公報所載の方法の場合、予備成形工程中に、ゴミ、微小
なガラスの焼付き跡等による外観品質劣化が多少なりと
も生じ、最終成形品である光学素子の外観品質劣化とな
る問題点があった。
As the molding pressure increases, there are problems such as deterioration of the life of the press molding die, a decrease in production efficiency, and an increase in the cost of the optical element. Furthermore, in the case of the method described in Japanese Patent Application Laid-Open No. 62-21720, some deterioration in appearance quality due to dust, minute burnt marks of glass, etc. occurs during the preforming process, and the final molded optical element. There was a problem that the appearance quality deteriorated.

そこで、本発明は上記問題点に着目してなされたもので
あって、低コストで生産性が高く、かつ、高品質な光学
素子を成形し得る光学素子の成形方法の提供を目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for molding an optical element that is low-cost, highly productive, and capable of molding a high-quality optical element.

[問題点を解決するための手段および作用]本発明の光
学素子の成形方法は、第1図の概念図で示すごとく、少
なくとも一方の光学面を側圧切断法で形成したガラス素
材1を加熱装置2内で光学的有効径外を保持具3により
保持して加熱軟化しつつ該ガラス素材lをガラス素材l
の自重力、あるいは回転運動によって生ずる遠心力等の
非接触力Pにより流動変形させて所望の最終形状に概略
的に近似するプレフォーム4を形成し、該プレフォーム
4を成形型5,6により押圧成形を行なうもので、低コ
ストで、外観品質を劣化させることなく、かつ抑圧成形
に際して流動変形量が少なく、生産能率を向上し得るよ
うにしたものである。
[Means and effects for solving the problems] As shown in the conceptual diagram of FIG. 1, the method for molding an optical element of the present invention involves heating a glass material 1 with at least one optical surface formed by a lateral pressure cutting method. 2, the outside of the optically effective diameter is held by a holder 3, and the glass material 1 is heated and softened.
A preform 4 that roughly approximates the desired final shape is formed by flowing and deforming it by its own gravity or a non-contact force P such as a centrifugal force generated by rotational movement, and the preform 4 is molded into molds 5 and 6. Pressure molding is performed, and the cost is low, the appearance quality does not deteriorate, and the amount of flow deformation during compression molding is small, improving production efficiency.

[実施例] 以下、本発明の光学素子の成形方法の実施例を図面を用
いて説明する。
[Example] Hereinafter, an example of the method for molding an optical element of the present invention will be described with reference to the drawings.

(第1実施例) 第2図は、本発明の第1実施例で凹レンズを成形する方
法を示している0本実施例では比較的偏肉度の小さい凹
メニスカスレンズ(凸面側曲率半径R40mm、凹面側
曲率半径135 am)の成形方法を例として以下に説
明する。
(First Embodiment) Figure 2 shows a method for molding a concave lens in the first embodiment of the present invention. In this embodiment, a concave meniscus lens with a relatively small degree of thickness deviation (radius of curvature on the convex side R40 mm, A method for forming a concave surface with a radius of curvature of 135 am will be described below as an example.

まず、鏡面を有するφ19、厚さ2.5mmのフリント
系の両面ガラス素材lOを側圧切断法により形成し、こ
のガラス素材lOを光学的有効径外となる外周部を保持
具11により蔵置保持しつつ、740℃にセットした加
熱装置12内に搬入し、この加熱装置1−2内でガラス
素材lOを水平に保持して加熱軟化する。かかる状態で
、ガラス素材10のガラスの粘度がlOポアズ以下に加
熱軟化すると、ガラス素材10は、自重ΣW=mg(m
はガラス素材の質量、gは重力加速度)により変形をし
始め、ガラス素材lOの平面側10a、10bは概略球
面状態となる。第3図は、ガラス素材lOの加熱時間と
かかる球面の曲率半径の経時変化を示すグラフ図である
。上記球面の曲率半径が、所望する光学レンズの曲率半
径に近似する値となったとき、即ち、本実施例ではガラ
ス素材lOが凸R40■層、凹R35層鳳の曲率半径と
なる形状にほぼ一致する加熱時間90秒(第3図参照)
にて加熱装置12から取り出し、プレフォーム13を得
る0次に、このプレフォーム13を所定の温度(ガラス
の軟化点付近)となし、ガラスの転移点付近に保持した
成形型14゜15により押圧成形して所望の形状を備え
た凹メニスカスレンズ16を成形する。なお、成形型1
4.15の成形面14a、15aはそれぞれ凸R35腸
菖、凹R40■層の曲率半径に成形されている。
First, a flint-based double-sided glass material 10 with a mirror surface of φ19 and a thickness of 2.5 mm is formed by a lateral pressure cutting method, and the outer peripheral part of this glass material 10 outside the optically effective diameter is stored and held by a holder 11. At the same time, the glass material 1O is carried into a heating device 12 set at 740° C., and is heated and softened while being held horizontally within this heating device 1-2. In such a state, when the glass material 10 is heated and softened so that the viscosity of the glass becomes 1O poise or less, the glass material 10 has its own weight ΣW=mg (m
is the mass of the glass material and g is the gravitational acceleration), and the flat sides 10a and 10b of the glass material 1O become approximately spherical. FIG. 3 is a graph showing the heating time of the glass material IO and the change over time in the radius of curvature of the spherical surface. When the radius of curvature of the spherical surface becomes a value that approximates the radius of curvature of the desired optical lens, that is, in this example, the glass material 1O has a shape approximately equal to the radius of curvature of the convex R40 layer and the concave R35 layer. Matching heating time 90 seconds (see Figure 3)
Then, the preform 13 is brought to a predetermined temperature (near the softening point of glass) and pressed by molds 14 and 15 held at around the transition point of glass. A concave meniscus lens 16 having a desired shape is formed by molding. In addition, mold 1
The molding surfaces 14a and 15a of 4.15 are molded to have a radius of curvature of a convex R35 layer and a concave R40 layer, respectively.

本実施例によれば、側圧切断法によりガラス素材を得る
ことができるので低コストであるとともに、ガラス素材
を自重によって所望形状に近似する形状に変形させたプ
レフォームを用いているので、ガラス素材を周平面形状
から直接抑圧成形する場合に比較して、成形のために必
要なガラスの流動量が減少するため、高品質な光学素子
を生産効率よく成形することができる。
According to this embodiment, the glass material can be obtained by the lateral pressure cutting method, so the cost is low, and since a preform in which the glass material is deformed into a shape approximating the desired shape by its own weight is used, the glass material Compared to the case of direct compression molding from the circumferential plane shape, the flow amount of glass required for molding is reduced, so high-quality optical elements can be molded with high production efficiency.

(第2実施例) 第4図は、本発明の第2実施例を示し、両凸レンズを成
形する実施例である。
(Second Embodiment) FIG. 4 shows a second embodiment of the present invention, which is an embodiment in which a biconvex lens is molded.

本実施例は、A面側凸R70+m(図において上面)、
B面側凸R60mm(図において下面)の両凸レンズを
成形する場合について説明する。
In this example, the A side convex R70+m (upper surface in the figure),
The case of molding a biconvex lens with a convex R on the B side of 60 mm (lower surface in the figure) will be described.

まず、鏡面を有するφ19、厚さ2.5■層のフリント
系の平凸ガラス素材20を平面側を側圧切断法により、
凸球面側を研削・研磨により曲率半径135mmに加工
して形成し、このガラス素材20を凸球面側を上にして
光学的有効径外となる外周部を保持部11によって加熱
炉12内に上記第1実施例と同様に保持し、ガラス素材
20を加熱軟化する。所定時間経過後、ガラス素材20
は上記第1実施例と同様に、自重によって、凸球面側、
平面側ともそれぞれ概略球面をなして変形し始める。第
5図は、ガラス素材20の加熱時間と球面の曲率半径の
経時変化を示すグラフ図である。上記球面の曲率半径が
、所望する光学レンズの曲率半径に近似する値となった
とき、即ち、本実施例ではガラス素材20がA面側凸R
70層組B面側凸160mmの曲率半径となる形状にほ
ぼ一致する加熱時間80秒(第5図参照)にて加熱装置
12から取り出し、プレフォーム21を得る。
First, a flint-based plano-convex glass material 20 with a diameter of 19 mm and a thickness of 2.5 cm having a mirror surface was cut on the flat side by a lateral pressure cutting method.
The convex spherical side is processed to have a radius of curvature of 135 mm by grinding and polishing, and the glass material 20 is placed in the heating furnace 12 with the convex spherical side facing up and the outer circumferential part outside the optically effective diameter is placed in the heating furnace 12 using the holding part 11. The glass material 20 is heated and softened while being held in the same manner as in the first embodiment. After a predetermined period of time, the glass material 20
As in the first embodiment, due to its own weight, the convex spherical side,
Both plane sides begin to deform into roughly spherical shapes. FIG. 5 is a graph showing changes over time in the heating time of the glass material 20 and the radius of curvature of the spherical surface. When the radius of curvature of the spherical surface becomes a value close to the radius of curvature of the desired optical lens, that is, in this embodiment, the glass material 20 has a convex radius on the A side.
The preform 21 is obtained by taking it out from the heating device 12 for a heating time of 80 seconds (see FIG. 5), which substantially matches the shape with a radius of curvature of 160 mm on the convex side of the B side of the 70-layer set.

次にこのプレフォーム21を所定の温度(ガラスの軟化
点付近)となし、ガラスの転移点付近の温度に保持した
成形型14.15により抑圧成形し。
Next, this preform 21 is brought to a predetermined temperature (near the softening point of glass), and is subjected to compression molding using molds 14 and 15 maintained at a temperature around the transition point of glass.

て所望の形状を備えた両凸レンズ22を成形する。なお
、成形型14.15の成形面14a。
Then, a biconvex lens 22 having a desired shape is formed. Note that the molding surface 14a of the molding die 14.15.

15aはそれぞれ凹R70m■、凹R60m■の曲率半
径に成形されている。
15a is formed to have a radius of curvature of a concave radius of 70 m and a radius of curvature of a concave radius of 60 m, respectively.

なお、上記ガラス素材の自重による変形、即ち、曲率半
径および曲率半径の経時変化パターンは凸球面側の曲率
半径の設定に従い変化を異にするもので、第6図はガラ
ス素材を凸球面側の曲率半径R24mmに形成した時の
凸球面側、平面側のそれぞれの曲率半径の経時変化を示
している。かかるガラス素材を用いた場合、第6図に示
す如く曲率半径の小さな両凸形状の光学素子を成形する
ことがでるきる。
Note that the deformation of the glass material due to its own weight, that is, the radius of curvature and the pattern of changes over time in the radius of curvature, change differently depending on the setting of the radius of curvature on the convex spherical side. It shows the change over time in the radius of curvature of each of the convex spherical surface side and the flat surface side when formed with a radius of curvature R of 24 mm. When such a glass material is used, it is possible to form a biconvex optical element with a small radius of curvature as shown in FIG.

本実施例によれば、ガラス素材の片面を側圧切断法にて
成形できるので比較的低コストな両凸レンズを得ること
ができるとともに、上記第1実施例と同様な作用、効果
を奏することができる。更に、ガラス素材の凸球面側の
曲率半径を変化させることにより種々の形状の両凸レン
ズを簡単に成形することができる。
According to this embodiment, since one side of the glass material can be molded by the lateral pressure cutting method, a relatively low-cost biconvex lens can be obtained, and the same functions and effects as in the first embodiment can be achieved. . Further, by changing the radius of curvature of the convex spherical surface of the glass material, biconvex lenses of various shapes can be easily formed.

なお、本実施例においては両凸レンズの成形方法につい
て述べてきたが、ガラス素材を平面側を側圧切断法で、
凹球面側を研削−研磨して形成することにより両凹レン
ズを成形し得、かかる方法においても本実施例と同様な
作用、効果を奏することができる。
In addition, in this example, the method for forming a biconvex lens has been described;
A biconcave lens can be formed by grinding and polishing the concave spherical side, and this method can also provide the same functions and effects as the present embodiment.

(第3実施例) 第7図は、本発明の第3実施例を示し、本実施例は、加
熱装置内で、ガラス素材を回転保持して、ガラス素材に
作用する遠心力によりガラス素材を変形させるものであ
る。
(Third Embodiment) FIG. 7 shows a third embodiment of the present invention. In this embodiment, a glass material is rotated and held in a heating device, and the glass material is heated by centrifugal force acting on the glass material. It is something that transforms.

まず、鏡面を有するφ19.厚さ2.5鵬腸のプリント
系の両平面ガラス素材lOを側圧切断法により成形し、
このガラス素材10を光学的有効径外となる外周部を保
持具25により保持する。この保持具25は段部25a
が形設され、この段部25aは、図示しない回転手段に
より回転駆動される回転軸26と固定されており、保持
具25には回転軸の回転中心軸aからの垂直距離rとな
る位置に上記ガラス素材lOが保持されている。かかる
状態で、ガラス素材10を加熱装置12内で加熱軟化し
つつ回転軸26の回転に伴いガラス素材10に遠心を作
用させる。この時、回転軸26の回転速度をVとすると
ガラス素材10には均等にΣw=mv2/rの遠心力が
作用する。この遠心力は、上記第1実施例の自重力ΣW
=mgと同様な作用をなし、ガラス素材lOの平面側が
概略球面に流動変形する。この変形が上記第1実施例と
同様に曲率半径が凸R40mm、凹R35■■と光学素
子の所望する形状と近似的に一致したときに、加熱装置
12からガラス素材10を取り出し、プレフォーム13
を得る0次に、このプレフォーム13を所定の温度(ガ
ラスの軟化点付近)となし、ガラスの転移点付近の温度
に保持された成形型14.15により押圧成形して所望
の形状を有する凹レンズを成形する。
First, φ19. A printed double-plane glass material IO with a thickness of 2.5 mm was formed using the lateral pressure cutting method.
This glass material 10 is held by a holder 25 at the outer peripheral portion outside the optically effective diameter. This holder 25 has a stepped portion 25a.
This stepped portion 25a is fixed to a rotating shaft 26 that is rotationally driven by a rotating means (not shown), and the holder 25 has a stepped portion 25a at a position at a vertical distance r from the rotation center axis a of the rotating shaft. The glass material IO is held. In this state, the glass material 10 is heated and softened within the heating device 12, and centrifugation is applied to the glass material 10 as the rotating shaft 26 rotates. At this time, if the rotational speed of the rotating shaft 26 is V, a centrifugal force of Σw=mv2/r acts uniformly on the glass material 10. This centrifugal force is the self-gravity ΣW of the first embodiment.
=mg, and the flat side of the glass material IO is fluidly deformed into an approximately spherical surface. When this deformation approximately matches the desired shape of the optical element with a radius of curvature of convex radius 40 mm and concave radius 35 mm as in the first embodiment, the glass material 10 is taken out from the heating device 12 and the preform 13
Next, this preform 13 is heated to a predetermined temperature (near the softening point of glass) and press-molded into a desired shape using a mold 14.15 maintained at a temperature around the transition point of glass. Molding a concave lens.

本実施例によれば上記実施例と同様な作用、効果を奏す
ることができるとともに、遠心力の作用により、より強
い非接触力を得ることができるので、流動変形時間が短
縮でき、より光学素子の生産性の向上を計り得る。なお
、遠心力は上記rおよびVの設定により任意に選択でき
る。
According to this example, the same functions and effects as those of the above example can be achieved, and a stronger non-contact force can be obtained due to the action of centrifugal force, so that the flow deformation time can be shortened and the optical element can be can improve productivity. Note that the centrifugal force can be arbitrarily selected by setting r and V above.

(第4実施例) 第8図は、本発明の第4実施例を示し、上記第3実施例
と同様に加熱装置内でガラス素材を回転保持して、ガラ
ス素材に作用する遠心力によりガラス素材を流動変形さ
せて所望する光学素子と近似する形状としてプレフォー
ムを得るものである。
(Fourth Embodiment) FIG. 8 shows a fourth embodiment of the present invention, in which a glass material is rotated and held in a heating device in the same way as in the third embodiment, and the centrifugal force acting on the glass material is applied to the glass material. The material is fluidly deformed to obtain a preform with a shape that approximates the desired optical element.

即ち、側圧切断法によりガラス素材10を形成し、保持
具30を保持する。この保持具30は図示しない回転手
段により回転駆動される回転軸31に回転軸31の回転
中心軸aと保持具30の中心軸すとを一致させて固着さ
れており、ガラス素材10が保持具30の中心軸すを中
心に回転し得るように保持具に保持されている。かかる
状態で、ガラス素材lOを加熱装置(図示省略)内で加
熱軟化しつつ回転軸30の回転に伴いガラス素材10を
回転させ、ガラス素材10に遠心力を作用させる。この
時1回転軸30の回転速度をVとすると、ガラス素材1
0には回転軸30の回転中心軸から垂直距離rの位置に
遠心力 w=mv2/rが作用する。かかる遠心力Wは、ガラス
素材ioを回転放物面に流動変形させる。
That is, the glass material 10 is formed by the lateral pressure cutting method, and the holder 30 is held. This holder 30 is fixed to a rotating shaft 31 that is rotationally driven by a rotating means (not shown), with the rotational center axis a of the rotating shaft 31 and the central axis of the holder 30 aligned, and the glass material 10 is fixed to the holder. It is held by a holder so as to be able to rotate around a central axis of 30. In this state, the glass material 10 is heated and softened in a heating device (not shown), and the glass material 10 is rotated as the rotating shaft 30 rotates, thereby applying centrifugal force to the glass material 10. At this time, if the rotational speed of the one-rotation shaft 30 is V, then the glass material 1
0, a centrifugal force w=mv2/r acts on a position at a vertical distance r from the rotation center axis of the rotation shaft 30. Such centrifugal force W causes the glass material io to flow and deform into a paraboloid of revolution.

かかる流動変形が光学素子の所望する形状とほぼ一致し
たときに、加熱装置内からガラス素材10を取り出し、
プレフォーム13を得る0次に上記実施例と同様に成形
型により押圧成形して光学素子を成形する。
When the flow deformation substantially matches the desired shape of the optical element, the glass material 10 is taken out from the heating device,
Obtaining the preform 13 Next, an optical element is formed by pressure molding using a mold in the same manner as in the above embodiment.

本実施例によれば、上記第3実施例と同様な作用、効果
を奏することができる。
According to this embodiment, the same functions and effects as those of the third embodiment described above can be achieved.

なお、上記第1実施例乃至第4実施例の他のガラス素材
を流動変形させる非接触力として自重。
Note that the non-contact force used to flow and deform the other glass materials in the first to fourth embodiments is its own weight.

遠心力の他にガラス素材に熱風を吹きかけつつ流動変形
を起させる実施例、あるいは、レンズ素材を保持した保
持具の外周にノズルを密着させ、このノズルを介して熱
風を加圧又は減圧して流動変形を起させる実施例等を挙
げることができ、かかる実施例によって、上記各実施例
と同様な作用。
In addition to centrifugal force, there is an embodiment in which hot air is blown onto the glass material to cause fluid deformation, or a nozzle is brought into close contact with the outer periphery of a holder that holds the lens material, and the hot air is pressurized or depressurized through this nozzle. Examples that cause flow deformation can be cited, and such examples can provide the same effect as each of the above-mentioned examples.

効果を得ることができる。effect can be obtained.

[発明の効果J 本発明の光学素子の成形方法によれば、側圧切断法によ
り得たガラス素材を流動変形させてプレフォームを成形
し、このプレフォームを成形型により押圧成形し得るの
で、少ないガラスの流動量で成形が可能となり、コスト
の低減、生産性の向上、高品質な光学素子を製造するこ
とかできる。
[Effect of the Invention J] According to the method for molding an optical element of the present invention, a preform is molded by fluidizing and deforming the glass material obtained by the lateral pressure cutting method, and this preform can be press-molded using a mold. It is possible to mold the glass according to its flow rate, reducing costs, improving productivity, and manufacturing high-quality optical elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明光学素子の成形方法の概念図、第2図a
、bは本発明の第1実施例を示す説明図、第3図はガラ
ス素材の曲率半径を示す説明図、第4図はガラス素材の
曲率半径の経時変化を示すグラフ図、第5図、第6図は
ガラス素材の曲率半径の経時変化を示すグラフ図、第7
図a。 b、第8図は本発明の第3実施例、第4実施例をそれぞ
れ示す説明図で゛ある。 1.10・・・ガラス素材 2.12・・・加熱装置 3.11,25.30・・・保持具 26.31・・・回転軸 4.13.21・・・プレフォーム 5.6,14.15・・・成形型 P、w・・・非接触力 特許出願人  オリンパス光学工業株式会社代理人弁理
士 奈    良        武第1図 (b) P 非接触力 第8図 加熱時間    (秒) 第5図 加熱時間    (秒) 第6 図 加熱時間    (秒) 第7図 (a) 第8図 手続補正書(自発) 昭和62年7月2日
Figure 1 is a conceptual diagram of the method of molding the optical element of the present invention, Figure 2a
, b is an explanatory diagram showing the first embodiment of the present invention, FIG. 3 is an explanatory diagram showing the radius of curvature of the glass material, FIG. 4 is a graph diagram showing the change over time of the radius of curvature of the glass material, FIG. Figure 6 is a graph showing the change over time in the radius of curvature of the glass material, Figure 7
Diagram a. b and FIG. 8 are explanatory diagrams showing a third embodiment and a fourth embodiment of the present invention, respectively. 1.10... Glass material 2.12... Heating device 3.11, 25.30... Holder 26.31... Rotating shaft 4.13.21... Preform 5.6, 14.15...Mold P, w...Non-contact force Patent applicant: Olympus Optical Industry Co., Ltd. Patent attorney Takeshi Nara Figure 1 (b) P Non-contact force Figure 8 Heating time (seconds) Figure 5 Heating time (seconds) Figure 6 Heating time (seconds) Figure 7 (a) Figure 8 Procedural amendment (voluntary) July 2, 1988

Claims (3)

【特許請求の範囲】[Claims] (1)加熱装置内でガラス素材を保持具にて保持して加
熱軟化しつつ該ガラス素材を非接触力により所望の光学
素子に近似した形状に変形してプレフォームを形成し、
該プレフォームを成形型により押圧成形することを特徴
とする光学素子の成形方法。
(1) Holding a glass material with a holder in a heating device, heating and softening the material and deforming the glass material into a shape approximating a desired optical element using a non-contact force to form a preform;
A method for molding an optical element, comprising press-molding the preform using a mold.
(2)上記ガラス素材を変形させる非接触力は、ガラス
素材の自重であることを特徴とする特許請求の範囲第1
項記載の光学素子の成形方法。
(2) Claim 1, wherein the non-contact force that deforms the glass material is the own weight of the glass material.
A method for molding an optical element as described in Section 1.
(3)上記ガラス素材を変形させる非接触力は、ガラス
素材に作用させた遠心力であることを特徴とする特許請
求の範囲第1項記載の光学素子の成形方法。
(3) The method for molding an optical element according to claim 1, wherein the non-contact force that deforms the glass material is a centrifugal force applied to the glass material.
JP11158787A 1987-05-07 1987-05-07 Formation of optical element Pending JPS63277529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11158787A JPS63277529A (en) 1987-05-07 1987-05-07 Formation of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11158787A JPS63277529A (en) 1987-05-07 1987-05-07 Formation of optical element

Publications (1)

Publication Number Publication Date
JPS63277529A true JPS63277529A (en) 1988-11-15

Family

ID=14565149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11158787A Pending JPS63277529A (en) 1987-05-07 1987-05-07 Formation of optical element

Country Status (1)

Country Link
JP (1) JPS63277529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446022A (en) * 1990-06-14 1992-02-17 Canon Inc Method and device for producing optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446022A (en) * 1990-06-14 1992-02-17 Canon Inc Method and device for producing optical element

Similar Documents

Publication Publication Date Title
US4088470A (en) Process of heat sagging glass articles
US5346523A (en) Method of molding chalcogenide glass lenses
US4018587A (en) Method for producing a curved glass die having an aspherical polished concave face
JPH0142900B2 (en)
US20210129466A1 (en) Optical element and method for manufacturing the same
JPS63277529A (en) Formation of optical element
JP2621956B2 (en) Optical element molding method
JPH1160251A (en) Formation of optical element
JPH048374B2 (en)
CN111718107A (en) 3D glass, manufacturing method thereof, glass cover plate and electronic equipment
JPH05330832A (en) Method for molding calchogenide glass lens
JPS616139A (en) Process for press-molding lens having little shift of optical axis
JP2621941B2 (en) Optical element molding method
JPH05213622A (en) Production of preform for biconcave face pressed glass lens
JPH02196039A (en) Method for molding glass optical device
JPS63295448A (en) Method for molding glass lens
JPH05163030A (en) Method for forming optical element
JPH01305827A (en) Method of molding optical element
JPH0812352A (en) Method for forming optical element
JPH08325023A (en) Optical element forming die and optical element formed by using this optical element forming die
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JP3850062B2 (en) Optical element manufacturing method and optical element mold
JPS6296329A (en) Production of optical element
JPH05301723A (en) Method for forming optical element
KR0125997Y1 (en) A mould for lens