JPS63277240A - Uranium adsorbent - Google Patents

Uranium adsorbent

Info

Publication number
JPS63277240A
JPS63277240A JP62113094A JP11309487A JPS63277240A JP S63277240 A JPS63277240 A JP S63277240A JP 62113094 A JP62113094 A JP 62113094A JP 11309487 A JP11309487 A JP 11309487A JP S63277240 A JPS63277240 A JP S63277240A
Authority
JP
Japan
Prior art keywords
arene
calix
polyethyleneimine
derivative
uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62113094A
Other languages
Japanese (ja)
Other versions
JP2546798B2 (en
Inventor
Yoshikazu Kondo
義和 近藤
Toshihiro Yamamoto
俊博 山本
Osamu Manabe
真鍋 修
Seiji Shinkai
征治 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP11309487A priority Critical patent/JP2546798B2/en
Publication of JPS63277240A publication Critical patent/JPS63277240A/en
Application granted granted Critical
Publication of JP2546798B2 publication Critical patent/JP2546798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Water Treatment By Sorption (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To obtain a readily handleable uranium adsorbent, consisting of a polyethyleneimine having a specific calix[n]arene derivative residue in the side chain and having excellent affinity and selectivity for uranyl ions. CONSTITUTION:For example, a calix[n]arene is added to concentrated sulfuric acid and thermally reacted to provide p-toluenesulfonic acid calix[n]arene, which is then reacted with an alkylating agent to afford calixarene-p-sulfonic acid derivative. The resultant derivative is subsequently reacted with thionyl chloride to provide a calixarene-p-sulfonyl chloride, which is then dissolved in tetrahydrofuran, slowly dripped into an aqueous solution of polyethyleneimine and reacted to afford the aimed polyethyleneimine having a calix[n]arene derivative expressed by the formula (n is preferably 6-8; R is H, CH2OH, etc.; x and y are H, alkyl, etc.) in the side chain.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規なウラン吸着材に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a novel uranium adsorbent.

(従来の技術) 石油に代るエネルギーとして原子力、水力、風力、潮力
等各種のエネルギー利用が検討されているが、その技術
的完成度、コスト及び出力等の点で原子力よりすぐれる
ものはない。
(Conventional technology) Nuclear power, hydropower, wind power, tidal power, and other energy sources are being considered as alternatives to oil, but none are superior to nuclear power in terms of technological perfection, cost, output, etc. do not have.

一方、原子力エネルギーの燃料となるウランの陸上埋F
a量は500万トンと推定されているが、これも将来の
需用を十分に充ずものではない。ところが、海水中には
、数ppbと極めて希薄な濃度であるが、総N42億ト
ンという膨大な量のウランが存在している。海水中から
のウラン回収技術は極めて重要な技術として鋭意検討さ
れているが、未だ十分な吸着材は見い出されていない。
On the other hand, uranium, which is the fuel for nuclear energy, is buried on land.
The amount of a is estimated to be 5 million tons, but this is not enough to meet future demand. However, a huge amount of uranium, totaling 4.2 billion tons of N, exists in seawater, albeit at an extremely dilute concentration of a few ppb. The technology for recovering uranium from seawater is an extremely important technology that is being intensively studied, but a sufficient adsorbent has not yet been found.

ウラン吸着材の必要条件としては、ウランとの会合定数
が大きい事及び他の金属イオンに対してウランの選択吸
着性に優れる事が上げられる。
Requirements for a uranium adsorbent include a large association constant with uranium and excellent selective adsorption of uranium with respect to other metal ions.

これ迄多くのウラン吸着材の提案がなされており、その
代表的なものは、チタン酸カリウム、アミドオキシム樹
脂及びクラウンエーテル化合物等があるが、尚上述した
必要条件を満足していない事やコスト、吸着材の再生・
再使用性、取扱い等の点で問題があるものであった。又
、1941年のZinkeらの報告(Ber、dtsc
h。
Many uranium adsorbents have been proposed so far, and the representative ones include potassium titanate, amidoxime resin, and crown ether compounds, but they do not satisfy the above-mentioned requirements and are expensive. , Regeneration of adsorbent material
There were problems in terms of reusability, handling, etc. Also, a report by Zinke et al. in 1941 (Ber, dtsc
h.

Chem、Ges、、7土、1729 (1941))
を初めとしてCornforthら(Brit。
Chem, Ges, 7th Sat., 1729 (1941))
Cornforth et al. (Brit.

J、pharmacol、、±0.73 (1955)
)。
J, Pharmacol, ±0.73 (1955)
).

Kamme r e rら(Ma k r omo l
Kammer et al.
.

Chem、、162,179 (1972))。Chem, 162, 179 (1972)).

Munch (Makromo 1.Chem。Munch (Makromo 1. Chem.

178.69 (1977))及びGutscheら 
 (J、   Am、   Chem、   Soc、
   103゜3782 (1981))等により、ベ
ンゼン環よりなる筒状化合物である各種カリキサレンi
 21)体の合成が示されている。しかしながら、得ら
れたカリキサレン誘導体はいずれも水溶性がないが、水
溶性に乏しいという問題点がある(勿論、海水からのウ
ラン吸着材についての記載は全くない)。
178.69 (1977)) and Gutsche et al.
(J, Am, Chem, Soc,
103°3782 (1981)) etc., various calixalene i, which are cylindrical compounds consisting of benzene rings.
21) Body synthesis is shown. However, none of the resulting calixarene derivatives is water soluble, but there is a problem in that the water solubility is poor (of course, there is no description of a uranium adsorbent from seawater).

本発明者らは従来技術の欠点を十分に検討し、かつ、海
水中でのウランの存在形態の十分な分析を行ない、海水
中でのウランは、UO□(COt);−という錯体の形
で安定に存在し、かつ、ウラニルイオンuoH゛の配位
構造は、擬平面六配位構造を有しており、これが他の金
属イオンの平面四配位構や四面体構造と大きく異なる点
である。この事を利用すれば、ウランに対する選択性及
び会合定数ともにすぐれたウラン吸着材を製造する事は
可能となる事を見出し、先に特定の環構造及び化学構造
を存するカリキサレン誘導体を樹脂に固定したウラン吸
着剤を提案した。
The present inventors have thoroughly examined the shortcomings of the prior art and conducted a thorough analysis of the existing form of uranium in seawater. The uranyl ion uoH has a quasi-planar hexacoordination structure, which is significantly different from the planar four-coordination structure and tetrahedral structure of other metal ions. be. It was discovered that by utilizing this fact, it was possible to produce a uranium adsorbent with excellent selectivity and association constant for uranium, and first fixed a calixarene derivative with a specific ring structure and chemical structure to a resin. A uranium adsorbent was proposed.

ところが樹脂固定に際し、固定化が樹脂の表面部分にの
みとどまり、固定化率を向上させる為には極めてミクロ
ポーラスの樹脂を用いる必要がある。
However, when immobilizing the resin, the immobilization is limited to only the surface portion of the resin, and in order to improve the immobilization rate, it is necessary to use an extremely microporous resin.

(発明が解決しようとする問題点) 本発明の目的は、ウランの選択吸着性にすぐれたカリキ
サレン誘導体を極めて均一にかつ高率で固定化した水膨
潤性を有するウラン吸着材を提案するにある。
(Problems to be Solved by the Invention) An object of the present invention is to propose a water-swellable uranium adsorbent in which a calixsalene derivative having excellent selective adsorption of uranium is immobilized extremely uniformly and at a high rate. .

(問題点を解決する為の手段) 本発明は下記一般式で示すカリックス〔n〕アレン誘導
体残基1)を側鎖に有するポリエチレンイミンよりなる
ウラン吸着材である。
(Means for Solving the Problems) The present invention is a uranium adsorbent made of polyethyleneimine having a calix[n]arene derivative residue 1) represented by the following general formula in its side chain.

R:水素、低級アルキル基、低級アルキルのアルコール
、チオール、アミン 或いはカルボン酸の誘導体、不飽和 アルキル基又は芳香族炭化水素 x、’y:水素、アルキル基、芳香族炭化水素 本発明のウラン吸着材においては、ウラニルイオン(u
oH゛>を捕捉するのに丁度よいキャビティーを有する
事が重要であり、nは4〜10の範囲、好ましくは6〜
8である。nが3以下では合成が極めて困難であり、且
つウラン吸着性が乏しく、使用しえない、又、nが10
を越えると合−成が困難な上、フェニルメチル基という
剛直なユニットの環状化合物であるカリックス〔n〕ア
レン誘導体においても水溶液中での柔軟性が増大し、u
oH”に対する吸着選択性の低下が生じる。
R: hydrogen, lower alkyl group, lower alkyl alcohol, thiol, amine or carboxylic acid derivative, unsaturated alkyl group or aromatic hydrocarbon x, 'y: hydrogen, alkyl group, aromatic hydrocarbon Uranium adsorption of the present invention In materials, uranyl ions (u
It is important to have just the right cavity to capture oH゛゛>, and n is in the range of 4 to 10, preferably 6 to 10.
It is 8. If n is 3 or less, it is extremely difficult to synthesize and the uranium adsorption property is poor, making it unusable.
If the u
A decrease in adsorption selectivity for "oH" occurs.

ウラニルイオンの選択吸着性という点で、RはH、低級
アルキルのアルコール、チオール、アミン或いはカルボ
ン酸誘導体が好ましく、1) 。
In terms of selective adsorption of uranyl ions, R is preferably H, a lower alkyl alcohol, a thiol, an amine, or a carboxylic acid derivative; 1).

CHzOH,CHas H,CHtNHzが更に好まし
い。
More preferred are CHzOH, CHas H, and CHtNHz.

x、yについては、前記一般式のウラン吸着性に悪影響
を及ぼさない限り特に限定しない。
x and y are not particularly limited as long as they do not adversely affect the uranium adsorption properties of the general formula.

前記(1)式で示したカリックス〔n〕アレン誘導体は
、nが大きくなれば環構造も大きくなり、−CI□−で
の回転も出来やすくなる。従って、該カリソクス(n)
アレン誘導体の立体配置の変化も観察する事が出来るが
、nが6未満、R−1)では、OHによる水素結合が強
く作用し、OR(又はs o 、M)は一定の方向に向
いた構造(“cone”構造)の確率が高い。又、Rが
水素でないか又はr1≧6では、溶剤と該カリノクス(
n)アレン誘導体との相互作用も考慮する必要があるが
、必ずしもc o n e $1造は取らずOR(又は
S O3M )の向きが交互になった構造(“alte
nata’″構造)も取りうる。
In the calix[n]arene derivative represented by the above formula (1), as n becomes larger, the ring structure becomes larger, and rotation at -CI□- becomes easier. Therefore, the calisox(n)
Changes in the configuration of the arene derivatives can also be observed, but when n is less than 6 and R-1), hydrogen bonding by OH acts strongly, and OR (or s o , M) is oriented in a fixed direction. The probability of a structure (“cone” structure) is high. In addition, if R is not hydrogen or r1≧6, the solvent and the Kalinox (
n) It is necessary to consider the interaction with allene derivatives, but it is not necessary to take a co n e $ 1 structure, but to create a structure in which the orientation of OR (or SO3M) is alternated (“alte
nata''' structure) can also be taken.

uoH゛とカリソクス(n)アレン誘導体とのホスト−
ゲスト型錯形成反応において、Rが低級アルキル基のカ
ルボン酸の場合はカリノクス(n)アレンの3個のカル
ボキシレートが配位すれば十分であり、」二連したコン
ホメーシヨンのいかんによらずD好なウラン吸着材とな
るが、それ以外の置換Wの場合はcone構造である事
が好ましい。
Host of uoH゛ and calysox(n) arene derivative-
In the guest-type complex formation reaction, when R is a carboxylic acid having a lower alkyl group, it is sufficient to coordinate three carboxylates of kalinox(n)arene, and D-preference is achieved regardless of the double conformation. However, in the case of other substituted W, it is preferable to have a cone structure.

ポリエチレンイミンは通常のポリエチレンイミンであれ
ばよく特に限定しない、ポリエチレンイミンの屯今度は
通常10以上であり、好ましくは100〜10000で
ある0重合度が10未満であれば、ウラン吸着材として
力学的強yy、耐久性に欠は好ましくない。又1ooo
oを越えると、水膨潤性或いは、カリックス〔n〕ア1
ノンの導入率が低下してくる。ポリエチレンイミン鎮は
、側鎖のない−→CI(□−G Hz −N H←)が
好ましいが、一部側鎖をもつ−←CH,−CH,−N 
H←ポリエチレンイミン鎖へのカリックス〔n〕アレン
の導入率は、カリンクス(n)アレン、/エチレンイミ
ン単位−1)5(モル比)以上が好ましく、更に好まし
くは1/10〜1/1000である。カリックス(n)
アレンのポリエチレンイミン鎖への固定はカリックス(
n)ア1/ン構造の少なくとも1個の結合部位と、結合
しておればよいが、2個以上の結合部位と結合してもよ
く、また他のポリエチレンイミン鎖との間で結合してい
てもよい。
The polyethyleneimine may be any ordinary polyethyleneimine and is not particularly limited.The degree of polymerization of polyethyleneimine is usually 10 or more, preferably 100 to 10,000.If the degree of polymerization is less than 10, it can be used as a uranium adsorbent. Strong yy and lack of durability are not desirable. Also 1ooo
If it exceeds 0, water swelling property or calix[n]a1
The rate of non-introduction will decline. Polyethyleneimine is preferably -→CI (□-GHz -NH←) without side chains, but -←CH, -CH, -N with some side chains
The introduction rate of calix[n]arene into the H←polyethyleneimine chain is preferably calix(n)arene/ethyleneimine unit-1) 5 (molar ratio) or more, more preferably 1/10 to 1/1000. be. Calix (n)
The fixation of allene to the polyethyleneimine chain is carried out by the calix (
n) It is sufficient that it is bound to at least one binding site of the a1/one structure, but it may be bound to two or more binding sites, or it can be bound to other polyethyleneimine chains. It's okay.

本発明のウラン吸着材は、ポリエチレンイミンを主鎖に
有する為に親水性に冨むが、カリフクス〔n〕アレンを
固定化している為に水溶解性でなく水膨潤する程度であ
る。
The uranium adsorbent of the present invention is highly hydrophilic because it has polyethyleneimine in its main chain, but it is not water-soluble and only swells in water because it has immobilized califux[n]arene.

次に本発明のウラン吸着材の製造方法の一例を示す、前
記一般式のカリソクス(n)アレン誘導体部分は、カリ
ックス(n)アレン及び硫酸より作る事が出来る。
Next, an example of the method for manufacturing the uranium adsorbent of the present invention is shown. The calixox(n)arene derivative portion of the general formula can be made from calix(n)arene and sulfuric acid.

カリックス(n)アレンは、例えばC,D。Calix (n) arenes are, for example, C, D.

Gutsche  (Accounts  ofChe
mical  Re5earch、1983(16)1
61〜170)の方法により作ったp−tert〜ブチ
ルカリックス(n)アレンを、トルエン中で無水塩化ア
ルミニウム等の脱アルキル化剤を用いて脱ブチル化する
事により作る事が出来る。
Gutsche (Accounts of Che
mical Research, 1983(16)1
It can be produced by debutylating p-tert~butylcalix(n)arene produced by the method of 61-170) in toluene using a dealkylating agent such as anhydrous aluminum chloride.

還流冷却管の付いたフラスコ中でカリソクス(0)アレ
ン1〜20g、好ましくは5〜15gを90%以上、好
ましくは95%以上、更に好ましくは98%以上の濃硫
酸10〜l 50rnI!、好ましくは40〜100m
lに添加し、加熱(好ましくはso’c以上に)、溶解
させ、通常1時間以上、好ましくは2時間以上、更に好
ましくは3〜5時間、60〜100℃で好ましくは70
〜90℃で反応さセる。反応終了後、内容物を冷却し、
析出したp−スルホン酸カリンクス(n)アレンを沖別
・洗浄する事により、前記(I)式におけるR=H,M
=Hの化合物を得ることが出来る。
In a flask equipped with a reflux condenser, 1 to 20 g, preferably 5 to 15 g of calisox(0)alene are mixed with 10 to 1 of concentrated sulfuric acid of 90% or more, preferably 95% or more, more preferably 98% or more 50rnI! , preferably 40-100m
1, heated (preferably above SO'C) and dissolved, usually for at least 1 hour, preferably for at least 2 hours, more preferably for 3 to 5 hours, at 60 to 100°C, preferably at 70°C.
React at ~90°C. After the reaction is completed, the contents are cooled,
By separating and washing the precipitated p-sulfonic acid calinx (n) arene, R=H, M in the above formula (I)
=H compound can be obtained.

又、Rが低級アルキル基のものは、p−スルホン酸カリ
ノクス(n)アレンと適当なアルキル化剤、例えばハロ
ゲン化アルキルとをアルキル化剤を溶解させるような溶
剤、例えば水、メタノール、エタノール、THF等に溶
解し、OHの部位にアルキル基を置換する事が出来る。
In addition, when R is a lower alkyl group, p-sulfonate kalinox (n) arene and an appropriate alkylating agent, such as an alkyl halide, are mixed in a solvent that dissolves the alkylating agent, such as water, methanol, ethanol, It can be dissolved in THF etc. and substituted with an alkyl group at the OH site.

又、Rが低級アルキル基のカルボン酸のものは、ハロゲ
ン化アルキルカルボン酸を用いる事により前述の一般式
のOHの部位に低級アルキルのカルボン酸を置換する事
が出来る。MがH以外の化合物は各種イオンとイオン交
換により得る事が出来る。
Further, when R is a lower alkyl carboxylic acid, the lower alkyl carboxylic acid can be substituted at the OH position in the above general formula by using a halogenated alkyl carboxylic acid. Compounds in which M is other than H can be obtained by ion exchange with various ions.

得られたカリキサシン−p−スルホン酸誘導体のポリエ
チレンイミンへの固定化は、カリキサシン−p−スルホ
ン酸ナトリウムを塩化チオニルと反応させてカリキサシ
ン−p−スルホニルクロライドとし、次いでこのカリキ
サシン−p−スルホニルクロライドをテトラハイドロフ
ランに溶解し、ポリエチレンイミン水溶液に徐々に滴下
して反応させる0反応生成物はゲル状に析出してくる。
The resulting calixacin-p-sulfonic acid derivative was immobilized on polyethyleneimine by reacting calixacin-p-sulfonate sodium with thionyl chloride to form calixacin-p-sulfonyl chloride, and then reacting calixacin-p-sulfonyl chloride with calixacin-p-sulfonyl chloride. The reaction product, which is dissolved in tetrahydrofuran and gradually dropped into an aqueous polyethyleneimine solution for reaction, precipitates out in the form of a gel.

本製造方法の特徴は、カリキサレン誘導体のポリエチレ
ンイミンへの固定化が一段でよく、かつ固定化と同時に
架橋構造が形成される為に、水不溶性のゲル状樹脂が得
られる事である。
The feature of this production method is that the immobilization of the calixsalene derivative to polyethyleneimine only takes one step, and a crosslinked structure is formed simultaneously with the immobilization, so that a water-insoluble gel-like resin can be obtained.

(発明の効果) 本発明のウラン吸着材は、ウラニルイオンを選択吸着す
るカリキサレン誘導体を側鎖として有しかつ親水性、水
膨潤性に富むポリエチレンイミンの主鎖よりなる樹脂の
為に、ウラニルイオンを含有する排水や海水中でも極め
てウラニルイオンとの親和性2選択性が良好であり、更
に樹脂状である為にその取扱いも非常に容易である。
(Effects of the Invention) The uranium adsorbent of the present invention has a side chain of a calixsalene derivative that selectively adsorbs uranyl ions, and is composed of a main chain of polyethyleneimine that is highly hydrophilic and water-swellable. It has extremely good affinity and selectivity with uranyl ions even in wastewater and seawater containing uranyl ions, and since it is in the form of a resin, it is very easy to handle.

側鎖のカリキサレン誘導体は、目的とするウラニルイオ
ンと最もよく配位化合物を形成するホストとしてのキャ
ビティーの設計及び官能基の導入が自由にでき、かつそ
の骨格がクラウンエーテルを初めとする他の環状配位子
等のような柔軟性がない為にウラニルイオンに対して高
い選択性を示し、それ以外の金属イオンの吸着性が少な
いという特徴を有する。従って、海水中に存在するウラ
ンの吸着には、極めて選択性がよくかつ、吸着力も大き
いものである。又、本発明のウラン吸着材が、クラウン
エーテルのように毒性の高いものでも、又価格の高いも
のでもない。従って、本発明のウラン吸着材を使用すれ
ば、海水中或いは廃水中のウランを極めて効率的に吸着
でき、又他の金属の吸着を抑える為に吸着ウランの純度
が高く、精製工程を大巾に短縮する事が出来る。又、回
収や再使用が効率的に行なえる等、工業的に極めて意義
がある。
The side chain calixsalene derivative can be used to freely design a cavity as a host to form a coordination compound with the target uranyl ion and introduce a functional group, and its skeleton can be used to form a coordination compound with other uranyl ions such as crown ether. Since it does not have the flexibility of cyclic ligands, it exhibits high selectivity for uranyl ions and has a characteristic of having low adsorption properties for other metal ions. Therefore, it has extremely good selectivity and large adsorption power for adsorbing uranium present in seawater. Further, the uranium adsorbent of the present invention is neither highly toxic nor expensive like crown ether. Therefore, if the uranium adsorbent of the present invention is used, uranium in seawater or wastewater can be adsorbed extremely efficiently, and the purity of the adsorbed uranium is high in order to suppress the adsorption of other metals, making it possible to greatly reduce the purification process. It can be shortened to . Furthermore, it is of great industrial significance as it can be efficiently recovered and reused.

(実施例) 以下実施例を示して本発明を更に詳細に説明する。(Example) The present invention will be explained in more detail below with reference to Examples.

攪拌機と冷却管を具えたフラスコにカリソクス〔6〕ア
レン7、78 gを98%の濃硫fa 50 m j!
に添加し、攪拌しながら80℃で3時間攪拌を続けた0
反応の終点は水不溶性物質がな(なった時点とする。
In a flask equipped with a stirrer and a cooling tube, 78 g of Calisox [6] Alene 7 was added with 98% concentrated sulfur fa 50 m j!
and continued stirring at 80°C for 3 hours with stirring.
The end point of the reaction is defined as the point at which no water-insoluble substances are present.

次いで室温まで冷却し、析出した結晶を炉別し、98%
の濃硫酸で洗浄し、p−スルホン酸カリックス〔6〕ア
レンの結晶を得た。得られた結晶を水に溶解し、炭酸バ
リウムにより中和し、生成した硫酸バリウムの沈澱を炉
別する。を戸液に炭酸ナトリウムを添加し、p−スルホ
ン酸ナトリウムカリフクス〔6〕アレン水溶液とする。
Next, it was cooled to room temperature, the precipitated crystals were separated in a furnace, and 98%
This was washed with concentrated sulfuric acid to obtain crystals of p-sulfonic acid calix[6]arene. The obtained crystals are dissolved in water and neutralized with barium carbonate, and the resulting barium sulfate precipitate is separated by furnace. Sodium carbonate is added to the solution to obtain a sodium p-sulfonate caulifux[6]alene aqueous solution.

fgi液のPHが8〜9になるまで炭酸ナトリウムを添
加する。
Add sodium carbonate until the pH of the fgi solution becomes 8-9.

水溶液を活性炭で処理後、減圧乾燥する。残留物を水に
溶解し、不溶物を炉別・分離する。加液を再度、活性炭
で処理し、活性炭を除去後、残液を濃縮する。濃縮液に
エタノールを添加し、次いで分別・結晶化して得た反応
生成物は、後記第1表に示す分析結果により、p−スル
ホン酸ナトリウムカリンクス〔6〕・アレンである事を
確認した。
After treating the aqueous solution with activated carbon, it is dried under reduced pressure. Dissolve the residue in water and separate the insoluble matter by furnace. The added liquid is treated with activated carbon again, and after removing the activated carbon, the remaining liquid is concentrated. The reaction product obtained by adding ethanol to the concentrate and then fractionating and crystallizing the product was confirmed to be sodium p-sulfonate calinx[6]arene based on the analysis results shown in Table 1 below.

尚、出発物質のカリンクス〔6〕アレンは、Gutsc
heらの方法(C,D、G u t s c h eら
、J、Am、Chem、Sac、、103゜3782(
1982))の方法で得たp−tert−プチルカリツ
クス〔6〕アレンをトルエン中でA 1) CIt s
等の脱アルキル化剤によって脱ブチル化して得た。
In addition, the starting material Calinx [6] arene is Gutsc
The method of He et al.
p-tert-butylcalix[6]arene obtained by the method of 1982)) was A1) CIts in toluene.
It was obtained by debutylation with a dealkylating agent such as.

実施例1 前記式■のカリックス〔6〕アレン誘導体を塩化チオニ
ル中で6時間加熱還流後、−組木水中に注入し、次いで
室温で一日攪拌し、前記0式中のS Ox N a (
D 一部ヲクロロスルホニル化(−3Q、C1)させた
。過剰の塩化チオニル番よ減圧下で留出、除去した。
Example 1 The calix[6]arene derivative of the above formula (1) was heated under reflux in thionyl chloride for 6 hours, then poured into Kumiki water, and then stirred at room temperature for one day to obtain S Ox Na (
D Partially chlorosulfonylated (-3Q, C1). Excess thionyl chloride was distilled off under reduced pressure.

カリノクス〔6〕アレン−p−クロロスルホニル誘導体
をテトラハイドロフランに溶解した。別に、ポリエチレ
ンイミン(重合度1900)の30%水/8液を調製し
、このポリエチレンイミン水溶液に室温で上記のテトラ
ハイドロフラン溶液を徐々に滴下した。−昼夜攪拌した
後、生成したゲル状物を堀過、水洗し、室温で乾燥して
白色の粉末を得た。
Kalinox[6]arene-p-chlorosulfonyl derivative was dissolved in tetrahydrofuran. Separately, a 30% water/8 solution of polyethyleneimine (degree of polymerization 1900) was prepared, and the above tetrahydrofuran solution was gradually added dropwise to this polyethyleneimine aqueous solution at room temperature. - After stirring day and night, the resulting gel was filtered, washed with water, and dried at room temperature to obtain a white powder.

元素分析の結果はH6,50%、C42,34%。The results of elemental analysis were H6, 50%, C42, 34%.

N 10.24%、310.01%、030.91%と
なり、樹脂1g当り5.2X10−’モルのカリンクス
〔6〕アレン単位を含んでいる事がわかる。即ちカリノ
クス(nlアレン/エチレンイミン単位=1/22(モ
ル比)である。
It can be seen that the N content was 10.24%, 310.01%, and 030.91%, and that 5.2×10 −' moles of calinx[6]arene units were contained per gram of resin. That is, Kalinox (nl arene/ethyleneimine units = 1/22 (molar ratio)).

次いで、硝酸ウラニルを31.5 p p m含有する
水溶液中に、上記白色I5)末の樹脂を添加し1〜40
間、ウラニルイオンの吸着テストを行った。吸着はほぼ
一日で飽和に達し、極めて吸着速度が大きい1)1がわ
かった。第1表に4日後のウラン換算の吸着量を示す。
Next, the above white I5) powder resin was added to an aqueous solution containing 31.5 ppm of uranyl nitrate to give 1 to 40%
During this period, a uranyl ion adsorption test was conducted. Adsorption reached saturation in about one day, and it was found that 1) 1 had an extremely high adsorption rate. Table 1 shows the adsorption amount in terms of uranium after 4 days.

第1表 *:圧用ら1日本化学会誌1769  (1980)に
掲載のデータ **:圧用ら2日本化学会誌958 (1979)に掲
載のデータ
Table 1 *: Data published in Pressure et al. 1 Journal of the Chemical Society of Japan 1769 (1980) **: Data published in Pressure et al. 2 Journal of the Chemical Society of Japan 958 (1979)

Claims (1)

【特許請求の範囲】[Claims] (1)下記一般式で示すカリックス〔n〕アレン誘導体
残基( I )を側鎖に有するポリエチレンイミンよりな
るウラン吸着材。 ▲数式、化学式、表等があります▼・・・・・・( I
) 但し、n:4〜10 R:水素、低級アルキル基、低級アルキルのアルコール
、チオール、アミン或いはカルボン酸の誘導体、不飽和
アルキル基又は芳香族炭化水素 x、y:水素、アルキル基、芳香族炭化水素
(1) A uranium adsorbent made of polyethyleneimine having a calix[n]arene derivative residue (I) represented by the following general formula in its side chain. ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・( I
) However, n: 4 to 10 R: hydrogen, lower alkyl group, lower alkyl alcohol, thiol, amine or carboxylic acid derivative, unsaturated alkyl group or aromatic hydrocarbon x, y: hydrogen, alkyl group, aromatic hydrocarbon
JP11309487A 1987-05-09 1987-05-09 Uranium adsorbent Expired - Lifetime JP2546798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11309487A JP2546798B2 (en) 1987-05-09 1987-05-09 Uranium adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11309487A JP2546798B2 (en) 1987-05-09 1987-05-09 Uranium adsorbent

Publications (2)

Publication Number Publication Date
JPS63277240A true JPS63277240A (en) 1988-11-15
JP2546798B2 JP2546798B2 (en) 1996-10-23

Family

ID=14603329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11309487A Expired - Lifetime JP2546798B2 (en) 1987-05-09 1987-05-09 Uranium adsorbent

Country Status (1)

Country Link
JP (1) JP2546798B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408357A (en) * 2020-04-14 2020-07-14 广西大学 Biomass intelligent fiber-based amphoteric multifunctional adsorption material and preparation method and application thereof
CN113372567A (en) * 2021-07-05 2021-09-10 南昌大学 Synthetic method of metal organic framework based on naphthalimide-based connecting agent and adsorption application of metal organic framework to uranyl ions
CN115121127A (en) * 2022-06-16 2022-09-30 中国科学院苏州纳米技术与纳米仿生研究所 Aerogel confinement solid-liquid composite membrane for extracting uranium from seawater and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408357A (en) * 2020-04-14 2020-07-14 广西大学 Biomass intelligent fiber-based amphoteric multifunctional adsorption material and preparation method and application thereof
CN113372567A (en) * 2021-07-05 2021-09-10 南昌大学 Synthetic method of metal organic framework based on naphthalimide-based connecting agent and adsorption application of metal organic framework to uranyl ions
CN115121127A (en) * 2022-06-16 2022-09-30 中国科学院苏州纳米技术与纳米仿生研究所 Aerogel confinement solid-liquid composite membrane for extracting uranium from seawater and preparation method and application thereof
CN115121127B (en) * 2022-06-16 2023-09-22 中国科学院苏州纳米技术与纳米仿生研究所 Aerogel-limited solid-liquid composite membrane for extracting uranium from seawater as well as preparation method and application thereof

Also Published As

Publication number Publication date
JP2546798B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US4678844A (en) Chelate, crosslinked polyethyleneimine resin having 2-hydroxy benzoyl group
US4542002A (en) Silicates with high ion exchange capacity derived from sepiolite and processes for their production
CN113578275A (en) For NOxManganese-cobalt binary metal-based MOF adsorbent for gas removal and preparation method thereof
JPS58181723A (en) Preparation of zeolite zk5
JPS63277240A (en) Uranium adsorbent
Brunet et al. Activation of reducing agents. Sodium hydride containing complex reducing agents. 18. Study of the nature of complex reducing agents prepared from nickel and zinc salts
US4830999A (en) Zeolite containing entrapped anionic material
CN113000013B (en) Method for treating radioactive strontium by using sodium manganese silicate adsorbent
Costero et al. Synthesis of a new allosteric carrier containing three conformationally related subunits
JPS637837A (en) Uranium adsorption material
KR20140069874A (en) Method for recovering indium from indium containing solution or mixture
JPS62136242A (en) Uranium adsorbent
JPS62210055A (en) Uranium adsorbent
RU94008432A (en) HYDROGELS FOR METHYL CRYSTRIC ACID WITH HIGH SORPTION CAPACITY AND SELECTIVITY IN RELATION TO MEDIUM MOLECULAR TOXIC METABOLITES (ENTEROGEL - SUPER) AS ADSORBENT CHAP CHAP
EP2347821B1 (en) Gas adsorbing material, precursor of the gas adsorbing material, and process for producing gas adsorbing material
JPS63197544A (en) Adsorbent of uranium
CN115216022B (en) Thiolated Zr-based metal organic framework, and preparation method and application thereof
JPH024442A (en) High performance lithium adsorbent and its preparation
CN113856633B (en) Bimetallic coordination polymer adsorbent, preparation method and application thereof
JPS621297B2 (en)
JP3968417B2 (en) Amine extractant
RU2681633C1 (en) Method of obtaining granulated aluminosilicate adsorbent for cleaning of aqueous media from cesium cations
CN116536770A (en) Cobalt (II) complex monocrystal and preparation method and application thereof
US6114266A (en) Copper complexes for nCO and olefin adsorption
JP3464023B2 (en) Method for producing sulfate-containing basic aluminum chloride