JPS6327711A - Azimuth measuring apparatus - Google Patents

Azimuth measuring apparatus

Info

Publication number
JPS6327711A
JPS6327711A JP17114186A JP17114186A JPS6327711A JP S6327711 A JPS6327711 A JP S6327711A JP 17114186 A JP17114186 A JP 17114186A JP 17114186 A JP17114186 A JP 17114186A JP S6327711 A JPS6327711 A JP S6327711A
Authority
JP
Japan
Prior art keywords
azimuth
vector
earth magnetism
vertical component
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17114186A
Other languages
Japanese (ja)
Inventor
Hidemi Oe
大江 秀美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP17114186A priority Critical patent/JPS6327711A/en
Publication of JPS6327711A publication Critical patent/JPS6327711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To accurately measure an azimuth, by calculating the angle of inclination of an azimuth vector with respect to a horizontal surface from the output of a three-dimensional earth magnetism sensor and the vertical component of earth magnetism at an azimuth measuring point read from a memory apparatus and correcting an azimuth on the basis of the angle of inclination obtained. CONSTITUTION:An azimuth measuring apparatus 11 calculates the angle thetax of inclination of an azimuth vector with respect to a horizontal surface from the output of a three-dimensional earth magnetism sensor 12 for detecting earth magnetism by decomposing the same into three orthogonal axes containing the axis superposed to an azimuth vector and the vertical component of earth magnetism at an azimuth measuring point read from a memory apparatus 15 storing the vertical component of earth magnetism at the azimuth measuring point so as to include areas expected in the measurement of an azimuth and corrects the azimuth on the basis of the angle thetax of inclination obtained. By this method, when the azimuth measuring apparatus 11 is mounted on a vehicle, the azimuth can be measured always accurately not only at a time when the vehicle runs on a flat road but also at a time when runs on an upward or downward slope.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、地磁気センサの計測姿勢によらず正確な方
位測定を可能にした方位測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an azimuth measuring device that enables accurate azimuth measurement regardless of the measurement orientation of a geomagnetic sensor.

[従来の技1frl 今日、全国規模の交通網の整備と車両製造技術の進歩が
あいまって、かってない高速輸送時代が到来しつつあり
、一方でまた、車両の現在地を車内のディスプレイ装置
に表示しながら自動航行するナビゲーション装置といっ
た高度の車両操縦技術も実用期を迎えようとしている。
[Conventional Techniques 1frl Today, with the development of nationwide transportation networks and advances in vehicle manufacturing technology, we are entering an era of unprecedented high-speed transportation. However, advanced vehicle operation technologies such as autonomous navigation systems are also approaching the age of practical use.

この種のナビゲーション装置の現在地判別法は、大別し
て衛星からの電波を頼りに現在地を割り出しながら走行
する電波航法と、出発地とその後の走行距離と方位にも
とづいて走行経路を逐次割り出しながら、現在地を把握
する推定航法の2通りの方式が主流をなしており、推定
航法による現在地判別法は、電波航法による判別法に比
べてはるかに低コストに構成できる利点がある。この推
定航法における方位測定には、一般に地球を南北に走査
する地磁気が用いられ、2次元地磁気センサを組み込ん
だ方位測定装置を用いるナビゲーション装置が種々提案
されている。
Methods for determining the current location of this type of navigation device can be roughly divided into radio navigation, which relies on radio waves from satellites to determine the current location, and radio navigation, which determines the current location based on the departure point and subsequent travel distance and direction. Two methods of dead reckoning navigation are mainstream, and the method of determining the current location using dead reckoning navigation has the advantage that it can be constructed at a much lower cost than the method of determining the current location using radio navigation. To measure direction in this dead reckoning navigation, geomagnetism that scans the earth from north to south is generally used, and various navigation devices have been proposed that use direction measurement devices incorporating two-dimensional geomagnetic sensors.

第4図に示す従来の方位測定装置1は、上述のナビゲー
ション装置に用いるもので、車両の天井部に2次元地磁
気センサ2を取り付け、これを車両の走行距離を計測す
る距離センサ3とともに中央処理装置4に接続したもの
である。中央処理装置4は、現在地推定に必要な各種デ
ータを外部の記憶装置5に記憶させてあり、推定した現
在地を現地の地図とともにただちにディスプレイ装置6
に表示できるよう構成しである。本例の場合、2次元地
磁気センサ2は、リング状のヨーク2aの外径をまたぐ
ようにして一対の線輪2y、2xを十字形状に交差させ
て巻き付け、ヨーク2aの一部に巻き付けた励磁巻き線
2ci、:a電して、バイアスとなる交流磁界を誘起さ
せる構成である。線輪2yと2Xは、それぞれ車両2の
長手方向(方位ベクトル方向)とこれに直交する方向に
固定しである。従って、路面に平行な地磁気の水平分力
をH(ただし、北向きを正としである)、地球の南北方
向と車両の進行方向がなす角度、すなわち方位をαとす
ると、線輪2x、2yに直交する磁界Hx、Hyは、定
数をkとして Hx=kHcosα +1  y  = k  I−1s  i  n  α
で表される。従って、地磁気センサの出力Hx 。
A conventional direction measuring device 1 shown in FIG. 4 is used in the above-mentioned navigation device, and includes a two-dimensional geomagnetic sensor 2 attached to the ceiling of a vehicle, which is centrally processed together with a distance sensor 3 that measures the distance traveled by the vehicle. This is connected to device 4. The central processing unit 4 stores various data necessary for estimating the current location in an external storage device 5, and immediately displays the estimated current location together with a local map on the display device 6.
It is configured so that it can be displayed. In the case of this example, the two-dimensional geomagnetic sensor 2 includes a pair of wire rings 2y and 2x wound in a cross shape so as to straddle the outer diameter of a ring-shaped yoke 2a, and an excitation wire wound around a part of the yoke 2a. This is a configuration in which the windings 2ci and 2c are electrically connected to induce an alternating magnetic field that serves as a bias. The wire wheels 2y and 2X are fixed in the longitudinal direction of the vehicle 2 (azimuth vector direction) and in the direction perpendicular thereto, respectively. Therefore, if the horizontal component of the earth's magnetism parallel to the road surface is H (north direction is positive), and the angle between the north-south direction of the earth and the direction of travel of the vehicle, that is, the direction is α, then the linear rings 2x, 2y The magnetic fields Hx and Hy that are orthogonal to
It is expressed as Therefore, the output Hx of the geomagnetic sensor.

II yを取り込んだ中央処理装置4が、α= t; 
a n −’ (Hy / I−1x )なる演算を施
すことで、方位αが算出される。
The central processing unit 4 that has taken in II y calculates α=t;
The azimuth α is calculated by performing the calculation a n −′ (Hy / I−1x).

[発明が解決しようとする問題点] 上記従来の方位測定装置Iは、車両が平坦な道を走行し
ている間は問題ないが、上り坂や下り坂のように、方位
ベクトルが地磁気の水平成分の方向に対して傾斜する場
合は、2次元地磁気センサ2の出力Hx、HyをNli
正しないと正確な方位測定ができず、当然中央処理装置
4による現在地推定にも誤差を招く問題があった。
[Problems to be Solved by the Invention] The above-mentioned conventional direction measuring device I has no problem while the vehicle is traveling on a flat road, but when the vehicle is traveling uphill or downhill, the direction vector is horizontal to the geomagnetic field. In the case of tilting with respect to the direction of the component, the outputs Hx and Hy of the two-dimensional geomagnetic sensor 2 are set to Nli
If the direction is not correct, accurate direction measurement cannot be performed, and of course there is a problem in that the central processing unit 4 causes an error in estimating the current location.

そこで、従来は車両の傾斜角度を検出する傾斜センサ(
図示せず)を2次元地磁気センサ2に接続し、この傾斜
センサの出力により2次元地磁気センサ2の出力を補正
するなどの対策を講じていたが、傾斜センサ自体高価で
あり、しかもある程度の設置スペースが必要であるため
、実用化にはまだ幾多の問題を抱えているのが現状であ
った。
Therefore, conventionally, inclination sensors (
Measures have been taken such as connecting a 2-dimensional geomagnetic sensor (not shown) to a 2-dimensional geomagnetic sensor 2 and correcting the output of the 2-dimensional geomagnetic sensor 2 using the output of this inclination sensor, but the inclination sensor itself is expensive and requires a certain amount of installation work. Due to the space required, there are still many problems in practical application.

[問題点を解決するための手段] この発明は、上記問題点を解決したものであり、地磁気
を方位ベクトルに重ねた軸を含む直交3軸に分解して検
知する3次元地磁気センサと、方位測定点における地磁
気の垂直成分を方位測定が予想される地域を網羅して記
憶する記憶装置と、前記3次元地磁気センサの出力のう
ち方位ベクトルに重ねた軸以外の2M成分と面記記憶装
置が記憶する方位測定地点における地磁気の垂直成分と
から、方位ベクトルの水平面に対する傾斜角度を算出し
、得られた傾斜角度をもとに方位補正する方位補正手段
とから構成したことを特徴とするものである。
[Means for Solving the Problems] The present invention solves the above problems, and includes a three-dimensional geomagnetic sensor that detects geomagnetism by decomposing it into three orthogonal axes including an axis superimposed on the azimuth vector, and A storage device that stores the vertical component of geomagnetism at a measurement point covering the area where azimuth measurement is expected, and a 2M component of the output of the three-dimensional geomagnetic sensor other than the axis superimposed on the azimuth vector and a notation storage device. It is characterized by comprising an azimuth correction means that calculates the inclination angle of the azimuth vector with respect to the horizontal plane from the vertical component of the earth's magnetism at the memorized azimuth measurement point, and corrects the azimuth based on the obtained inclination angle. be.

[作用] この発明は、地磁気を方位ベクトルに重ねた軸を含む直
交3軸に分解して検知する3次元地磁気センサの出力と
、方位測定点における地磁気の垂直成分を方位測定が予
想される地域を網羅して記憶する記憶装置から読み出し
た方位測定地点における地磁気の垂直成分とから、方位
ベクトルの水平面に対する傾斜角度を算出し、得られた
傾斜角度をらとに方位補正することにより、正確な方位
測定を可能にする。
[Operation] This invention detects the output of a three-dimensional geomagnetic sensor that decomposes geomagnetism into three orthogonal axes including the axis superimposed on the azimuth vector, and detects the vertical component of the geomagnetism at the azimuth measurement point in the area where the azimuth is expected to be measured. The inclination angle of the azimuth vector with respect to the horizontal plane is calculated from the vertical component of the geomagnetic field at the azimuth measurement point read from the storage device that stores the entire azimuth, and the azimuth is corrected using the obtained inclination angle. Enables direction measurement.

[実施例コ 以下、この発明の実施例について、第1図ないし第3図
を参照して説明する。第1図は、この発明の方位測定装
置の一実施例を示す回路構成図、第2図は、傾斜補正の
原理を説明するための3次元座標平面を示す図、第3図
は、第1図に示した中央処理装置の演算動作を説明する
ためのフローチャートである。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a circuit configuration diagram showing one embodiment of the direction measuring device of the present invention, FIG. 2 is a diagram showing a three-dimensional coordinate plane for explaining the principle of tilt correction, and FIG. 3 is a flowchart for explaining the calculation operation of the central processing unit shown in the figure.

第1図中、方位測定装置1■は、地磁気を方位ベクトル
に重ねた軸を含む直交3軸に分解して検知する3次元地
磁気センサ12と、方位測定点における地磁気の垂直成
分を方位測定が予想される地域を網羅して記憶する記憶
装置15と、3次元地磁気センサI2の出力のうち方位
ベクトルに重ねた軸以外の2軸成分と記憶装置15が記
憶する方位測定地点における地磁気の垂直成分とから、
方位ベクトルの水平面に対する傾斜角度OXを算出し、
得られた傾斜角度θXをもとに方位補正する方位補正手
段とを設けたものである。この実施例の場合、方位補正
手段は、中央処理装置14内にソフトウェアの形で組み
入れである。
In Fig. 1, the direction measuring device 1■ includes a three-dimensional geomagnetic sensor 12 that separates and detects the geomagnetism into three orthogonal axes including an axis superimposed on the direction vector, and a three-dimensional geomagnetic sensor 12 that detects the vertical component of the geomagnetism at the direction measurement point. A storage device 15 that covers and stores the expected area, two axis components other than the axis superimposed on the azimuth vector among the output of the three-dimensional geomagnetic sensor I2, and a vertical component of geomagnetism at the azimuth measurement point stored in the storage device 15. From,
Calculate the inclination angle OX of the orientation vector with respect to the horizontal plane,
A direction correction means for correcting the direction based on the obtained inclination angle θX is provided. In this embodiment, the orientation correction means are integrated in the central processing unit 14 in the form of software.

まず、ここで、方位補正手段による方位補正原理につい
て第2図を併せ説明する。いま、X軸が車両の進行方向
すなわち方位ベクトルに重ね合わされ、Y軸が車両の幅
方向に、さらにZ軸が車両に垂直な合致する3次元座標
平面x−y−zを考え、地磁気ベクトルD(a、b、c
)の座標成分が、座標系の回転によりどう変化するかを
考察する。図示のごとく、 D=(a、b、c) α=jan−’ (b / a ) β=Lan−’ (c / b ) 7=jan−’ (a / c ) なる関係が成立する。ただし、ベクトルDのXY平面へ
の射影をDxyとし、YZ平面への射影をDyz、XZ
平面への射影をDxzとしたときに、X軸とDxyのな
す角度が方位αであり、Y軸とDyzのなす角度がβ、
Z軸とDxzのなす角度がγである。
First, the principle of azimuth correction by the azimuth correction means will be explained with reference to FIG. 2. Now, considering a matching three-dimensional coordinate plane x-y-z in which the X-axis is superimposed on the vehicle's traveling direction, that is, the azimuth vector, the Y-axis is in the width direction of the vehicle, and the Z-axis is perpendicular to the vehicle, we can calculate the geomagnetic vector D. (a, b, c
) will change due to the rotation of the coordinate system. As shown in the figure, the following relationships are established: D=(a, b, c) α=jan-' (b/a) β=Lan-' (c/b) 7=jan-' (a/c). However, the projection of the vector D onto the XY plane is Dxy, and the projection onto the YZ plane is Dyz, XZ
When the projection onto a plane is Dxz, the angle between the X axis and Dxy is the azimuth α, and the angle between the Y axis and Dyz is β,
The angle between the Z axis and Dxz is γ.

以上の取り決めを前提として座標系をX軸を中心にOx
だけ回転tだとする。回転により得られる新たな座標系
の3軸をX、Y’ 、Z’で表し、新たなベクトルDの
座標を(A、B、C)とすれば、 Δ=a B=rT下+c”−cos(β−θx)=bcosθX
+csinex C=  b”+c”  5in(β−θX)=ccos
θx−bsinθX で表されることは、船方定理より明らかである。
Based on the above arrangement, the coordinate system is set to Ox with the X axis as the center.
Suppose that the rotation is t. If the three axes of the new coordinate system obtained by rotation are represented by X, Y', and Z', and the coordinates of the new vector D are (A, B, C), then Δ=a B=rT lower + c"- cos(β-θx)=bcosθX
+csinex C= b”+c” 5in(β-θX)=ccos
It is clear from Shipkata's theorem that it is expressed as θx−bsinθX.

そこで、a、b、cを陰関数表現から陽関数表現に書き
改めると、 a=A b=Bcosθx−CsinθX c=Bsinθx+caosθX が得られる。
Therefore, when a, b, and c are rewritten from implicit function expression to explicit function expression, a=A b=B cos θx−C sin θX c=B sin θx+caos θX are obtained.

ところで、3次元地磁気センサ12の出力は、上記各式
におけるA、B、Cに該当し、また地磁気の地表に垂直
な成分Cの値は、方位測定地点ごとに記憶装置15に記
憶させである。従って、第3図に示した演算処理プログ
ラムを用いて、正確な方位αを求めることができる。す
なわち、まず、ステップ(101)において、3次元地
磁気センサI2の出力A、B、Cを読み取り、現在地に
おける地表に垂直な地磁気の成分Cの値を記憶装置15
から読み出す。次に、続くステップ(102)において 5in−’(c/Wで”) −jan−’ (C/ B
 )の演算式に従って傾斜角θXを算出する。
By the way, the output of the three-dimensional geomagnetic sensor 12 corresponds to A, B, and C in each of the above equations, and the value of the component C of the geomagnetism perpendicular to the earth's surface is stored in the storage device 15 for each azimuth measurement point. . Therefore, using the arithmetic processing program shown in FIG. 3, accurate orientation α can be determined. That is, first, in step (101), the outputs A, B, and C of the three-dimensional geomagnetic sensor I2 are read, and the value of the geomagnetic component C perpendicular to the earth's surface at the current location is stored in the storage device 15.
Read from. Next, in the following step (102), 5in-' (c/W) -jan-' (C/B
) is used to calculate the inclination angle θX.

傾斜角θXが求まれば、ステップ(103)において演
算式 %式% に従って、方位ベクトル(座標軸X)に水平方向に直交
する座標軸Yに関する地磁気成分すを、BとCとθXを
用いて計算する。これにより、3次元地磁気センサ12
の出力Bは、正確な方位αを与えるbに補正されるわけ
である。そして正確な方位αは、 jan−’ (b / a ) で与えられるが、a=Aであるので、実際には、ステッ
プ(+04)において jan−’ (b / A ) として方位αを算出することができる。
Once the inclination angle θX is determined, in step (103), the geomagnetic component S with respect to the coordinate axis Y perpendicular to the horizontal direction to the azimuth vector (coordinate axis X) is calculated using B, C, and θX according to the calculation formula % Formula % . As a result, the three-dimensional geomagnetic sensor 12
The output B of is corrected to b which gives the correct orientation α. The exact orientation α is given by jan-' (b/a), but since a=A, the orientation α is actually calculated as jan-' (b/A) in step (+04). be able to.

このように、上記方位測定装置IIは、地磁気を方位ベ
クトルに重ねた軸を含む直交3軸に分解して検知する3
次元地磁気センサI2の出力と、方位測定点における地
磁気の垂直成分を方位測定が予想される地域を網羅して
記憶させた記憶装置15から読み出した方位測定地点に
おける地磁気の垂直成分とから、方位ベクトルの水平向
に対する傾斜角度Oxを算出し、得られた傾斜角度θX
をもとに方位を補正する構成としたから、特別な傾斜セ
ンサ等を用意することなく、方位ベクトルの傾斜角度θ
Xを演算により導き出し、得られた傾斜角度θXにもと
づいて正しい方位を知ることができ、これにより車両等
に搭載した場合に、平坦な道を走行するときだけでなく
、上り坂や下り坂を走行するさいも、常に正確な方位測
定が可能となる。
In this way, the azimuth measuring device II detects the earth's magnetism by decomposing it into three orthogonal axes including the axis superimposed on the azimuth vector.
An azimuth vector is determined from the output of the dimensional geomagnetic sensor I2 and the vertical component of the geomagnetism at the azimuth measurement point read from the storage device 15 that stores the vertical component of the geomagnetism at the azimuth measurement point covering the area where azimuth measurement is expected. The inclination angle Ox with respect to the horizontal direction is calculated, and the obtained inclination angle θX
Since the configuration corrects the orientation based on the azimuth vector, the inclination angle θ of the orientation vector
X can be derived by calculation, and the correct direction can be determined based on the obtained inclination angle θX. This allows when installed in a vehicle, etc., to not only drive on a flat road but also when going uphill or downhill. Accurate direction measurement is always possible while driving.

なお、車両の左右方向の傾斜による方位測定誤差につい
ては、左右方向の傾斜が長時間にわたって持続すること
が希であり、左右交互の傾斜により3次元地磁気センサ
12の出力がある程度平均化されることを考慮すれば、
前後方向の傾斜に比べて方位測定に与える影響は少なく
、実際上は無視しても差し支えない。
Regarding the direction measurement error caused by the left-right tilt of the vehicle, it is rare that the left-right tilt continues for a long time, and the output of the three-dimensional geomagnetic sensor 12 is averaged to some extent by alternating left-right tilt. If you consider,
It has less influence on azimuth measurement than the inclination in the front-back direction, and can be ignored in practice.

[発明の効果] 以上説明したように、この発明は、地磁気を方位ベクト
ルに重ねた軸を含む直交3袖に分解して検知する3次元
地磁気センサの出力と、方位測定点における地磁気の垂
直成分を方位測定が予想される地域を網羅して記憶させ
た記憶装置から読み出した方位測定地1点における地磁
気の垂直成分とから、方位ベクトルの水平面に対する傾
斜角度を算出し、得られた傾斜角度をもとに方位を補正
する構成としたから、特別な傾斜センサ等を用意するこ
となく、方位ベクトルの傾斜角度を演算により導き出し
、得られた傾斜角度にもとづいて正しい方位を知ること
ができ、これにより車両等に搭載すれば、平坦な道を走
行するときだけでなく、上り坂や下り坂を走行するさい
も、常に正確な方位測定が可能である等の優れた効果を
奏する。
[Effects of the Invention] As explained above, the present invention detects the output of a three-dimensional geomagnetic sensor that separates and detects geomagnetism into three orthogonal segments including an axis superimposed on an azimuth vector, and the vertical component of geomagnetism at an azimuth measurement point. Calculate the inclination angle of the azimuth vector with respect to the horizontal plane from the vertical component of the geomagnetic field at one azimuth measurement point read from a storage device that covers the area where the azimuth measurement is expected to be performed, and calculate the obtained inclination angle. Since it is originally configured to correct the orientation, the inclination angle of the orientation vector can be derived by calculation and the correct orientation can be determined based on the obtained inclination angle without the need for a special inclination sensor. When mounted on a vehicle or the like, it has excellent effects such as always being able to accurately measure the direction not only when driving on a flat road but also when driving uphill or downhill.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の方位測定装置の一実施例を示す回
路構成図、第2図は、傾斜補正の原理を説明するための
3次元座標平面を示す図、第3図は、第1図に示した中
央処理装置の演算動作を説明するためのフローチャート
、第4図は、従来の方位測定装置の一例を示す回路構成
図である。 110.一方位測定装置、11−3次元地磁気センサ、
14.−中央処理装置、、15.−−記憶装置。
FIG. 1 is a circuit configuration diagram showing one embodiment of the direction measuring device of the present invention, FIG. 2 is a diagram showing a three-dimensional coordinate plane for explaining the principle of tilt correction, and FIG. A flowchart for explaining the calculation operation of the central processing unit shown in the figure, and FIG. 4 is a circuit configuration diagram showing an example of a conventional direction measuring device. 110. Unidirectional measurement device, 11-3-dimensional geomagnetic sensor,
14. - central processing unit, 15. --Storage device.

Claims (1)

【特許請求の範囲】[Claims] 地磁気を方位ベクトルに重ねた軸を含む直交3軸に分解
して検知する3次元地磁気センサと、方位測定点におけ
る地磁気の垂直成分を方位測定が予想される地域を網羅
して記憶する記憶装置と、前記3次元地磁気センサの出
力のうち方位ベクトルに重ねた軸以外の2軸成分と前記
記憶装置が記憶する方位測定地点における地磁気の垂直
成分とから、方位ベクトルの水平面に対する傾斜角度を
算出し、得られた傾斜角度をもとに方位補正する方位補
正手段とを設けてなる方位測定装置。
A three-dimensional geomagnetic sensor that detects geomagnetism by decomposing it into three orthogonal axes including an axis superimposed on the azimuth vector, and a storage device that stores the vertical component of the geomagnetism at a azimuth measurement point covering the area where azimuth measurement is expected. , calculating an inclination angle of the azimuth vector with respect to a horizontal plane from two axis components other than the axis superimposed on the azimuth vector among the outputs of the three-dimensional geomagnetic sensor and a vertical component of geomagnetism at the azimuth measurement point stored in the storage device; An azimuth measuring device comprising azimuth correction means for azimuth correction based on the obtained inclination angle.
JP17114186A 1986-07-21 1986-07-21 Azimuth measuring apparatus Pending JPS6327711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17114186A JPS6327711A (en) 1986-07-21 1986-07-21 Azimuth measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17114186A JPS6327711A (en) 1986-07-21 1986-07-21 Azimuth measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6327711A true JPS6327711A (en) 1988-02-05

Family

ID=15917746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17114186A Pending JPS6327711A (en) 1986-07-21 1986-07-21 Azimuth measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6327711A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121877U (en) * 1988-02-13 1989-08-18
JPH0288182U (en) * 1988-12-23 1990-07-12
KR100477511B1 (en) * 2001-11-22 2005-03-17 야마하 가부시키가이샤 Electronic apparatus
JP2009229443A (en) * 2008-02-29 2009-10-08 Shimadzu Corp Target survey system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155915A (en) * 1984-12-28 1986-07-15 Furuno Electric Co Ltd Apparatus for measuring azimuth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155915A (en) * 1984-12-28 1986-07-15 Furuno Electric Co Ltd Apparatus for measuring azimuth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121877U (en) * 1988-02-13 1989-08-18
JPH0288182U (en) * 1988-12-23 1990-07-12
KR100477511B1 (en) * 2001-11-22 2005-03-17 야마하 가부시키가이샤 Electronic apparatus
JP2009229443A (en) * 2008-02-29 2009-10-08 Shimadzu Corp Target survey system

Similar Documents

Publication Publication Date Title
EP0496538B1 (en) Vehicle heading correction apparatus
US5323152A (en) Apparatus for detecting the position of a vehicle
JPH05172575A (en) Navigation equipment
KR101006812B1 (en) Magnetic data processing device, magnetic data processing method, and magnetic data processing program
JPS63150617A (en) Run path display device
JPH061191B2 (en) A method for determining the strike direction of a vehicle using an electronic compass
US5151872A (en) Method and apparatus for correcting the output of an onboard vehicle terrestrial magnetism sensor
JPH02206716A (en) Running azimuth detection device for vehicle
US7832111B2 (en) Magnetic sensing device for navigation and detecting inclination
JPH04121618A (en) Moving body navigation device
JPS6345043B2 (en)
JPS6327711A (en) Azimuth measuring apparatus
JP2870258B2 (en) Magnetization correction method for geomagnetic bearing sensor
JPS62140017A (en) Present position recognition apparatus for vehicle
JPH0161166B2 (en)
JPH0585847B2 (en)
JPH03191812A (en) Offset correcting apparatus
JPH04201B2 (en)
JPH0626873A (en) Vehicle-bearing correcting apparatus
SU1434258A1 (en) Method of measuring semicircular deviation
JP3458314B2 (en) Moving object position measurement device
JPH05297799A (en) Vehicle advance azimuth correcting device
JPH03221811A (en) Azimuth detector with offset correcting function
JPH0650248B2 (en) Mobile body orientation detector
JPH0553209B2 (en)