JPS63276281A - Superconducting signal processor - Google Patents

Superconducting signal processor

Info

Publication number
JPS63276281A
JPS63276281A JP62110507A JP11050787A JPS63276281A JP S63276281 A JPS63276281 A JP S63276281A JP 62110507 A JP62110507 A JP 62110507A JP 11050787 A JP11050787 A JP 11050787A JP S63276281 A JPS63276281 A JP S63276281A
Authority
JP
Japan
Prior art keywords
circuit
signal processing
computer
superconducting
signal processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62110507A
Other languages
Japanese (ja)
Inventor
Hideyuki Nakane
中根 英幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62110507A priority Critical patent/JPS63276281A/en
Publication of JPS63276281A publication Critical patent/JPS63276281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To provide a cooling apparatus having a simplified construction and capable of operating for a prolonged period of time without requiring maintenance while miniturizing the overall size of the apparatus, by using a high temperature superconducting body for forming a very high speed computer and signal processor composed of superconducting devices. CONSTITUTION:A body circuit 2 of a computer or a signal processor formed of a high-temperature superconducting body is packaged on a heat conducting substrate 25 within a a low-temperature vessel 1 thermally insulated by vacuum or laminate insulation. The heat conducting substrate 25 is cooled by a refrigerator head 24 arranged within the low-temperature vessel 1. When the Stirling cycle system is employed for the refrigerator head 24, a displacer 23 is required only to reciprocate and is allowed to operate for much longer time. An input/ output cable 5 from the body 2 of the computer or signal processor is connected to an interface circuit and control circuit 12 provided by a semiconductor circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は信号処理装置に係り、特に微小信号を高速に処
理するのに好適な超電導信号処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a signal processing device, and particularly to a superconducting signal processing device suitable for processing minute signals at high speed.

〔従来の技術〕[Conventional technology]

従来、超電導デバイスを用いた計算機及び信号処理装置
に関してはアイ・ビー・エム レス デベロップ 24
 ナンバー2 (1980年)の第243頁から第25
2頁において論じられている。
Conventionally, regarding computers and signal processing equipment using superconducting devices, IBM Res Development 24
Number 2 (1980), pages 243 to 25
Discussed on page 2.

これは鉛合金で形成したジョセフソン接合による論理回
路を組合せて液体ヘリウム中で動作させる装置である。
This is a device that operates in liquid helium by combining logic circuits using Josephson junctions made of lead alloy.

〔発明が解決しようとする間層点〕[The interlayer point that the invention attempts to solve]

上記従来技術は、液体ヘリウム温度で動作するため専用
の冷凍機を必要とする。第2図に示すように、液体ヘリ
ウム用の極低温容器31の中に液体ヘリウム33を満た
し、その中に計算機回路32を潰し、さらに回路が発生
する熱及び外部から流入する熱を取り去るために冷凍機
34が設置されている。液体ヘリウム用の極低温容器3
1は室温300にと液体ヘリウム温度4.2にの間の温
度差を維持するために、必然的に大形になる。
The above prior art requires a dedicated refrigerator because it operates at liquid helium temperature. As shown in FIG. 2, a cryogenic container 31 for liquid helium is filled with liquid helium 33, a computer circuit 32 is crushed therein, and the heat generated by the circuit and the heat flowing in from the outside are removed. A refrigerator 34 is installed. Cryogenic container for liquid helium 3
1 is necessarily large in size in order to maintain the temperature difference between room temperature 300 and liquid helium temperature 4.2.

また冷凍機も、現在の技術では3 m 2以上の大きな
ものとなる。冷凍機の連続運転時間が限られており、ま
た、保守も難しいため、長時間連続動作が困難になると
いう問題がある。また、液体ヘリウム温度での超電導デ
バイスの出力電圧が2〜3mVと小さいため室温中の半
導体計算機との入出力インターフェースの接続が困難に
なるという問題もある。
Furthermore, with the current technology, the refrigerator is also large, measuring more than 3 m 2 . Since the continuous operation time of the refrigerator is limited and maintenance is difficult, there is a problem that continuous operation for a long period of time becomes difficult. Another problem is that the output voltage of the superconducting device at liquid helium temperature is as small as 2 to 3 mV, making it difficult to connect the input/output interface with a semiconductor computer at room temperature.

本発明の目的は、長時間連続動作が容易でしかも半導体
計算機との接続が容易な信号処理装置を実現することに
ある。
An object of the present invention is to realize a signal processing device that can easily operate continuously for a long time and can be easily connected to a semiconductor computer.

〔間層点を解決するための手段〕[Means for solving interlayer points]

上記目的は、高い臨界温度を持つ超電導体(高温超電導
体と略す)を用いた超電導デバイスによって計算機及び
信号処理装置を構成することにより達成される。
The above object is achieved by configuring a computer and a signal processing device using a superconducting device using a superconductor having a high critical temperature (hereinafter referred to as a high-temperature superconductor).

〔作用〕[Effect]

高温超電導体によってジョセフソン接合を形成すると、
ギャップエネルギーが臨界温度とともに大きくなるため
(2Δ(0)=3.52 kflTc)、出力電圧が大
きくなり(T、=140にの材料を液体窒素温度77に
で使用するとVg>50mVとなる)、通常の半導体計
算機との接続が容易となり、冷却して使用する半導体素
子と組合わせて、機能を増大したり、入出力インターフ
ェイスを構成することもできる。また、冷却に関しても
70に程度までなら、n、tliな冷凍機で保守なしに
長時間連続運転が可能であり、液体酸素の副産物として
の液体窒素が大量にしかも安価に利用できるため、長時
間運転が容易にできる。
When a Josephson junction is formed by a high-temperature superconductor,
Since the gap energy increases with the critical temperature (2Δ(0) = 3.52 kflTc), the output voltage increases (Vg > 50 mV when using a material with T = 140 at a liquid nitrogen temperature of 77), It is easy to connect to a normal semiconductor computer, and by combining it with a semiconductor element that is used after cooling, it is possible to increase the functionality or configure an input/output interface. In addition, regarding cooling, if the temperature is up to about 70, it is possible to operate continuously for a long time without maintenance with a n,tli refrigerator, and because liquid nitrogen, a by-product of liquid oxygen, can be used in large quantities and at low cost, it can be used for long periods of time. Easy to drive.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例の模式的な断面図である。真空
断熱及び積層断熱を施した低温容器lの中に高温超電導
体で形成した計算機及び信号処理装置の本体回路2を熱
伝導基板25上に実装する。
FIG. 1 is a schematic cross-sectional view of an embodiment of the present invention. A main body circuit 2 of a computer and a signal processing device formed of a high temperature superconductor is mounted on a heat conductive substrate 25 in a low temperature container l provided with vacuum insulation and laminated insulation.

熱伝導基板25は低温容器1内に設置した冷凍機ヘッド
24により冷却される。冷凍機ヘッド24は小形化のた
めにスターリングサイクル方式を採用する。この場合、
冷凍機ヘッド24の中にはディスプレーサ23が往復運
動するのみとなり、−機構的に単純となり、長時間運転
が可能となる。冷凍機ヘッド24に高圧ガスを供給する
ためのコンプレッサ20はモータ21の回転運動を対向
する2つのシリンダ内のピストン22の往復運動により
ガスを圧縮する。ピストン22は互いに反対方向に動く
ようにして振動をなくすようにする。ピストン22の直
径が80mm程度のコンプレッサ20により、70に以
下数Wの冷凍能力が容易に得られる。熱伝導板25は銅
などの熱の良導体を用い、必要な場合にはヒートパイプ
などと組合せる。
The heat conductive substrate 25 is cooled by a refrigerator head 24 installed inside the low temperature container 1 . The refrigerator head 24 employs a Stirling cycle system for downsizing. in this case,
The displacer 23 only moves reciprocally within the refrigerator head 24, which is mechanically simple and allows long-term operation. A compressor 20 for supplying high-pressure gas to the refrigerator head 24 compresses gas by the rotational movement of a motor 21 and the reciprocating movement of pistons 22 in two opposing cylinders. The pistons 22 move in opposite directions to eliminate vibrations. With the compressor 20 whose piston 22 has a diameter of about 80 mm, a refrigerating capacity of several watts or less can be easily obtained. The heat conductive plate 25 is made of a good thermal conductor such as copper, and is combined with a heat pipe or the like if necessary.

計算機及び信号処理装置の本体2からの人出ケーブル5
は半導体回路によるインターフェイス回路及び制御回路
12に接続され、ルベル変換、直並列変換、並直列変換
された後、表示装置を備えたターミナル装置7に接続す
る。ターミナル装置7ではキーボード8やその他の入出
力装置により必要な処理を行う。ここで、冷凍機4は保
守の不要で機構が簡単なスターリングサイクル式などを
選ぶと長時間連続運転ができるという効果がある。
Output cable 5 from main body 2 of computer and signal processing device
is connected to an interface circuit and a control circuit 12 made of semiconductor circuits, subjected to Lebel conversion, serial-parallel conversion, and parallel-serial conversion, and then connected to a terminal device 7 equipped with a display device. The terminal device 7 performs necessary processing using a keyboard 8 and other input/output devices. Here, if a Stirling cycle type or the like, which does not require maintenance and has a simple mechanism, is selected for the refrigerator 4, it is effective to be able to operate continuously for a long time.

他に、高圧ガスとジュールトムソン弁を用いる冷凍機や
、リンプサイクル、ギュフォード・マクマホンサイクル
の冷凍機も使用できる。
In addition, refrigerators using high-pressure gas and Joule-Thomson valves, limp cycle refrigerators, and Gufford-McMahon cycle refrigerators can also be used.

第3図は本発明の他の実施例の模式的な断面図である6
本実施例では小形化のため、計算機及び信号処理装置の
本体2を納めた低温容器1をターミナル装置7のきよう
体の中に納めている。そのため、冷凍機4は小形のもの
を用い、冷却は熱の良導体で直接冷却する。インターフ
ェイス回路12は内部にターミナル回路を付加して小形
化する。さらに補助記憶装置10なども小形化し、すべ
てが机11の上に乗るようにして設置条件の制約をなく
す。このように小形化することにより、信号処理などの
場合には信号源の近傍で処理ができるという効果がある
。また、小形化により応用範囲を拡大できるという効果
がある。
FIG. 3 is a schematic cross-sectional view of another embodiment of the present invention6
In this embodiment, a low-temperature container 1 containing a main body 2 of a computer and a signal processing device is housed in a housing of a terminal device 7 for downsizing. Therefore, a small refrigerator 4 is used, and cooling is performed directly using a good heat conductor. The interface circuit 12 is miniaturized by adding a terminal circuit inside. Furthermore, the auxiliary storage device 10 and the like are also miniaturized so that they all sit on the desk 11, eliminating restrictions on installation conditions. This miniaturization has the effect that signal processing can be performed near the signal source. Furthermore, miniaturization has the effect of expanding the range of applications.

第3図は本発明の他の実施例の模式的な断面図である。FIG. 3 is a schematic cross-sectional view of another embodiment of the present invention.

本実施例においても小形化のため、計算機及び信号処理
装置の本体2を納めた低温容器1をターミナル装(i2
7のきよう体の中に納めている。
In this embodiment as well, in order to downsize the cryogenic container 1 containing the main body 2 of the computer and signal processing device, the terminal equipment (i2
It is stored in the body of 7.

また、計算機及び信号処理装置の本体2として超電導デ
バイスばかりでなく、低温で動作する半導体素子、例え
ば低温CMO8やG a A s素子や1【E M T
素子など超電導デバイスと混在して使用する。ジョセフ
ソン素子はラッチ回路やOR回路。
In addition, as the main body 2 of the computer and signal processing device, not only superconducting devices but also semiconductor elements that operate at low temperatures, such as low-temperature CMO8, GaAs elements, and
Used in combination with superconducting devices such as elements. Josephson elements are latch circuits and OR circuits.

AND回路は高速に実現できるが、否定回路は実現が難
じ、これに対して、半導体素子は否定回路は容易に実現
できる。このように各素子に得意な回路形式がある。こ
れにより、それぞれの素子の特徴を生かし、さらに回路
全体を小形化できるという効果があり、インターフェイ
ス回路13がさらに小形化できるという効果がある。
Although an AND circuit can be realized at high speed, a NOT circuit is difficult to realize, whereas a NOT circuit can be easily realized with a semiconductor device. In this way, each element has its own circuit format. This has the effect of making the best use of the characteristics of each element and further downsizing the entire circuit, thereby making it possible to further downsize the interface circuit 13.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超電導デバイスを用いた超高速の計算
機及び信号処理装置を高温超電体で形成することにより
冷却装置が簡素化されて長時間運転や無保守運転ができ
るようになり、装置全体が小形になるという効果がある
。さらに、高温超電導体を使うことにより、超電導デバ
イスの出力電圧が増大して、半導体との入出力インター
フェイスが容易になり、半導体素子との混用ができ、小
形化ができるという効果がある。
According to the present invention, by forming an ultra-high-speed computer and signal processing device using a superconducting device with a high-temperature superelectric material, the cooling device is simplified, allowing long-time operation and maintenance-free operation, and the device This has the effect of making the entire structure smaller. Furthermore, the use of high-temperature superconductors increases the output voltage of superconducting devices, facilitates input/output interfaces with semiconductors, allows mixed use with semiconductor devices, and allows miniaturization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本の一実施例を示す図、第2図は従来技術を示
す図、第3図及び第4図は本発明の他の実施例を示す図
である。 1・・・低温容器、2・・・計算機及び信号処理装置の
本体回路、4・・・冷凍機、5・・・入出力線。 6.12.13・・・インターフェイス回路。 7・・・ターミナル装置、8・・・キーボード、9・・
・電源及び補助記憶装置、11・・・机、20・・・コ
ンプレッサ、21・・・モータ、22・・・ピストン、
23・・・ディスプレーサ、24・・・冷凍機ヘッド、
25・・・熱伝導基板、31・・・液体ヘリウム用の極
低温容器、32・・・計算機回路、33・・・液体ヘリ
ウム、34・・・冷凍機。 第7国 2ρど
FIG. 1 shows one embodiment of the book, FIG. 2 shows the prior art, and FIGS. 3 and 4 show other embodiments of the present invention. 1... Low temperature container, 2... Main circuit of computer and signal processing device, 4... Freezer, 5... Input/output line. 6.12.13...Interface circuit. 7...Terminal device, 8...Keyboard, 9...
- Power supply and auxiliary storage device, 11... desk, 20... compressor, 21... motor, 22... piston,
23...displacer, 24...refrigerator head,
25... Heat conduction substrate, 31... Cryogenic container for liquid helium, 32... Computer circuit, 33... Liquid helium, 34... Freezer. 7th country 2ρ

Claims (1)

【特許請求の範囲】 1、計算機回路と信号処理回路と冷凍機と低温容器と入
出力回路からなる信号処理装置において、高い超電導臨
界温度をもつ超電導体で計算機回路と信号処理回路を構
成したことを特徴とする超電導信号処理装置。 2、特許請求の範囲第1項において前記超電導体をSc
、Y、希土類元素Hf、Ba、Cdを含む混合酸化物で
構成することを特徴とする超電導信号処理装置。 3、特許請求の範囲第1項において、前記計算機回路及
び信号処理回路として超電導デバイスと、低温で動作す
る半導体素子とが混在することを特徴とする超電導信号
処理装置。4、特許請求の範囲第2項において、前記混
合酸化物は、YBa_2Cu_3O_7で構成されるこ
とを特徴とする超電導信号処理装置。
[Claims] 1. In a signal processing device consisting of a computer circuit, a signal processing circuit, a refrigerator, a low temperature container, and an input/output circuit, the computer circuit and the signal processing circuit are constructed of a superconductor having a high superconducting critical temperature. A superconducting signal processing device featuring: 2. In claim 1, the superconductor is Sc
, Y, and rare earth elements Hf, Ba, and Cd. 3. A superconducting signal processing apparatus according to claim 1, characterized in that the computer circuit and the signal processing circuit include a superconducting device and a semiconductor element that operates at low temperatures. 4. A superconducting signal processing device according to claim 2, wherein the mixed oxide is composed of YBa_2Cu_3O_7.
JP62110507A 1987-05-08 1987-05-08 Superconducting signal processor Pending JPS63276281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62110507A JPS63276281A (en) 1987-05-08 1987-05-08 Superconducting signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62110507A JPS63276281A (en) 1987-05-08 1987-05-08 Superconducting signal processor

Publications (1)

Publication Number Publication Date
JPS63276281A true JPS63276281A (en) 1988-11-14

Family

ID=14537528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62110507A Pending JPS63276281A (en) 1987-05-08 1987-05-08 Superconducting signal processor

Country Status (1)

Country Link
JP (1) JPS63276281A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450605A (en) * 1987-08-21 1989-02-27 Seiko Epson Corp Amplifier
JPS6451514A (en) * 1987-08-21 1989-02-27 Seiko Epson Corp Computer
JPH01112316A (en) * 1987-10-26 1989-05-01 Seiko Epson Corp Computer
KR100429984B1 (en) * 1996-08-01 2004-10-06 엘지전자 주식회사 Method and apparatus for adjusting fan according to variation of heating value of semiconductor chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450605A (en) * 1987-08-21 1989-02-27 Seiko Epson Corp Amplifier
JPS6451514A (en) * 1987-08-21 1989-02-27 Seiko Epson Corp Computer
JPH01112316A (en) * 1987-10-26 1989-05-01 Seiko Epson Corp Computer
KR100429984B1 (en) * 1996-08-01 2004-10-06 엘지전자 주식회사 Method and apparatus for adjusting fan according to variation of heating value of semiconductor chip

Similar Documents

Publication Publication Date Title
US5057490A (en) Low-temperature thermoelectric refrigerating device using current-carrying superconducting mode/nonsuperconducting mode junctions
Walker et al. Miniature refrigerators for cryogenic sensors and cold electronics
Mansour Microwave superconductivity
US5737927A (en) Cryogenic cooling apparatus and cryogenic cooling method for cooling object to very low temperatures
JPH11144938A (en) Current lead device and refrigerator-cooled superconducting magnet
JPS63276281A (en) Superconducting signal processor
JP3180856B2 (en) Superconducting critical current measuring device
JP3082397B2 (en) Superconducting device
US11917794B2 (en) Separating temperature domains in cooled systems
JPH06350146A (en) Superconducting device
Yang et al. Optimization of the intercept temperature for high temperature superconducting current lead
Gromoll Technical and economical demands on 25K–77K refrigerators for future HTS—Series products in power engineering
JP3450318B2 (en) Thermoelectric cooling type power lead
JPH10247753A (en) Superconducting device and control method thereof
CN2158523Y (en) Controlling device for low temp. heat medium
Rahman et al. A Review on High-T c Superconductors and Their Principle Applications
JPH08236342A (en) Thermoelectric cooled powr lead
Miryala Expert opinion: Relevance of high-tc superconductors for sdg goals
Goree Review of superconducting magnetometers and cryogenic refrigeration techniques
van der Hoeven Jr et al. Refrigerator Requirements for Potential Josephson Data Processing Systems
Ramalingam et al. Systems analysis for a cryogenic aerospace terrestrial radar power system
Walker Miniature Stirling cryocoolers: trends in development
JP3316986B2 (en) Current leads for superconducting devices
JPH0828533B2 (en) Superconducting device
JPH01206835A (en) Superconducting current limiter